USP – ICMC – SME0806 - Estatística Computacional $4^{\rm o}$ trabalho – $1^{\rm o}/2017$

Teste bootstrap Considere o problema de testar $H_0: \mu_X - \mu_Y = d_0$ contra $H_1: \mu_X - \mu_Y \neq d_0$, em que $\mu_X = E(X)$, $\mu_Y = E(Y)$ e d_0 é uma constante fixada. Os dados disponíveis consistem de observações x_1, \ldots, x_n e y_1, \ldots, y_m de amostras aleatórias X_1, \ldots, X_n e Y_1, \ldots, Y_m , independentes entre si. A estatística de teste a ser usada é

$$T = \frac{|\overline{X} - \overline{Y} - d_0|}{(S_X^2/n + S_Y^2/m)^{1/2}},\tag{1}$$

em que \overline{X} , \overline{Y} , S_X^2 e S_Y^2 denotam médias e variâncias amostrais de X e Y. Se t_0 é o valor calculado de T, o valor-p do teste é dado pela probabilidade do evento $T \geq t_0$, calculada supondo que H_0 é verdadeira.

Amostras bootstrap x_1^*, \ldots, x_n^* e y_1^*, \ldots, y_m^* são tais que $E_{\widehat{F}_X}(x^*) = \overline{x}$ e $E_{\widehat{F}_Y}(y^*) = \overline{y}$. O cálculo do valor-p de um teste é realizado supondo que H_0 é verdadeira. Assim, para efetuar um teste de hipóteses bootstrap, as hipóteses a testar passam a ser $H_0: E_{\widehat{F}_X}(x^*) - E_{\widehat{F}_Y}(y^*) - (\overline{x} - \overline{y}) = 0$ e $H_1: E_{\widehat{F}_X}(x^*) - E_{\widehat{F}_Y}(y^*) - (\overline{x} - \overline{y}) \neq 0$. Para a b-ésima amostra bootstrap, a estatística de teste é calculada como

$$T_b^* = \frac{|\overline{x}_b^* - \overline{y}_b^* - (\overline{x} - \overline{y})|}{(S_{xb}^{2*}/n + S_{yb}^{2*}/m)^{1/2}},$$
(2)

em que \overline{x}_b^* , \overline{y}_b^* , S_{xb}^{2*} e S_{yb}^{2*} são definidos de forma análoga aos elementos da expressão (1), para $b = 1, \ldots, B$. A expressão (2) pode ser usada para obter uma estimativa bootstrap do valor-p do teste de forma análoga ao teste com a estatística T.

Problema Uma empresa adquiriu resistores de dois vendedores (1:X e 2:Y), cujos valores de resistências, em ohms, são mostrados na Figura 1. A diferença a ser testada é -5 ohms.

- 1. Apresente uma estimativa bootstrap do valor-p do teste descrito acima.
- 2. Proponha outras soluções e compare suas conclusões com o resultado obtido no item 1.

Vendedor 1					
96,8 99,6	100,0 99,4	100,3 99,9	98,5 101,1	98,3 103,7	98,2 97,7
99.7	101,1	97,7	98,6	101,9	101,0
99,4	99,8	99,1	99,6	101,2	98,2
98,6					
		Vende	edor 2		
106.8	106,8	104,7	104,7	108,0	102,2
103,2	103,7	106,8	105,1	104,0	106,2
102,6	100,3	104,0	107,0	104,3	105,8
104.0	106,3	102,2	102,8	104,2	103,4
104.6	103,5	106,3	109,2	107,2	105,4
106,4	106,8	104.1	107.1	107.7	

Figura 1: Resistências (em ohms) de resistores fornecidos por dois vendedores.