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RC – Heterogeneidade e
Correlação

Figura: Figura originalmente publicada em [Solé and Valverde, 2004].
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RC – Heterogeneidade e
Correlação

1 Heterogeneidade:
• medida pela diversidade de grau dos nós,

2 Correlação entre graus dos nós:
• relação causa/efeito quanto ao grau dos nós e a

ocorrências de arestas entre eles.
• quanto maior o grau de um nó, maior a probabilidade de

que esse receba novas conexões.

3 Como medir tais caracteŕısticas do ponto de vista da
Teoria da Informação?
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TI – Entropia

Entropia:

1 Medida da incerteza média de uma variável aleatória,

2 O número médio de bits (logaritmo base 2) necessário
para descrever tal variável.

Definição (Entropia [Cover et al., 1991])

Seja X uma variável aleatória discreta em um alfabeto ξ,
função de probabilidade p(X = x), com x ∈ ξ. A entropia
H(X) é definida como:

H(X) = −
∑
x ∈ ξ

p(x) log p(x) (1)

O que pode-se concluir?
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TI – Entropia

Conclusão: A entropia pode ser utilizada como medida para a
heterogeneidade de uma rede.
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TI – Mutual Information

Mutual Information:

1 Mutual Information se refere à quantidade de informação
que uma variável aleatória possui sobre outra variável.

2 É a redução de incerteza de uma variável aleatória, dado o
conhecimento sobre outra variável aleatória.

Definição (Mutual Information [Cover et al., 1991])

Considere duas variáveis aleatórias X e Y com uma função de
probabilidade conjunta p(X = x, Y = y), e probabilidades
marginais p(X = x) e p(Y = y). A Mutual Information é
definida como:

I(X,Y ) =
∑
x ∈ ξ

∑
y ∈ ξ

p(x)p(y) log
p(x, y)

p(x)p(y)
(2)
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TI – Mutual Information

O que pode-se concluir?
A mutual information pode ser utilizada como medida de
correlação em redes complexas.

I(X,Y ) = H(X)−H(X|Y )
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Resumo RC & TI

Caracteŕısticas da rede que serão avaliadas:

• Heterogeneidade da rede, medida pela Entropia.

• Quantidade de correlação entre os nós da rede: Mutual
Information,
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Teoria da Inf. & Redes Complexas
[Solé and Valverde, 2004]

• Foco na distribuição de grau “restante” (remaining
degree distribution),

• Que é definida como o número de arestas deixando o
vértice i excluindo-se a aresta pela qual chegou-se a tal
vértice:

q(k) =
(k + 1)Pk+1

〈k〉
(3)
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Teoria da Inf. & Redes Complexas

• Tem-se também a distribuição conjunta de grau
“restante” q(k, k′), a qual assume o valor q(k)q(k′) em
redes com baixa correlação.

• Caso contrário, tem-se a Equação (4), onde π(k|k′) é a
probabilidade de se observar um vértice com grau k, dado
que o outro vértice pertencendo à mesma aresta possua
grau k′.

q(k, k′) =
π(k|k′)
q(k′)

(4)



Teoria da
Informação em
Redes
Complexas

Caracteŕısticas
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TI & RC – Entropia

Utilizando a distribuição Q = (q(1), . . . , q(i), . . . , q(n)),
podemos descrever a entropia e a mutual information de uma
rede.

H(Q) = −
n∑
k=1

q(k) log q(k). (5)

I(Q) =

n∑
k=1

n∑
k′=1

q(k, k′) log
q(k, k′)

q(k)q(k′)
. (6)
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Aplicação

Como aplicar as funções previamente definidas para a
classificação em redes complexas?

Figura: (a) Redes em Grade, (b) Rede Estrela, (c) Rede Aleatórias.
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Redes em Grade

Em uma grade, todos os vértices possuem o mesmo grau,
portanto:
Observando que δk,z = 1 se k = z e 0 caso contrário.

Pk = δk,z (7)

1 Desta forma q(k) pode ser simplificado:

q(k) =
(k + 1) Pk+1

〈k〉
q(k) ≡ δk,(z−1)

Q = {0, 0, 0, 0, 1, 0, . . . , 0}

H(Q) = −
n∑

k=1

q(k) log q(k) = 0
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Caracteŕısticas
de Redes

Heterogeneidade
e Correlação

Teoria da
Informação

Entropia

Mutual
Information

Teoria da
Informação em
Redes
Complexas

Aplicação a
modelos de
Redes

Redes em Grade

Redes Estrela

Redes em Grade

1 Todos vértices possuem o mesmo grau, portanto:

q(k, k′) = q(k) q(k′)

= δk,(z−1) δk′,(z−1)

2 Desta forma a Mutual Information é zero, o que implica
que não há correlação.

I(Q) =

n∑
k=1

n∑
k′=1

q(k, k′) log
q(k, k′)

q(k)q(k′)

=

n∑
k=1

n∑
k′=1

δk,(z−1) δk′,(z−1) log
δk,(z−1) δk′,(z−1)

δk,(z−1)δk′,(z−1)

I(Q) = 0
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Rede Estrela
Padrão comumente encontrado em redes scale-free.

1 Um vértice de grau n− 1, demais vértices grau 1:

Pk =
n− 1

n
δk,1 +

1

n
δk,(n−1)

2 Portanto, grau médio da rede é dado por:

〈k〉 =
n∑
k

kPk = 2
n− 1

n

3 Substituindo tais valores na equação do grau “restante” q(k),
tem-se.

q(k) =
1

2
(δk,0 + δk,(n−2))

Q = {0.5, 0, 0, . . . , 0.5, 0, 0}

H(Q) = −2(1
2
log

1

2
= −2(1

2
(log 1− log 2)) = 1
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1 A distribuição de grau “restante” obtida através da equação
original é:

q(k, k′) = q(k′)π(k|k′)

=
1

2

[
δk,0 + δk,(n−2)

]
[δk′,0 + δk′,(n−2)]

q(k, k′) =
1

2
(δk,0δk′,(n−2) + δk,(n−2)δk′,0)

2 Usando os resultados anteriores, calculamos uma medida da
correlação de uma rede estrela.

I(Q) =

n∑
k=1

n∑
k′=1

q(k, k′) log
q(k, k′)

q(k)q(k′)

= 2

[
1

2
log

(
2δk,0δk′,(n−2)

δk,0 + δk,(n−2)

)]
I(Q) = log 2 = 1 (8)
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Motivation

• The use of networks of dynamical systems are widespread.
But what can be said of the collective dynamics of such
systems when they are coupled together?

• Answer: little[Strogatz, 2001].

• It may unravel new ways of doing things. Bioinspiration:
The brain uses it, so should not we?.
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Master Stability Function
The master stability function (MSF) is a framework developed
to study the synchronization state complex of network
topologies independent of the peculiarities of the oscillators. It
is based on the premise that all nodes are identical dynamical
units, described by the following equation:

∂xi
∂t

= F (xi), (9)

where xi is a m-dimensional vector and F (xi) is its evolution
function (which is the same for every node). The output of the
system is described by H(xi), which is also identical for all N
dynamical units and is a coupling map of the nodes. For
example, in y-coupled oscillators H(xi) = (0, y, 0), where they
are only communicating with each other through the y
component. The complex network is defined by the node’s
adjacencies aij and their respective weights wij (for unweighted
matrix consider wij = 1) expressed by the Equation 10.
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∂xi
∂t

= F (xi) + σ
∑N

i=1 aijwij(H(xj)−H(xi)) (10)

= F (xi) +−σ
∑N

j=1Gij(H(xj)), (11)

where σ is the uniform coupling strength (σ > 0 for diffusive
coupling) and G is a coupling matrix defined by next Equation.

Gij =

{
−aijwij i 6= j∑N

j=1 aijwij i = j
, (12)

it follows that G has zero row-sum. Then the synchronization
occurs when for all nodes the coupling term vanishes. When
this occurs, the nodes will be based solely on their internal
dynamics which happen to be the same for all N nodes.
Resulting in a state called synchronization manifold, which
happens when:

x1(t) = x2(t) = ... = xN (t) = xs(t). (13)
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The synchronization manifold occurs as a consequence of
Equation 13 because the matrix is a zero row-sum and the
function H(x) is the same for any node. The stability of
synchronization is secured when the system remains entirely
inside the synchronization manifold. However, in the real world
system are susceptible to perturbations, in this scenario the
following equation holds:

∂x̃i
∂t

= [JF (xs)− σλiJH(xs)]x̃i, (14)

where x̃i is the deviation from the xs(t) for xi(t), J is the
Jacobian operator and λ is the eigenvalue of the respective m
conditional Lyapunov exponents. Conditional Lyapunov
exponents for each value of σλi can now be acquired.
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Lyapunov exponent

The Lyapunov exponent is defined as the rate of separation of
two orbits. It is a measure of sensitivity of a given dynamic
system from its initial conditions, exactly calculated by:

λ = lim
t→∞

lim
δx0→0

1

t
ln
|δx(t)|
|δx0|

, (15)

where δx0 is the initial difference between the two orbits and
δx(t) is the difference between the two orbits in instant t. A
dynamics system with m-dimensional phase space will have m
exponents, forming the Lyapunov spectrum λ1, λ2, ..., λm. The
largest value of the Lyapunov spectrum is known as the
maximum Lyapunov exponent (MLE) or simply λmax.
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• Lyapunov exponents are used in synchronization to verify
the stability of a system under small perturbations of its
orbit.

• If λmax < 0 the system is stable because all the remaining
Lyapunov is also smaller than λmax which is negative.

• On the other hand, if λmax ≥ 0 the system is said to be
unstable, because one exponent is already positive and the
system will have by definition an exponential divergence of
orbits.

• Not a sufficient condition! - It is important to note that
although necessary the Lyapunov exponents do not offer a
sufficient condition for the stability of the system. As it
will be seen later in the unusual behavior of chaotic
systems.

Extensions of the master stability function are still under
research, recent results are the MSF near identical systems
[Sun et al., 2009].
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Identical Oscillators

• Synchronize or form network dependent pattern
When the set of identical oscillators are coupled by
smooth interactions. They often synchronize or form
patterns dependent of the network symmetry
[Collins and Stewart, 1993].

• Integrate-and-fire oscillator will fire in unison,
independent of network When oscillators communicate
by sudden impulses as commonly found in biology such as
neuron spikes. It was proved that N identical
integrate-and-fire oscillators (IFO) connected in a all-to-all
network will end up firing in unison independent of their
initial state [Peskin, 1975], [Mirollo and Strogatz, 1990].

• Synchrony or self-organized criticality With such simple
models it is yet possible to observe systems which result in
synchronization or self-organized criticality
[Corral et al., 1995].
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Self-Organized Criticality Example

Sandpile Example [Funch, 2008]

Forest
Fire Model

http://en.wikipedia.org/wiki/Forest-fire_model
http://en.wikipedia.org/wiki/Forest-fire_model
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Self-Organized Criticality
• Critical point as attractor The behavior of a system to

self-organize around a critical point is called self-organized
criticality (SOC) [Bak et al., 1987],[Turcotte, 1999]. The
self-organize capacity is defined as a inner dynamic
property of the system. Which independent of its
parameters or interferences would drive the system toward
a given state.

• Varied Definitions Critical point has a varied number of
definitions depending on the context it is applied. In
mathematics it is the point where either the derivative is 0
or it is non differentiable [Stewart, 2008]. In physics it is
where a phase boundary (such as the vapor-liquid point)
ceases to exist [Cengel and Boles, 2006].

• Skepticism Sometimes, a broad definition definition is
used defining a point where a system properties change
suddenly to be a critical point. This concept was
developed in 1987 but is still view with skepticism.
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Kuramoto Model
The Kuramoto model is composed of N oscillators in a
complete graph (all-to-all connections, illustrated in Figure 3)
and each one has the following dynamics [Kuramoto, 2003]:

∂θi
∂t

= ωi +
K

N

N∑
j=1

sin(θj − θi), i = 1 . . . N, (16)

where ωi is the natural frequency of the ith oscillator, θi is its
phase and K is the coupling strength (identical for all edges).
The ωi were drawn from a Lorentzian distribution defined by:

f(ω;ω0, γ) =
1

π

[
γ

(ω − ω0)2 + γ2

]
, (17)

Figura: Diagram of a complete graph illustrating the scenario where
the Kuramoto model is applied.
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To solve this model analytically when N →∞, Kuramoto
applied the following transformation:

reiψ =
1

N

N∑
j=1

eiθj , (18)

where ψ is the average phase and r measures the coherence of
the oscillators. Resulting in the following equation:

∂θi
∂t

= ωi +Kr sin(ψ − θi) (19)

In the limit (as N →∞ and t→∞), Kuramoto found that the
following behavior occurs:

r =

{
0, K < Kc√

1− Kc
K , K ≥ Kc

, (20)

where Kc = 2γ.
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• K < Kc the oscillators are not synchronized.

• K ≥ Kc part of the oscillators synchronize, or more
specifically lock their phases (∂θi∂t = 0) and part are
rotating out of synchrony.

• When coupling increases to the limit as K →∞, the
oscillators become totally synchronized approximately to
their average phase θi ≈ ψ at the same time that r → 1.

• Extensions to the Kuramoto model are still in research
[Martens et al., 2009], for the complete proof or more
information on variations of the Kuramoto model, such as
general frequency distributions, refer to
[Acebrón et al., 2005].
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Bursting

In y-coupled Rössler systems, after reaching synchronous state
above a coupling threshold (i.e., after the longest-wavelength
mode becomes stable), they still present a difference between
the average x and its component x shown in Figure 4. This
difference is expected to be close to 0 in synchronized systems
[Ashwin et al., 1994],[Pecora et al., 1997]. This may appear
because of unstable periodic orbits (UPO).

Figura: The difference from the average observed in the x variable of
Rössler systems. Image from [Pecora et al., 1997].
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Short-length Bifurcation

Figura: Stability diagram showing the short-length bifurcation of
x-coupled Rössler systems. Image from [Pecora et al., 1997].
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Figura: Stability diagram showing the size effect of 16 x-coupled
Rössler systems. Image from [Pecora et al., 1997].
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Robustness of Scale-free Networks
and its Synchronization

Consequences

• Random removal of nodes in a scale-free network will not
affect greatly.

• Reason: there are exponentially more nodes with lower
degree than higher degree nodes.

• However, scale-free networks are more susceptible to
intentional attacks than random networks
[Cohen et al., 2001].

• This robustness (or vulnerability) also affects the collective
dynamics of scale-free networks, since synchronization
inside scale-free networks can sustain random removal of
5% of its nodes with minor affects in behavior. While 1%
of wisely selected nodes might destroy completely the
synchronization [Lü et al., 2004], [Wang and Chen, 2002].
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Teacher and Student
The situation where a student node learn from a teacher node.
Which is exactly the interaction defined in supervised learning
[Kotsiantis et al., 2007]. The unique difference is that in the
supervised learning setting the teacher is not specifically
defined as a network node. Dynamics in this simple situation
are well defined and studied, an example using two perceptrons
is shown on Figure 7.

Figura: Example of dynamics between teacher and student. Where
W variables are weights, X are input, B are the bias, f(x) is the
activation function and Y is the result from the teacher. The
rectangles represent the nodes in this small network of two units.

Supposing the student has a multilayer-perceptron node, it is
known that independent of the function present in the teacher
node, the student will be able to learn it. Provided that the
student has a sufficient number of hidden nodes using a
back-propagation or equivalent learning algorithm
[Engel and Broeck, 2001].
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Self-Interacting

Suppose now the situation where an already trained node is
interacting with itself [Bornholdt et al., 2003]. The node can
be trained in any arbitrary sequence. This time, however, the
node is learning the opposite of its own prediction. Which leads
to a situation where its prediction error is 100% and the
sequence produced by the node is close to random
[Metzler et al., 2001]. When a second Boolean perceptron is
added to predict the sequence, it has 78% of prediction error.
Which is somewhat better than the self-interacting node, but
still worse than a 50% random guessing [Zhu and Kinzel, 1998].
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The Figure 8 illustrates the example with two perceptrons, note
that this example can be extended to other learning machines.

Figura: Example of dynamics a self teaching node and another
perceptron trying to learn the output. Where W variables are
weights, X are input, B are the bias, f(x) is the activation function
and Y is the result from the teacher. The rectangles isolate the
nodes of the two units.
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