

SCC0173 – Mineração de Dados Biológicos

Análise Exploratória de Dados – Parte A: Revisão de Estatística Descritiva Elementar

Prof. Ricardo J. G. B. Campello

SCC / ICMC / USP

1

Tópicos

- Análise Exploratória de Dados
- Estatísticas Descritivas
 - Dados univariados
 - Medidas de centralidade
 - Medidas de dispersão
 - Dados multivariados
 - Covariância
 - Correlação

André Ponce de Leon F de Carvalho

Introdução

- Exploração preliminar e visualização dos dados facilita entendimento de suas características
- Principais motivações:
 - Pode ajudar na seleção da melhor técnica de préprocessamento e/ou mineração
 - Pode fazer uso da capacidade humana de reconhecer visualmente padrões
 - Muitas vezes difíceis de serem detectados automaticamente

André Ponce de Leon F de Carvalho

3

Análise Exploratória de Dados

- Exploratory Data Analysis (EDA)
 - Área criada pelo estatístico John Tukey
 - Focada em Estatística e Visualização
 - Pode dar importante suporte a DM

André Ponce de Leon F de Carvalho

Estatísticas Descritivas

- Descrevem os dados
- Quantidades que resumem características de um conjunto de dados, geralmente grande
 - Na maioria das vezes podem ser calculadas com uma simples passagem pelos dados
 - Exemplos:
 - Renda média dos alunos de uma turma
 - Porcentagem de alunos que se formam em 4 anos

André Ponce de Leon F de Carvalho

5

Estatísticas Descritivas

- Assumem que os dados são gerados por um processo aleatório
 - Caracterizado por vários parâmetros
 - Podem ser vistas como estimativas dos parâmetros do processo que gerou os dados
 - Ex. Distribuição normal com média 0 e variância 1

André Ponce de Leon F de Carvalho

Estatísticas Descritivas

- Podem capturar:
 - Frequência
 - Localização ou tendência central
 - Ex. Média
 - Dispersão ou espalhamento
 - Ex. Desvio padrão
 - Distribuição ou formato

André Ponce de Leon F de Carvalho

7

Frequência

- Proporção de vezes que um atributo assume um dado valor
 - Para um determinado conjunto de dados
 - Muita usada para dados categóricos
 - Exemplo:
 - Em um conj. de dados médicos, 40% dos pacientes têm febre

André Ponce de Leon F de Carvalho

Exemplo

Febre Idade	Mancha	Dor	Diagnóstico
sim 23	grande	sim	doente
não 9	pequena	não	saudável
sim 61	grande	não	saudável
sim 32	pequena	sim	doente
sim 21	grande	sim	saudável
não 48	grande	sim	doente

66% das manchas são manchas grandes

André Ponce de Leon F de Carvalho

0

Exemplo

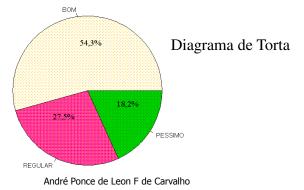
- Seja o seguinte estudo:
 - Em uma pesquisa de opinião, 280 alunos de foram consultados a respeito de suas opiniões sobre o desempenho do professor de uma dada disciplina

André Ponce de Leon F de Carvalho

Exemplo

- Tabela: Frequências observadas e freqs. relativas para cada categoria de resposta
 - Bom, Regular, Péssimo

Resposta	Freq.	Freq. Rel.
Bom	152	152/280 = 0,543
Regular	77	77/280 = 0,275
Péssimo	51	51/280 = 0,182
Total	280	280/280 = 1,000


André Ponce de Leon F de Carvalho

11

Exemplo

 Gráfico: Frequências Relativas podem ser vistas no diagrama circular:

Medidas de Tendência Central

- Dados Categóricos
 - Moda
- Dados Numéricos
 - Média
 - Mediana
 - Percentil

André Ponce de Leon F de Carvalho

13

Moda

- Valor mais frequente para o atributo nos dados
- Exemplo:

Febre Idade	Mancha	Dor	Diagnóstico
sim 23	grande	sim	doente
não 9	pequena	não	saudável
sim 61	grande	não	saudável
sim 32	pequena	sim	doente
sim 21	grande	sim	saudável
não 48	grande	sim	doente

Moda para o atributo mancha: grande

Média e Mediana

- Medidas mais utilizadas para dados numéricos
 - Tendência central de um conjunto de pontos
- Considere um conjunto de N objetos e um atributo x
 - Seja {x₁, ..., x_N} o valor do atributo para os N objetos

André Ponce de Leon F de Carvalho

15

Média

Pode ser calculada facilmente

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Problema: sensível a outliers

André Ponce de Leon F de Carvalho

Mediana

- Valor que divide valores menores e maiores em quantidades iguais
- Como calcular:
 - Ordenar valores de x
 - Se N é impar, mediana = valor com ordem central
 - Senão, mediana = média dos dois valores centrais

André Ponce de Leon F de Carvalho

17

Média e Mediana

- Média é um bom indicador do meio de um conj. de valores apenas se os valores estão distribuídos simetricamente
- Mediana indica melhor o meio
 - Se distribuição é oblíqua (assimétrica)
 - Se existem outliers
- Mas perde sentido de centro de área / massa

André Ponce de Leon F de Carvalho

Média Podada

- Trimmed Mean
- Minimiza problema da média descartando exemplos extremos
 - Define porcentagem p dos exemplos a serem eliminados
 - Ordena os dados
 - Elimina (p/2)% dos exemplos em cada extremidade

André Ponce de Leon F de Carvalho

19

Exercício

- Dado o conjunto {1, 2, 3, 4, 5, 80}, calcular:
 - Média
 - Mediana
 - Média podada com p = 33%

André Ponce de Leon F de Carvalho

Quartis e Percentis

- Mediana divide os dados ao meio
- Outras medidas usam pontos de divisão diferentes
 - Quartis dividem um conj. ordenado de dados em quartos
 - 1º quartil, Q₁, é o valor da amostra que tem 25% das observações abaixo de seu valor
 - Segundo quartil é a mediana

André Ponce de Leon F de Carvalho

21

Percentil

- Seja x um atributo numérico ou ordinal e p um valor entre 0 e 100
 - O pº percentil é um valor x_i do conjunto de valores de x tal que p% dos valores no conj. de dados são menores que x_i
 - Exemplos:
 - 40º percentil do atributo x é o valor x_{40%} tal que 40% dos valores de x são menores que x_{40%}
 - 25º percentil = 1º quartil, 50º percentil = mediana

André Ponce de Leon F de Carvalho

Exemplo

 Obter os quartis e o 95º percentil para o conjunto de dados abaixo:

6.2 7.67 8.3 9.0 9.4 9.8 10.5 10.7 11.0 12.3

Achar Q_1 : 10x1/4 = 2.5 $usar \ o \ terceiro \ valor$: $Q_1 = 8.3$ Achar Q_2 : 10x1/2 = 5 $usar \ a \ m\'edia \ entre \ o \ 5^o \ e \ o \ 6^o \ valores$: $Q_2 = (9.4 + 9.8)/2 = 9.6$ Achar Q_3 : 10x3/4 = 7.5 $usar \ o \ oitavo \ valor$: $Q_3 = 10.7$ Achar $P_{0.95}$: 10x0.95 = 9.5 $usar \ o \ d\'ecimo \ valor$: $P_{0.95} = 12.3$

André Ponce de Leon F de Carvalho

23

Percentis

Seja N o número de observações, calcular o po percentil:

- 1. Ordenar as observações da menor para a maior
- 2. Determinar o produto N × p e chamar este produto de k
- 3. Se k não for um inteiro Então Arredondar k para o próximo inteiro Retornar o valor da posição k na sequência ordenada Senão

Calcular a média entre as kº e (k+1)º observações ordenadas Retornar o valor calculado

Exercício

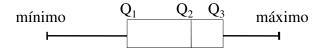
Dados os números abaixo, calcular a mediana, o 1º quartil e o 2º quartil 23, 7, 12, 6, 10, 23, 7, 12, 6, 10, 7

André Ponce de Leon F de Carvalho

25

Exercício

 Obter os quartis e a 95^a percentil para o conjunto de dados:


```
3,20 11,70 13,64 15,60 15,89 28,44 29,07
37,34 41,81 43,35 43,94 49,51 49,82 51,20
51,43 52,47 53,72 53,92 54,03 56,89 63,80
66,40 68,64 70,15 70,98 74,52 76,68 77,84
80,91 84,04 85,70 86,48 88,92 89,28 91,36
91,62 98,79 102,39 104,21 124,27
```

André Ponce de Leon F de Carvalho

Boxplot

 Um resumo das informações dos quartis é apresentado em um gráfico chamado boxplot

- Um boxplot modificado
 - Linha exterior vai até a maior (menor) observação apenas se não for muito distante do 3º (1º) quartil

André Ponce de Leon F de Carvalho

27

Medidas de Espalhamento

- Medem dispersão ou espalhamento de um conjunto de valores
- Indicam se os dados estão
 - Amplamente espalhados ou
 - Relativamente concentrados em torno de um ponto
- Medidas comuns
 - Intervalo
 - Variância
 - Desvio padrão

André Ponce de Leon F de Carvalho

Intervalo

- Medida mais simples
 - mostra espalhamento máximo
- Sejam {x₁, ..., x_N} os valores do atributo x para N objetos. Então:

$$r(x) = \max(x) - \min(x)$$

- Pode não ser uma boa medida...
 - P. ex. se maioria dos valores forem concentrados, com um pequeno número de valores extremos

André Ponce de Leon F de Carvalho

29

Variância

Medida preferida para analisar espalhamento

$$var(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2$$

- Denominador N-1: correção de Bessel, usada para uma melhor estimativa da variância verdadeira
- \blacksquare Desvio padrão $\sigma_{\!_{\boldsymbol{x}}}\!\!:$ raiz quadrada da variância

Variância

- Assim como a média, a variância pode ser distorcida por outliers
 - quadrado da diferença entre os valores e a média...
- Estimativas mais robustas também usadas:
 - Desvio médio absoluto
 - Absolute Average Deviation AAD
 - Desvio mediano absoluto
 - Median Absolute Deviation MAD
 - Intervalo interquartil
 - Interquartil Range IQR

31

Medidas de Espalhamento

$$AAD(x) = \frac{1}{N} \sum_{i=1}^{N} |x_i - \overline{x}|$$

$$MAD(x) = mediana(\{|x_1 - \overline{x}|, ..., |x_N - \overline{x}|\})$$

$$IQR(x) = x_{75\%} - x_{25\%}$$

Exercício

- Dados os valores {1, 2, 3, 4, 5, 80}, calcular:
 - Intervalo
 - Variância
 - AAD
 - MAD
 - IQR

André Ponce de Leon F de Carvalho

33

Dados Multivariados

- Aqueles que possuem vários atributos
- Medidas de tendência central
 - Podem ser obtidas calculando medida de cada atributo separadamente
 - Ex.: média, mediana, ...
 - Média dos objetos de um conjunto de dados com n atributos x₁, ..., x_n é dada por:

$$\overline{\mathbf{x}} = [\overline{x}_1 \dots \overline{x}_n]$$

Dados Multivariados

- Medidas de espalhamento
 - Podem ser calculadas para cada atributo independentemente dos demais
 - Usando qualquer medida de espelhamento
 - Variáveis numéricas
 - Espalhamento de um conjunto de dados é melhor capturado por uma matriz de covariância
 - Cada elemento é a covariância entre dois atributos

André Ponce de Leon F de Carvalho

35

Dados Multivariados

 Matriz de covariância S para um conjunto de dados com N objetos e n atributos x₁, ..., x_n

$$\begin{cases} s_{ij} = \text{cov}(x_i, x_j) \\ \text{cov}(x_i, x_j) = \frac{1}{N - 1} \sum_{k=1}^{N} (x_{ki} - \overline{x}_i)(x_{kj} - \overline{x}_j) \end{cases}$$

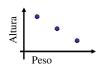
onde

 \overline{x}_i : valor médio do i-ésimo atributo

xki: valor do i-ésimo atributo para o k-ésimo objeto

- Note que cov(x_i, x_i) = variância (x_i)!
 - Valores na diagonal da matriz = variância dos atributos !

Exercício


 Calcular as matrizes de covariância para os seguintes dados de três pessoas:

Peso	Altura
60	170
70	180
80	190

André Ponce de Leon F de Carvalho

37

Exercício

 Calcular a matriz de covariância para o conjunto de dados:

Peso	altura	temperatura
73,2	170	37,5
67,5	165	38
90	190	37,2
49	152	37,8

André Ponce de Leon F de Carvalho

Dados Multivariados

- Covariância de dois atributos
 - Mede grau com que os atributos variam juntos
 - Depende da magnitude dos atributos
 - Valor próximo de 0:
 - Atributos não têm um relacionamento linear
 - Valor positivo:
 - Atributos diretamente relacionados
 - Quando o valor de um atributo aumenta, o do outro também aumenta

André Ponce de Leon F de Carvalho

39

Dados Multivariados

- Covariância x Correlação
 - É difícil avaliar a força do relacionamento entre dois atributos olhando apenas a covariância
 - valor depende dos espalhamentos de cada atributo
 - Correlação de Pearson é mais apropriada para medir a força da relação linear entre atributos
 - covariância normalizada pelos desvios padrão

André Ponce de Leon F de Carvalho

Dados Multivariados

- Correlação
 - Indica força da relação entre dois atributos
 - Matriz de correlação R

- Note que $corr(x_i, x_i) = 1$ (elementos da diagonal)
 - $corr(x_i, x_i) \in [-1, +1]$

André Ponce de Leon F de Carvalho

41

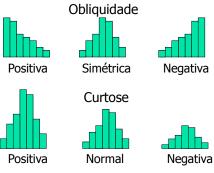
Exercício

 Calcular a matriz de correlação para o conjunto de dados:

	altura,	temperatura
73,2	170	37,5
67,5	165	38
73,2 67,5 90	190	37,2
49	152	37,8

Outras Estatísticas...

- Outros momentos além de média e variância:
 - Obliquidade / Skewness (3º momento central)
 - captura simetria da distribuição dos dados
 - Curtose (4º momento central)
 - Captura achatamento / pico da distribuição
 - ...


André Ponce de Leon F de Carvalho

43

Histograma

 Poderosa ferramenta para verificar visualmente características dos dados

André Ponce de Leon F de Carvalho

Visualização de Dados

- Em vários casos, a forma mais fácil de entender aspectos mais complicados dos dados é ver os seus valores graficamente
 - Por exemplo, histogramas
- Vide próxima aula...

André Ponce de Leon F de Carvalho

45

Perguntas

André Ponce de Leon F de Carvalho