USP - ICMC - SME0806 - Estatística Computacional

Prova única – $1^{\circ}/2015 - 3/7/2015$

Nome:

1. Um vetor aleatório (X_1, X_2) tem função densidade

$$f(x_1, x_2) \propto \frac{x_1 x_2}{8^{x_1 - 1}} \left(1 - \frac{1}{8^{x_1}} \right)^{x_2 - 1} e^{-(x_1 + x_2)},$$

em que $x_1 > 0$ e $x_2 > 0$. Descreva como gerar amostras das variáveis aleatórias X_1 e X_2 .

2. X_1, \ldots, X_n representa uma amostra aleatória de uma distribuição de Poisson com média $E(X) = e^{\beta}$. O parâmetro β deve ser estimado iterativamente. Pode ser provado que a função logverossimilhança $\ell(\beta)$ é tal que

$$\frac{\partial}{\partial \beta} \ell(\beta; \boldsymbol{x}) = \sum_{i=1}^{n} (x_i - e^{\beta}).$$

em que $\mathbf{x} = (x_1, \dots, x_n)$. Além disso, a informação de Fisher é dada por $I_{F,n}(\beta) = ne^{\beta}$.

- (a) Partindo de uma estimativa inicial $\widehat{\beta}^{(0)}$, descreva como atualizar a estimativa de β .
- (b) Em uma amostra de n=40 observações obteve-se $\overline{X}=4,3$. Tomando $\widehat{\beta}^{(0)}=2,$ efetue cinco iterações do procedimento apresentado no item anterior e comente sobre a convergência.
- 3. O valor esperado do desvio absoluto de uma variável aleatória X em relação a sua mediana μ^* , dado por $E[|X \mu^*|]$, é utilizado como uma medida de dispersão. Para uma amostra de n > 1 observações, um estimador é dado por

$$d_M = \frac{1}{n} \sum_{i=1}^{n} |X_i - X_M|,$$

em que X_M denota a mediana amostral. Utilizando o método do bootstrap, descreva como estimar o erro padrão do estimador acima.

JUSTIFIQUE SUAS RESPOSTAS.