Análise de algoritmos

SCC-214 Projeto de Algoritmos

Thiago A. S. Pardo

Análise de algoritmos

- Precauções
 - Alguns dizem que a expressão correta é "f(n) é O(g(n))"
 - Seria considerado redundante e inadequado dizer " $f(n) \le O(g(n))$ " ou (ainda pior) "f(n) = O(g(n))"
 - Não é incorreto (embora não seja usual) dizer "f(n) ε O(g(n))", já que o operador Big-oh representa todo um conjunto de funções

Precauções

- A análise assintótica é uma ferramenta fundamental ao projeto, análise ou escolha de um algoritmo específico para uma dada aplicação
- No entanto, deve-se ter sempre em mente que essa análise "esconde" fatores assintoticamente irrelevantes, mas que em alguns casos podem ser relevantes na prática, particularmente se o problema de interesse se limitar a entradas (relativamente) pequenas
 - Por exemplo, um algoritmo com tempo de execução da ordem de 10¹⁰⁰n é O(n), assintoticamente melhor do que outro com tempo 10 n log n, o que nos faria, em princípio, preferir o primeiro
 - No entanto, 10¹⁰⁰ é o número estimado por alguns astrônomos como um limite superior para a quantidade de átomos existente no universo observável!

3

Exercício

 Problema da maior soma de subsequência em um vetor

 Implemente um programa para resolver o problema e analise-o

- Maior soma de subseqüência em um vetor
 - Algoritmo de O(n³)

5

Exercício

- Maior soma de subseqüência em um vetor
 - Algoritmo de O(n²)

- Maior soma de subseqüência em um vetor
 - Algoritmo de O(n log n)

7

Exercício

- Maior soma de subseqüência em um vetor
 - Algoritmo de O(n)

• Implemente um programa para calcular xⁿ e analise-o

9

Exercício

- Exponenciação
 - O(n)

- Exponenciação
 - O(log n)

11

Exercício

- Análise do algoritmo de Euclides
 - Um dos algoritmos mais antigos conhecidos (300 anos antes de Cristo)
 - Cômputo do máximo divisor comum entre dois números m e n, com m≥n
 - mdc(50,15)=5

```
int mdc(int m, int n) {
int aux=0;
while (n>0) {
  aux=m%n;
  m=n;
  n=aux;
}
return(m);
```