

SCC5895 – Análise de Agrupamento de Dados

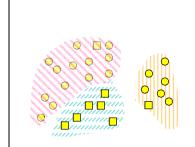
Representação de Dados

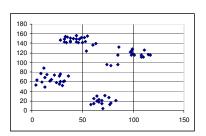
Prof. Ricardo J. G. B. Campello

PPG-CCMC / ICMC / USP

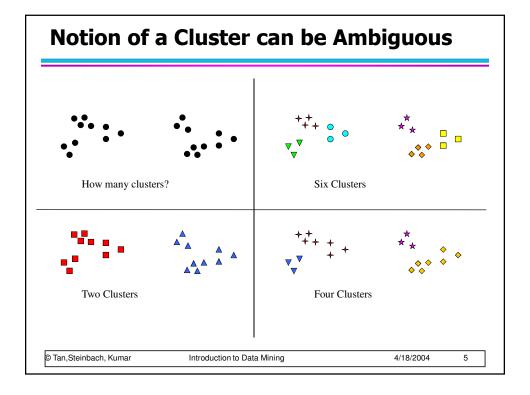
Créditos

- O material a seguir consiste de adaptações e extensões dos originais:
 - gentilmente cedidos pelo Prof. Eduardo R. Hruschka e pelo Prof. André C. P. L. F. de Carvalho
 - de (Tan et al., 2006)
 - de E. Keogh (SBBD 2003)
 - de G. Piatetsky-Shapiro (KDNuggets)


Aula de Hoje


- Motivação
- Tipos e Escalas de Dados
- Normalizações
- Medidas de Proximidade
 - Similaridade
 - Dissimilaridade
- Noções de Significância Estatística

3


Agrupamento de Dados (Clustering)

- Aprendizado não supervisionado
- Encontrar grupos "naturais" de objetos para um conjunto de dados não rotulados

Slide baseado no curso de Gregory Piatetsky-Shapiro, disponível em http://www.kdnuggets.com

Visualizando Clusters

- Sistema visual humano é muito poderoso para reconhecer padrões
- Entretanto...
 - "Humans are good at discerning subtle patterns that are really there, but equally so at imagining them when they are altogether absent" (Carl Sagan)
- Everitt et al., Cluster Analysis, Chapter 2 (Visualizing Clusters), Fourth Edition, Arnold, 2001

6

Prof. Eduardo R. Hruschka

Definindo o que é um **Cluster**

- Conceitualmente, definições são subjetivas:
 - Homogeneidade (coesão interna)...
 - Heterogeneidade (separação)...
 - Densidade (concentração)...
- É preciso formalizar matematicamente
- Existem diversas medidas
 - Cada uma induz (impõe) uma estrutura aos dados...
 - Em geral, baseadas em algum tipo de (dis)similaridade

Medidas de (Dis)Similaridade

- Existem diversas medidas de dissimilaridade e similaridade, p/ diferentes contextos de aplicação
- Cada uma assume que os objetos são descritos por atributos de uma determinada natureza
 - qualitativos, quantitativos, ...
- Para discuti-las precisamos antes falar um pouco sobre tipos e escalas de dados...

☐ Reconhecer o tipo e a escala dos dados nos
ajuda a escolher o algoritmo de agrupamento:
☐ Tipo de dados : no presente contexto, refere- se ao grau de quantização dos dados
☐ Atributo Binário :
□ 2 valores
☐ Atributo Discreto :
□ valores enumeráveis
☐ binário é caso particular !
☐ Atributo Contínuo:
u valores numéricos reais
9 Baseado no original do Prof. Eduardo R, Hruschka

Parada and a fine Full of Parada Para
□ Podemos tratar qualquer atributo como assumindo valores na forma de números, em algum tipo de escala
☐ Escala de dados: indica a significância relativa dos números (nominal, ordinal, intervalar e taxa)
☐ Escala Qualitativa:
□ Nominal: números usados como <i>nomes;</i> p. ex.
□ {M, F} = {0, 1}
☐ {Solteiro, Casado, Separado, Viúvo} = {0, 1, 2, 3}
☐ Ordinal: números possuem apenas informação sobre a ordem relativa; p. ex.
\square {ruim, médio, bom} = {1, 2, 3} = {10, 20, 30} = {1, 20, 300}
☐ {frio, morno, quente} = {1, 2, 3}
Faz sentido realizar cálculos diretamente com escalas qualitativas como acima?

Baseado nos originais do Prof. Eduardo R. Hruschka
☐ Escala Quantitativa:
□ Intervalar:
☐ Interpretação dos números depende de uma unidade de medida, cujo zero é arbitrário
☐ Exemplos:
☐ Temperatura 26°C = 78F não é 2 vezes mais quente que 13°C (55F) e 39F (4°C)
☐ 400D.C. não é 2 vezes mais tempo histórico de uma sociedade que 200D.C.
□ Razão:
☐ Interpretação não depende de qualquer unidade
☐ Exemplos:
☐ 2x Temperatura em Kelvin = 2 vezes mais quente
☐ 2x Salário = dobro do poder de compra, não interessa moeda

Medidas de (Dis)similaridade

"A escolha da medida de dis(similaridade) é importante para aplicações, e a melhor escolha é freqüentemente obtida via uma combinação de experiência, habilidade, conhecimento e sorte..."

Gan, G., Ma, C., Wu, J., **Data Clustering: Theory, Algorithms, and Applications**, SIAM Series on Statistics and Applied Probability, 2007

Baseado no original do Prof. Eduardo R. Hruschka

Notação

- Matriz de Dados X:
 - *N* linhas (objetos) e *n* colunas (atributos):

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{Nn} \end{bmatrix}$$

- Cada **objeto** (linha da matriz) é denotado por um vetor **x**_i
 - Exemplo:

$$\mathbf{x}_1 = \begin{bmatrix} x_{11} & \cdots & x_{1n} \end{bmatrix}^T$$

13

Prof. Eduardo R. Hruschka

Notação

- Matriz de Dados X:
 - *N* linhas (objetos) e *n* colunas (atributos):

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{Nn} \end{bmatrix}$$

- Cada atributo (coluna) da matriz será denotada por um vetor a;
 - Exemplo:

$$\mathbf{a}_{\scriptscriptstyle 1} = \begin{bmatrix} x_{11} & \cdots & x_{N1} \end{bmatrix}$$

14

Baseado no original do Prof. Eduardo R. Hruschka

Notação

- Matriz de Proximidade (Dissimilaridade ou Similaridade):
 - N linhas e N colunas:

$$\mathbf{D} = \begin{bmatrix} d(\mathbf{x}_1, \mathbf{x}_1) & d(\mathbf{x}_1, \mathbf{x}_2) & \cdots & d(\mathbf{x}_1, \mathbf{x}_N) \\ d(\mathbf{x}_2, \mathbf{x}_1) & d(\mathbf{x}_2, \mathbf{x}_2) & \cdots & d(\mathbf{x}_2, \mathbf{x}_N) \\ \vdots & & \ddots & \vdots \\ d(\mathbf{x}_N, \mathbf{x}_1) & d(\mathbf{x}_N, \mathbf{x}_2) & \cdots & d(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix}$$

Simétrica se proximidade d apresentar propriedade de simetria

15

Similaridade e Dissimilaridade

Similaridade

- Mede o quanto duas instâncias são parecidas
 - quanto mais parecidos, maior o valor
- Geralmente valor ∈ [0, 1]

Dissimilaridade

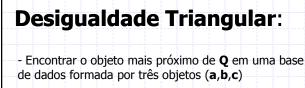
- Mede o quanto dois objetos são diferentes
 - quanto mais diferentes, maior o valor
- Geralmente valor $\in [0, d_{max}]$ ou $[0, \infty]$

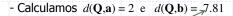
Similaridade x Dissimilaridade

- Saber converter dissimilaridades (d) em similaridades (s) e vice-versa é muitas vezes útil e nos permite tratar com apenas uma das formas
 - Se ambas forem definidas em [0,1], a conversão é direta:
 - $\mathbf{s} = 1 \mathbf{d}$ ou $\mathbf{d} = 1 \mathbf{s}$ (linear, não distorce os valores)
 - Caso contrário, algumas alternativas são:
 - se limitantes para s (s_{min} e s_{max}) ou d (d_{min} e d_{max}) forem conhecidos, podemos re-escalar em [0,1] e usar s = 1 d
 - se d ∈ [0,∞], não há como evitar uma transformação não linear...
 - por exemplo, $\mathbf{s} = 1/(1 + \alpha \mathbf{d})$ ou $\mathbf{s} = e^{-\alpha \mathbf{d}}$ ($\alpha \to \text{constante positiva}$)
 - melhor forma depende do problema...

17

Dissimilaridade e Distância


- Em agrupamento de dados, dissimilaridades são em geral calculadas utilizando medidas de distância
- Uma medida de distância é uma medida de dissimilaridade que apresenta um conjunto de propriedades


Propriedades de Distâncias

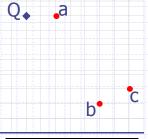
- Seja d(p, q) a distância entre duas instâncias p e q
- Então valem a seguintes propriedades:
 - Positividade e Reflexividade:
 - $d(p, q) \ge 0 \forall p e q$
 - d(p, q) = 0 se somente se p = q
 - Simetria:
 - $d(p, q) = d(q, p) \forall p e q$
- Além disso, d é dita uma métrica se também vale:
 - $d(p, q) \le d(p, r) + d(r, q) \forall p, q \in r$ (Desigualdade Triangular)

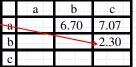
10

- Assumamos que já se disponha de algumas distâncias entre pares de objetos: $d(\mathbf{a},\mathbf{b}), d(\mathbf{a},\mathbf{c}), d(\mathbf{b},\mathbf{c})$

- Não é necessário calcular explicitamente $d(\mathbf{Q}, \mathbf{c})$:

$$d(\mathbf{Q}, \mathbf{b}) \le d(\mathbf{Q}, \mathbf{c}) + d(\mathbf{c}, \mathbf{b})$$


$$d(\mathbf{Q}, \mathbf{b}) - d(\mathbf{c}, \mathbf{b}) \le d(\mathbf{Q}, \mathbf{c})$$


$$7.81 - 2.30 \le d(\mathbf{Q}, \mathbf{c})$$

$$5.51 \le d(\mathbf{Q}, \mathbf{c})$$

➤ Já se pode afirmar que **a** está mais próximo de **Q** do que qualquer outro objeto da base de dados

> Veremos mais adiante no curso um possível uso desta propriedade em agrupamento de dados

20

Keogh, E. A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Manaus.

Propriedades de Similaridade

- As seguintes propriedades são desejáveis e em geral são válidas para similaridades:
 - Seja s(p, q) a similaridade entre duas instâncias p e q
 - s(p, q) = 1 apenas se p = q (similaridade máxima)
 - $s(p, q) = s(q, p) \forall p e q (simetria)$

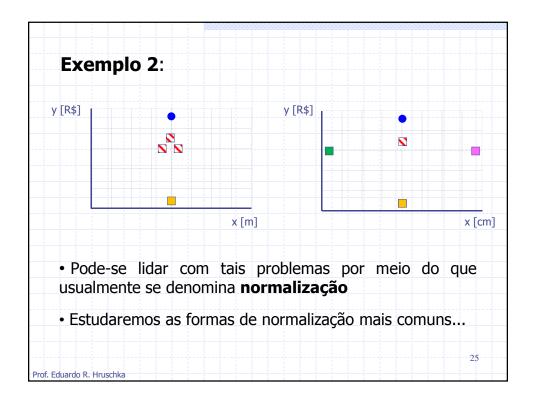
2

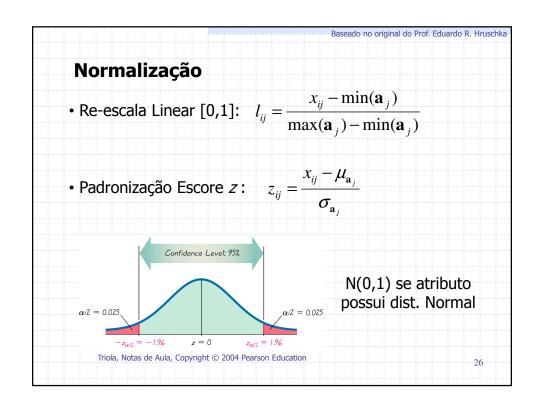
Medidas de (Dis)similaridade:

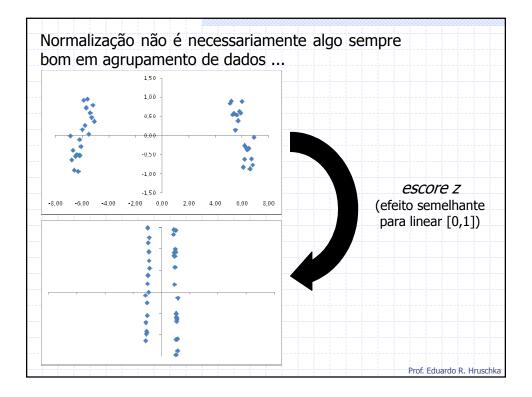
- a) Atributos contínuos
- b) Atributos discretos
- c) Atributos mistos
- Nos concentraremos em estudar medidas amplamente utilizadas na prática
- > Há uma vasta literatura sobre este assunto
 - > ver bibliografia da disciplina

Prof. Eduardo R. Hruschka

a) Atributos Contínuos


a.1) Distância Euclidiana:


$$d_{(\mathbf{x}_{i},\mathbf{x}_{j})}^{E} = \|\mathbf{x}_{i} - \mathbf{x}_{j}\| = \sqrt{\sum_{k=1}^{n} (x_{ik} - x_{jk})^{2}}$$


- Métrica
- Tende a induzir *clusters* hiper-esféricos
- *Clusters* invariantes com rel. a translação e rotação no espaço dos atributos (Duda et al., Pattern Classification, 2001)
- Implementações computacionais eficientes usam $(d^E)^2$
- Atributos com maiores valores e variâncias tendem a *dominar* os demais...

Prof. Eduardo R. Hruschka

nplo 1:				
	a ₁	a ₂	a ₃	a ₄
x ₁	1	2	5	803
x ₂	1	1	5	712
X ₃	1	1	5	792
X ₄	0	2	6	608
x ₅	0	1	5	677
x ₆	1	1	5	927
x ₇	1	1	5	412
x ₈	1	1	6	368
X ₉	1	1	6	167
X ₁₀	0	2	5	847
Média	0,70	1,30	5,30	631,30
Variância	0,23	0,23	0,23	59045,34

☐ Em Resumo:

- > Atributos com escala mais ampla / maior variabilidade tendem a ter maior peso nos cálculos de distâncias
 - > Isso representa uma espécie de pré-ponderação implícita dos dados
- > Normalização busca eliminar esse efeito, assumindo ser artificial
 - > p. ex., simples consequência do uso de unidades de medida específicas
 - > porém, também impõe uma (contra) ponderação aos dados originais...
 - ➤ pode introduzir distorções se (ao menos parte das) diferentes variabilidades originais refletiam corretamente a natureza do problema
- ☐ Por essas e (tantas) outras, agrupamento de dados é considerada uma das área de DM mais desafiadoras !

Recomendações?

- Difícil fornecer sugestões independentes de domínio
- Everitt et al. (2001) sugerem que *escores z* e normalizações lineares [0,1] não são eficazes em geral
- Lembremos que ADs envolve, em essência, análise exploratória de dados
 - > Quais são os pesos mais apropriados ?
 - ightharpoonup para pesos 0 e 1 \Rightarrow quais são os melhores atributos ?
 - > questão remete a agrupamento em sub-espaços...

2

Baseado no original do Prof. Eduardo R. Hruschka

a.2) Distância de **Minkowski**:

$$d_{(\mathbf{x}_{i},\mathbf{x}_{j})}^{p} = \|\mathbf{x}_{i} - \mathbf{x}_{j}\|_{p} = \left(\sum_{k=1}^{n} |x_{ik} - x_{jk}|^{p}\right)^{1/p}$$

- Para p = 2: Distância Euclidiana
- Para p = 1: Distância de **Manhattan** (*city block, taxicab*)
 - > recai na distância de **Hamming** para atributos binários
- Para $p \rightarrow \infty$: Dist. **Suprema** $d_{(\mathbf{x}_i, \mathbf{x}_j)}^{\infty} = \|\mathbf{x}_i \mathbf{x}_j\|_{\infty} = \max_{1 \le k \le n} |x_{ik} x_{jk}|$
- Em 2-dimensões, quais seriam as superfícies formadas pelos pontos equidistantes de um ponto de origem ?

30

Baseado no original do Prof. Eduardo R. Hruschka

□ a.2.1) Distância de **Minkowski Normalizada**:

$$d_{(\mathbf{x}_{i},\mathbf{x}_{j})}^{p} = \left\|\mathbf{x}_{i} - \mathbf{x}_{j}\right\|_{p} = \left(\frac{\sum_{k=1}^{n} \delta_{ijk} \left|x_{ik} - x_{jk}\right|^{p}}{\sum_{k=1}^{n} \delta_{ijk}}\right)^{1/p}$$

 $\begin{bmatrix} \delta_{ijk} = 0 \text{ se } x_{ik} \text{ ou } x_{jk} \text{ forem ausentes} \\ \delta_{ijk} = 1 \text{ se } x_{ik} \text{ e } x_{jk} \text{ forem conhecidos} \end{bmatrix}$

- Permite cálculos na presença de valores faltantes
- Alternativa à imputação
- · Qual a melhor abordagem?
 - · análise exploratória de dados...

Distância com Valores Ausentes

Exemplo (Distância Euclidiana Normalizada entre \mathbf{x}_1 e \mathbf{x}_3):

Obj. /Atrib.	a ₁	a ₂	a ₃	a ₄
X ₁	2	-1	???	0
X ₂	7	0	-4	8
X ₃	???	3	5	2
X ₄	???	10	???	5

- no quadro...
- Exercício: calcule todas as demais distâncias!

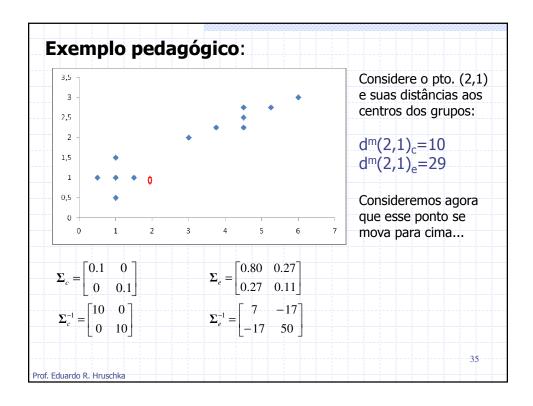
a.3) Distância de Mahalanobis:

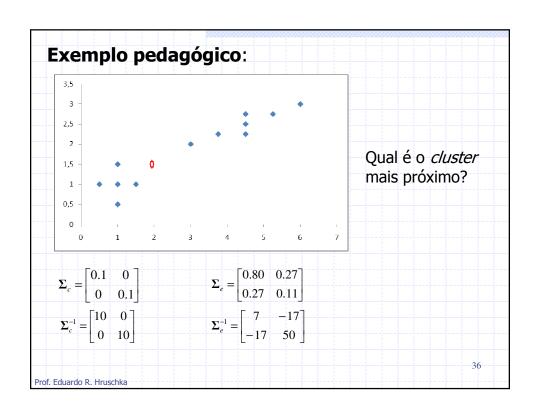
$$\left(d_{(\mathbf{x}_{i},\mathbf{v}_{j})}^{m}\right)^{2} = \left(\mathbf{x}_{i} - \mathbf{v}_{j}\right)^{T} \mathbf{\Sigma}_{j}^{-1} \left(\mathbf{x}_{i} - \mathbf{v}_{j}\right)$$

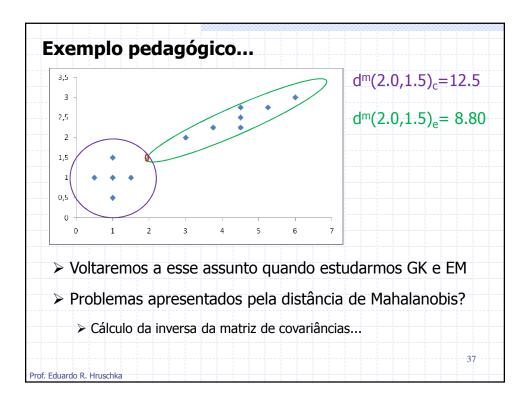
 Σ_j = matriz de covariâncias do j-ésimo grupo de dados, com objetos \mathbf{x}_l ($l=1,...,N_j$) e centro \mathbf{v}_j :

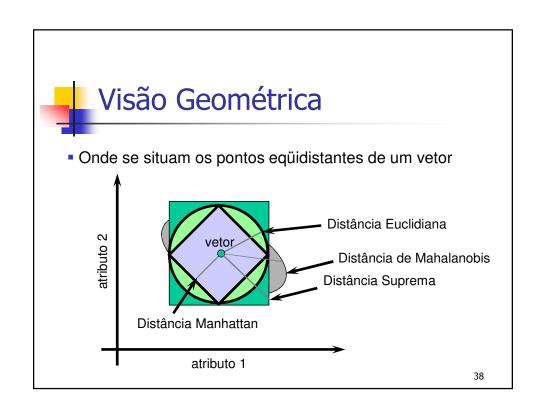
$$\boldsymbol{\Sigma}_{j} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{pmatrix} = \frac{1}{N_{j}} \sum_{l=1}^{N_{j}} (\mathbf{x}_{l} - \mathbf{v}_{j}) (\mathbf{x}_{l} - \mathbf{v}_{j})^{T}$$

simétrica


33


• Interpretação da Dist. de Mahalanobis:


No quadro...


Nota Importante:

- ➤ A distância de Mahalanobis é uma distância de um objeto a um grupo de pontos (em particular, ao seu centro)
- \succ Se calculada entre dois objetos, assume implicitamente que um deles é o centro de um grupo com covariância Σ_i
- ➤ Generalizações, por exemplo para distância entre 2 grupos, são discutidas em (Everitt et al., 2001)

Baseado no original do Prof. Eduardo R. Hruschka

a.4) Correlação Linear de Pearson

$$r(\mathbf{x}_{i}, \mathbf{x}_{j}) = \frac{\frac{1}{n} \sum_{k=1}^{n} (x_{ik} - \mu_{\mathbf{x}_{i}})(x_{jk} - \mu_{\mathbf{x}_{j}})}{\frac{1}{n} \sqrt{\sum_{k=1}^{n} (x_{ik} - \mu_{\mathbf{x}_{i}})^{2} \sum_{i=1}^{n} (x_{jk} - \mu_{\mathbf{x}_{j}})^{2}}} = \frac{\text{cov}(\mathbf{x}_{i}, \mathbf{x}_{j})}{\sigma_{\mathbf{x}_{i}} \cdot \sigma_{\mathbf{x}_{j}}}$$

- > medida de similaridade
- ➤ interpretação intuitiva ?

Pearson, K., Mathematical contributions to the theory of evolution, III Regression, Heredity and Panmixia, *Philos. Trans. Royal Soc. London Ser. A*, v. 187, pp. 253-318, 1896.

Correlação

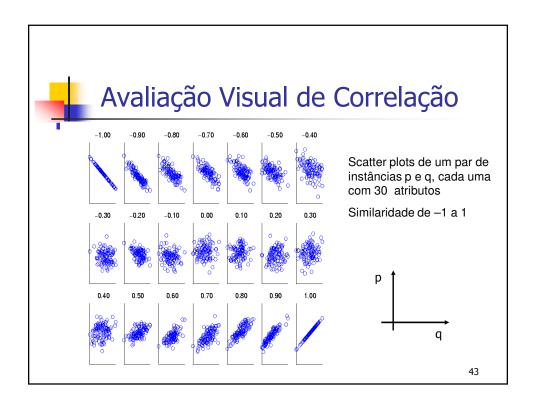
- Mede interdependência entre vetores numéricos
 - Por exemplo, interdependência linear
- Pode ser portanto usada para medir similaridade
 - entre 2 instâncias descritas por atributos numéricos
 - entre 2 atributos numéricos
- Correlação de **Pearson** mede a compatibilidade linear entre as tendências dos vetores
 - despreza média e variabilidade
 - muito útil em bioinformática

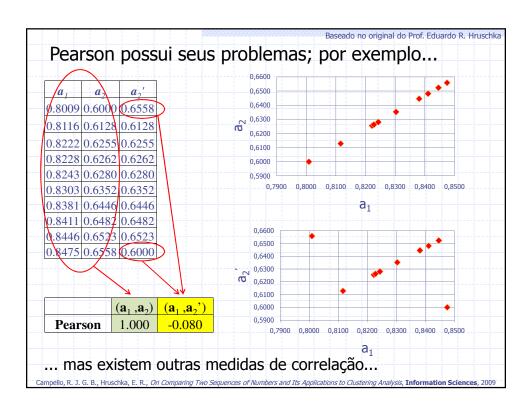
Correlação de Pearson

- Cálculo do coeficiente de Pearson:
 - Padronizar vetores **p** e **q**
 - padronização score-z !
 - Calcular produto interno

$$p'_{k} = (p_{k} - \mu_{p}) / \sigma_{p}$$

$$q'_{k} = (q_{k} - \mu_{q}) / \sigma_{q}$$


$$correlação (\mathbf{p}, \mathbf{q}) = \frac{\mathbf{p'} \cdot \mathbf{q'}}{n}$$


41

Correlação

- Valor no intervalo [-1, +1]
 - Correlação (p, q) = +1
 - ullet Objetos p e q têm um relacionamento linear positivo perfeito
 - Correlação (\mathbf{p} , \mathbf{q}) = -1
 - Objetos p e q têm um relacionamento linear negativo perfeito
 - Correlação (**p**, **q**) = 0
 - Não existe relacionamento linear entre os objetos p e q
 - Relacionamento linear: $\mathbf{p}_k = a\mathbf{q}_k + b$

Exercício

 Calcular correlação de Pearson entre os seguintes objetos p e q

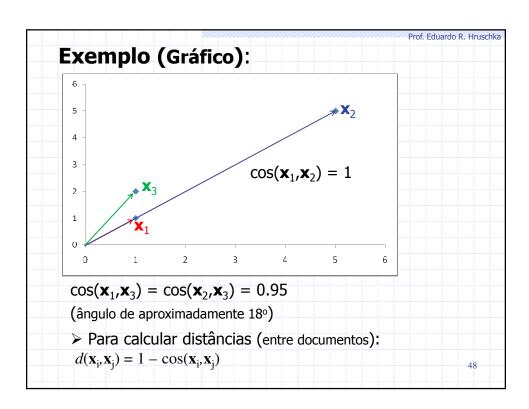
$$\mathbf{p} = [1 -3 \ 0 \ 4 \ 1 \ 0 \ 3]
\mathbf{q} = [0 \ 1 \ 4 -2 \ 3 -1 \ 4]$$

45

a.5) Cosseno

- > Correlação de Pearson tende a enxergar os vetores como sequências de valores e capturar as semelhanças de forma / tendência dessas sequências
 - Não trata os valores como assimétricos
 - > Valores nulos interferem no resultado
- ➤ Similaridade **Cosseno**, embora seja matematicamente similar, possui características diferentes:

$$\cos(\mathbf{x}_i, \mathbf{x}_j) = \frac{\mathbf{x}_i^T \cdot \mathbf{x}_j}{\|\mathbf{x}_i\| \cdot \|\mathbf{x}_j\|}$$


46

Baseado no original do Prof. Eduardo R. Hruschka

Similaridade Cosseno

- Apropriada para atributos assimétricos
 - Muito utilizada em mineração de textos
 - grande número de atributos, poucos não nulos (dados esparsos)
- Sejam d₁ e d₂ vetores de valores assimétricos
 - $cos(\mathbf{d}_1, \mathbf{d}_2) = (\mathbf{d}_1 \cdot \mathbf{d}_2) / ||\mathbf{d}_1|| ||\mathbf{d}_2||$
 - •: produto interno entre vetores
 - || d ||: é o tamanho (norma) do vetor d
 - Mede o cosseno do ângulo entre os respectivos versores

Exemplo (Numérico)

- Sejam os vetores (instâncias) d₁ e d₂ abaixo
 - $\mathbf{d}_1 = [3 \ 2 \ 0 \ 5 \ 0 \ 0 \ 2 \ 0 \ 0]$
 - $\mathbf{d}_2 = [1000000102]$

```
\cos(\mathbf{d}_1, \mathbf{d}_2) = (\mathbf{d}_1 \cdot \mathbf{d}_2) / ||\mathbf{d}_1|| ||\mathbf{d}_2||
```

```
\begin{array}{ll} \mathbf{d}_1 \bullet \mathbf{d}_2 &= 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 \\ ||\mathbf{d}_1|| &= (3^2 + 2^2 + 0^2 + 5^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2)^{\mathbf{0.5}} = (42)^{\mathbf{0.5}} = 6.481 \\ ||\mathbf{d}_2|| &= (1^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 0^2 + 2^2)^{\mathbf{0.5}} = (6)^{\mathbf{0.5}} = 2.245 \end{array}
```

 $\cos(\mathbf{d}_1, \mathbf{d}_2) = .3150$

40

Exercício

Calcular dissimilaridade entre **p** e **q** usando medida de similaridade cosseno:

$$\mathbf{p} = [1 \ 0 \ 0 \ 4 \ 1 \ 0 \ 0 \ 3]$$
$$\mathbf{q} = [0 \ 5 \ 0 \ 2 \ 3 \ 1 \ 0 \ 4]$$

		tos Discre			
Motiv	/ação:				
	Sexo	País	Estado Civil	Comprar	$d(\mathbf{x}_1,\mathbf{x}_2)=3$
x ₁	M	França	solteiro	Sim	(1/0/
\mathbf{x}_2	M	China	separado	Sim	$d(\mathbf{x}_1, \mathbf{x}_6) = ?$ $d(\mathbf{x}_1, \mathbf{x}_7) = ?$
X ₃	F	França	solteiro	Sim	1, 7,
\mathbf{x}_4	F	Inglaterra	casado	Sim	
x ₅	F	França	solteiro	Não	
X ₆	M	Alemanha	viúvo	Não	
X ₇	M	Brasil	casado	Não	
X ₈	F	Alemanha	casado	Não	
X ₉	M	Inglaterra	solteiro	Não	
X ₁₀	M	Argentina	casado	Não	

· Calcı	ular a dista	ância en			0 0 1 0 0] e 1 1 0 0 0]		
Usar	ido uma ta	abela de	1 1				
	Objeto x _i						
	_		1	0	Total		
	Objeto x _i	1	<i>n</i> ₁₁	n_{10}	$n_{11}+n_{10}$		
		0	n_{01}	<i>n</i> ₀₀	$n_{01} + n_{00}$		
		Total	$n_{11} + n_{01}$	$n_{10} + n_{00}$	n		
$S_{(\mathbf{x}_i,\mathbf{x}_j)}^{SM}$	$= \frac{n_1}{n_{11} + n_0}$	$\frac{1}{1} + n_{00}$ $\frac{1}{0} + n_{10} + n_{10}$	$\frac{1}{n_{01}} = \frac{n_{11} + n_{11}}{n}$	n_{00} Coefici	ente de Casamento S (Zubin, 1938)		

Baseado no original do Prof. Eduardo R. Hruschka

Entretanto, podemos ter:

- > Atributos simétricos: valores igualmente importantes
 - ➤ Exemplo típico → Sexo (M ou F)
- Atributos assimétricos: valores com importâncias distintas – presença de um efeito é mais importante do que sua ausência
 - > Depende do contexto...
 - ➤ Exemplo: sejam 3 objetos que apresentam (1) ou não (0) dez sintomas para uma determinada doença

$$\mathbf{x}_1 = [1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1]$$

$$S^{SM}(\mathbf{x}_1,\mathbf{x}_2) = 0.5;$$

$$\mathbf{x}_2 = [1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0]$$

$$S^{SM}(\mathbf{x}_1,\mathbf{x}_3) = 0.5;$$

$$\mathbf{x}_3 = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]$$

53

Baseado no original do Prof. Eduardo R. Hruschka

> Para atributos assimétricos, pode-se usar, por exemplo, o *Coeficiente de Jaccard* (1908):

$$S_{(\mathbf{x}_i, \mathbf{x}_j)}^{Jaccard} = \frac{n_{11}}{n_{11} + n_{10} + n_{01}}$$

- > Focada nos casamentos do tipo 1-1
- > Despreza casamentos do tipo 0-0
- ➤ Existem outras medidas similares na literatura, mas CCS e Jaccard são as mais utilizadas
 - > vide (Kaufman & Rousseeuw, 2005)

Em Resumo...

Coeficiente de Casamento Simples

CCS =
$$(n_{11} + n_{00}) / (n_{01} + n_{10} + n_{11} + n_{00})$$

- = no. de coincidências / no. de atributos
- Conta igualmente 1s e 0s, portanto é adequado quando ambos os valores são de fato equivalentes
 - Atributos binários simétricos

55

Em Resumo...

Coeficiente Jaccard

$$J = n_{11} / (n_{01} + n_{10} + n_{11})$$

- Despreza as coincidências de 0s, para lidar adequadamente com atributos assimétricos
 - 0s indicam apenas ausência de uma característica
 - similaridade se dá pelas características presentes

Outro Exemplo

```
\mathbf{p} = [1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]\mathbf{q} = [0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0]
```

 $n_{01}=2$ (número de atributos em que $\mathbf{p}=0$ e $\mathbf{q}=1$) $n_{10}=1$ (número de atributos em que $\mathbf{p}=1$ e $\mathbf{q}=0$) $n_{00}=7$ (número de atributos em que $\mathbf{p}=0$ e $\mathbf{q}=0$) $n_{11}=0$ (número de atributos em que $\mathbf{p}=1$ e $\mathbf{q}=1$)

CCS =
$$(n_{11} + n_{00})/(n_{01} + n_{10} + n_{11} + n_{00})$$

= $(0+7) / (2+1+0+7) = 0.7$

$$J = n_{11} / (n_{01} + n_{10} + n_{11}) = 0 / (2 + 1 + 0) = 0$$

57

Exercício

- Calcular disssimilaridade entre p e q usando coeficientes:
 - Casamento Simples
 - Jaccard

$$\begin{array}{ll} \boldsymbol{p} &= [1\ 0\ 0\ 1\ 1\ 0\ 1\ 0\ 1\ 1\ 1\ 0] \\ \boldsymbol{q} &= [0\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 0\ 1\ 1] \end{array}$$

Baseado no original do Prof. Eduardo R. Hruschka

b.2) Atributos Nominais (não binários)

b.2.1) Codificação 1-de-n

- Exemplo:
 - Estado civil ∈ {solteiro, casado, divorciado, viúvo}:
 - Criar 4 atributos binários: solteiro ∈ {0,1}, ..., viúvo ∈ {0,1}
- Atributos assimétricos
- Pode introduzir um número elevado de atributos!

b.2.2) CCS e Jaccard (Adaptados)*

- Exemplo: no quadro...
- Eventualmente ponderar contribuições individuais de cada atributo em função da cardinalidade do seu conjunto de valores

b.3) Atributos Ordinais

Ex.: Gravidade de um efeito: {nula, baixa, média, alta}

- Ordem dos valores é importante
- Normalizar e então utilizar medidas de (dis)similaridade para valores contínuos (p. ex. Euclidiana, cosseno, etc):
 - $\{1, 2, 3, 4\} \rightarrow (rank 1) / (número de valores 1)$
 - {0, 1/3, 2/3, 1}
- > Abordagem comum

Prof. Eduardo R. Hruschka

c) Atributos Mistos (Contínuos e Discretos)

Método de Gower (1971):

$$S_{(\mathbf{x}_i,\mathbf{x}_j)} = \frac{1}{n} \sum_{k=1}^n S_{ijk} \longrightarrow d_{(\mathbf{x}_i,\mathbf{x}_j)} = 1 - S_{(\mathbf{x}_i,\mathbf{x}_j)}$$

Para atributos nominais / binários:

$$\begin{cases} (x_{ik} = x_{jk}) \Rightarrow s_{ijk} = 1; \\ (x_{ik} \neq x_{jk}) \Rightarrow s_{ijk} = 0; \end{cases}$$

Para atributos ordinais ou contínuos:

$$s_{ijk} = 1 - \left| x_{ik} - x_{jk} \right| / R_k \qquad R_k = \max_m \mathbf{x}_{mk} - \min_m \mathbf{x}_{mk}$$

 R_k = faixa de observações do k-ésimo atributo (termo de normalização)

Baseado no original do Prof. Eduardo R. Hruschka

`

General Approach for Combining Similarities

- Sometimes attributes are of many different types, but an overall similarity is needed
 - and sometimes, there are missing values...
- 1. For the k^{th} attribute, compute a similarity, s_k , in the range [0,1].
- 2. Define an indicator variable, δ_k , for the k_{th} attribute as follows:

$$\delta_k = \left\{ \begin{array}{ll} 0 & \text{if the k^{th} attribute is a binary asymmetric attribute and both objects have} \\ & \text{a value of 0, or if one of the objects has a missing values for the k^{th} attribute} \\ 1 & \text{otherwise} \end{array} \right.$$

3. Compute the overall similarity between the two objects using the following formula:

$$similarity(p,q) = rac{\sum_{k=1}^{n} \delta_k s_k}{\sum_{k=1}^{n} \delta_k}$$

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Sumário:

- ➤ Medidas de dis(similaridade) mais populares foram descritas, mas há várias outras na bibliografia
- ➤ Diferentes medidas de dis(similaridade) afetam a formação (indução) dos *clusters*
 - Como selecionar a medida de (dis)similaridade?
 - Devemos padronizar? Caso afirmativo, como?
- > Infelizmente, não há respostas definitivas e globais...
- ➤ Análise de agrupamento de dados é, em essência, um processo subjetivo, dependente do problema
- > Lembrem: análise exploratória de dados!

6

Prof. Eduardo R. Hruschka

Algumas Questões Complementares...

Suponha que já se conheça um conjunto de pontos que pertençam a um grupo G_1 e que se considere esses pontos como mais ou menos próximos ao grupo como um todo segundo alguma medida de distância a partir do seu centro

Questão: Dado que a distância de um novo ponto (até então desconhecido) para o centro de G_1 é, digamos, d=5, o **quão próximo** de G_1 é de fato este ponto ?

- ➤ A quantificação (d=5) é absoluta, mas a interpretação é relativa
- > Teoria de Probabilidades pode ajudar

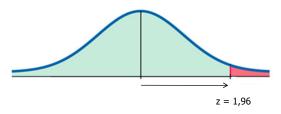
A discussão anterior remete a uma questão fundamental quando se lida com diferentes medidas, índices, critérios para quantificar um determinado evento

Questão: Como interpretar um dado valor medido?

Note que 0.9, por exemplo, não é necessariamente um valor significativamente alto de uma medida c/ escala 0 a 1

Depende de distribuições de probabilidade!

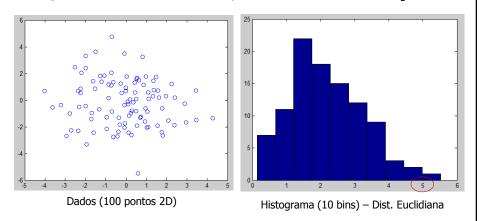
> Precisamos de uma distribuição de referência para avaliar a magnitude do valor da medida


65

- ➤ Por hora, para fins do nosso exemplo simples, a distribuição de ref. pode ser a da distância "d" de interesse
 - ➤ de pontos gerados pelo fenômeno descrito por G₁ ao seu centro
- > Suponha hipoteticamente que se conheça essa distribuição:
 - \triangleright p. ex. normal com média μ e desvio padrão σ , ou seja, $N(\mu,\sigma)$
- > Fazendo a padronização escore-z tem-se N(0,1)

$$\geq$$
 z = (d – μ) / σ

- \triangleright Suponha mais uma vez hipoteticamente que a média e desvio sejam tais que nossa medida d = 5 implica z = 1,96
- > O que poderíamos concluir...?


- \triangleright Poderíamos concluir que a probabilidade de se observar um valor de distância d < 5 para um ponto de G_1 é 97,5%
- > Isso pode sugerir que:
 - \succ um novo ponto observado com d = 5 não foi gerado pelo mesmo fenômeno descrito por G_1 , ou
 - > esse ponto é um evento relativamente raro de G₁

> Mas... e se não conhecemos a distribuição ?

67

- ➤ Se não conhecemos, podemos tentar estimar...
- \succ No caso do nosso exemplo simples, podemos montar um histograma das distâncias dos pontos conhecidos de G_1

> Aprofundaremos essas questões mais adiante no curso...

Principais referências usadas para preparar essa aula:

- Xu, R., Wunsch, D., Clustering, IEEE Press, 2009
 - ➤ Capítulos 1 e 2, pp. 1-30
- Jain, A. K., Dubes, R. C., **Algorithms for Clustering Data**, Prentice Hall, 1988
 - ➤ Capítulos 1 e 2, pp. 1-25
- Gan, G., Ma, C., Wu, J., **Data Clustering: Theory, Algorithms, and Applications**, SIAM Series on Statistics and Applied Probability, 2007
 - ➤ Capítulos 1 e 2, pp. 1-24
- Kaufman, L., Rousseeuw, P. J., **Finding Groups in Data: An Introduction to Cluster Analysis**, 2a Edição, Wiley, 2005
 - Capítulo 1, seção 2

- 69

Outras Referências

- Everitt, B. S., Landau, S., Leese, M., Cluster Analysis, Hodder Arnold Publication, 2001
- P.-N. Tan, Steinbach, M., and Kumar, V., Introduction to Data Mining, Addison-Wesley, 2006
- Duda, R. O., Hart, P. E., and Stork, D. G., Pattern Classification, 2nd Edition, Wiley, 2001
- Triola, M. F., Elementary Statistics, 8a Ed., Prentice-Hall, 2000