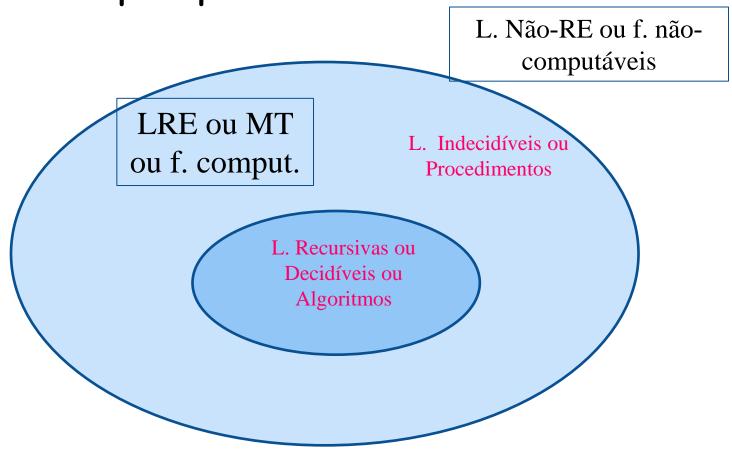


Preâmbulo

Problemas Computáveis

- Máquinas de Turing ou Funções Computáveis ou Linguagens Recursivamente Enumeráveis LRE podem ser divididas em 2 classes:
 - (1) as MT que, para qualquer cadeia de entrada, sempre terminam, ou seja, sempre respondem se a cadeia faz parte ou não da linguagem. Em outras palavras, decidem a linguagem. Essas linguagens são chamadas Linguagens Recursivas ou Decidíveis, e essas MT correspondem aos Algoritmos.
 - (2) as MT que, para qualquer cadeia de entrada, terminam aceitando a cadeia, se ela fizer parte da linguagem, ou podem funcionar indefinidamente sobre entradas que elas não aceitam. Em outras palavras, aceitam a linguagem. Tais linguagens são chamadas *Linguagens Indecidíveis*, e essas MT correspondem aos **Procedimentos**.

 Problemas ou Linguagens Indecidíveis são aqueles para as quais não existe nenhum algoritmo, ou seja, uma MT que sempre para.



Pergunta

 O que caracteriza as funções indecidíveis (para as quais há procedimento, mas não algoritmo)?

Ou

 Que tipo de propriedade (característica da linguagem) pode ser decidida ou não?

Exemplos clássicos de funções indecidíveis

Problema 1.: Existe um procedimento - na verdade, um algoritmo - (p.ex., em Pascal) que toma como entrada um outro procedimento qualquer, p, e retorna *true* se p é um algoritmo, ou *false*, caso contrário?

Resposta: Não!

Prova: Por contradição

Suponha que tal procedimento exista. Vamos chamá-lo de ALG. Então a declaração de ALG é da forma:

function ALG (procedure p) : boolean; <corpo da função> Podemos, então, usar a função ALG para definir novos procedimentos:

```
procedure Problema (x: integer);
begin
while ALG(Problema) do nil
end;
```

Pergunta: o procedimento "Problema" é algoritmo?

- → Suponha que sim. Então *ALG(Problema)* é *true* e o comando *while* nunca termina, e portanto, *Problema* nunca termina, e **não é algoritmo**. Contradição!
- → Suponha que **não**. Então *ALG(Problema)* é *false* e o comando *while* termina, e portanto, *Problema* termina, e **é um algoritmo**. Contradição!
- →Portanto, *Problema termina se Problema não termina* Logo, *ALG* não pode existir.

Problema 2. (da Parada): Existe um procedimento – na verdade, um algoritmo – HALT, que toma como entrada um procedimento p e um inteiro x, e retorna true se p termina com entrada x e false, se p não termina com entrada x?

Resposta: Não!

Prova: Por contradição.

Suponha que HALT exista. Então podemos escrever um procedimento Pascal D:

```
procedure D (x: integer);
begin
while HALT(D, x) do nil
end:
```

Pergunta: D termina com entrada x?

- → Suponha que sim. Então *HALT(D, x)* é *true* e D **não termina com entrada x**. Contradição!
- → Suponha que **não**. Então *HALT(D, x)* é *false* e D **termina com entrada x**. Contradição!

Portanto, D termina com entrada x se D não termina com entrada x.

Logo, HALT não pode existir!

Propriedades Indecidiveis

- · Logo, as propriedades de procedimentos:
 - P1: É algoritmo ou não (Problema 1) e
 - P2: Termina para uma entrada x (Problema 2)

são <u>indecidíveis</u> - ou seja, não há algoritmos que as decidam.

Propriedades Indecidiveis

Corolário: Se uma propriedade P é indecidível, então a negação desta propriedade, —P, também é indecidível.

Se queremos verificar $\neg P$ num procedimento A, temos que decidir P executando A, e quando A retorna true, a saída é false, e quando A retorna false, a saída é true.

Daí, as propriedades \neg P1 e \neg P2:

"não termina para alguma entrada" e "não termina para entrada x" são ambas indecidíveis.

Propriedades Semi-Decidíveis

Um atributo menos rigoroso de propriedades de procedimentos é introduzido por:

DEF.: Uma propriedade de procedimento P é dita **semi-decidível** se existir um procedimento que, quando dado um procedimento p, resulta *true*, se p tem a propriedade P. (nada se espera se ele não tiver a propriedade P)

Propriedades Semi-Decidíveis

Obs.1:

- A noção de semi-decidibilidade é mais fraca que a de decidibilidade. Se uma propriedade P é decidível, então sempre se pode dizer se um procedimento tem ou não tem a propriedade P. Já se P é semi-decidível, pode-se dizer apenas se um procedimento tem a propriedade P.
- Corolário: Se P é decidível, certamente ela é semidecidível.

Propriedades Semi-Decidíveis

Teorema: A propriedade de procedimento "termina para entrada x" é semi-decidível.

```
Prova: O procedimento pode ser expresso em Pascal como:

function TERM (procedure f): boolean;

begin

f(x);
```

TERM:= true

end;

Repare que, se f(x) terminar, TERM também termina; se f(x) não terminar, TERM não termina.

Entretanto, existem muitas propriedades que não são sequer semi-decidíveis.

Resultado: Se P é semi-decidível e \neg P é semi-decidível, então P é decidível.

Prova: Assuma que ambos P e → P são semi-decidíveis.

Sejam \mathbf{p}_1 : o procedimento que resulta *true*, se seu argumento tem a propriedade P;

e p_2 : o procedimento que resulta *true*, se seu argumento tem a propriedade \neg P.

Podemos, então, construir um procedimento (algoritmo) p que executa ou simula p_1 e p_2 em paralelo e espera que um dos 2 retorne true. Desde que P é ou true ou false, exatamente um dos 2 procedimentos deve retornar com o valor true.

Se p1 retornar $true \rightarrow p$ retorna true;

Se p2 retornar $true \rightarrow p$ retorna false.

Portanto, p sempre termina e decide P.

Este resultado é útil quando queremos mostrar que uma propriedade não é semidecidível. Por exemplo:

- Sabemos que a propriedade P, "procedimento p termina para entrada x", é semi-decidível.
 Se ¬P, "procedimento p não termina para entrada x", for semi-decidível, então, pelo Resultado anterior, teríamos que a propriedade P, "procedimento p termina para entrada x", é decidível - o que sabemos ser falso.
- Concluímos, então, que $\neg P$, "procedimento p não termina para entrada x", não é semi-decidível.

Outras propriedades indecidíveis

- Problema da equivalência de programas: Não existe um algoritmo que decide se dois procedimentos dados P e Q são equivalentes; mais precisamente, não existe um programa Eq(P, Q) tal que Eq para com quaisquer dados de entrada, e Eq(P, Q) = True se os procedimentos P e Q calculam a mesma função e Eq(P, Q) = False em caso contrário. Note que P e Q calculam a mesma função se para qualquer entrada ou ambos não param, ou ambos param com a mesma resposta.
- Problema da Satisfatibilidade: É indecidível se uma expressão lógica, formada com os conectivos e quantificadores lógicos \neg , \wedge , \vee , \Rightarrow , \forall , \exists , é satisfatível, ou seja, tem valor lógico verdadeiro para quaisquer valores de seus símbolos.
- É indecidível se uma expressão formada com os símbolos 0, 1, +, *, =, conectivos lógicos $\neg, \land, \lor, \Rightarrow$, variáveis e quantificadores lógicos \forall e \exists , é um Teorema da Aritmética.

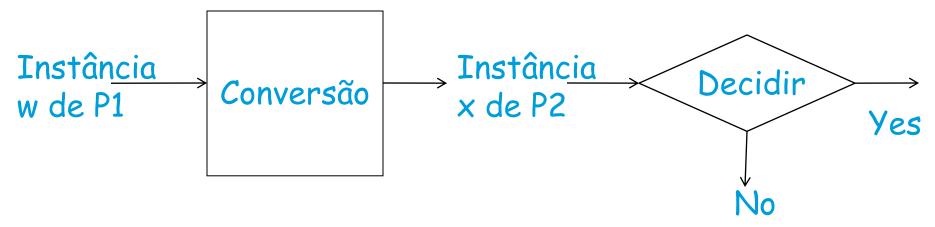
Redução de um problema a outro para mostrar indecidibilidade

- Se sabemos que P1 é indecidível, e queremos mostrar que P2 é indecidível, podemos tentar:
- · reduzir P1 a P2 e,
- se pudéssemos resolver P2 (ou seja, se P2 fosse decidível), então poderíamos usar essa solução para resolver P1.
- Mas como P1 é indecidível, então P2 não pode ser decidível.

Redução de Problemas

• P_1 se reduz a P_2 quando existe um algoritmo que converte instâncias de P_1 em instâncias de P_2 que têm a mesma resposta.(P_1 é o que se conhece; P_2 é a incógnita – nunca o

oposto)
sim
não
não
P₁



O bloco "Conversão" deve converter instâncias de P1 em instâncias de P2 que têm a mesma resposta. E:

- Dada uma instância de P1, ou seja, uma dada cadeia w que pode ou não estar na linguagem P1, aplique o algoritmo de conversão para produzir uma cadeia x.
- 2. A resposta sobre w e P1 (se w pertence a P1) será a mesma de x e P2.

Assim, se fosse possível decidir P2, então seria possível decidir P1 também. Mas, como P1 é sabidamente indecidível, então temos uma prova por contradição de que o algoritmo de decisão para P2 não pode existir; isto é, P2 é indecidível.

Teorema: Se existe uma redução de P_1 a P_2 , então:

- 1. Se P₁ é indecidível, então P₂ também o é.
- 2. Se P₁ é não-RE, então P₂ também o é.

(se houvesse uma MT para reconhecer P_2 , ela tb seria capaz de reconhecer P_1 , já que a redução implica em respostas iguais para candidatos "reduzidos". Assim, P_1 seria RE, contrariando a hipótese.)

Propriedades indecidíveis sobre MT

 Dada uma MT, ela aceita a linguagem vazia?

Sejam:

 $L_e = \{M \mid L(M) = \emptyset\}$ - conj. das MT cuja linguagem é vazia Refrazeando a pergunta: Dada uma MT, ela pertence a L_e ?

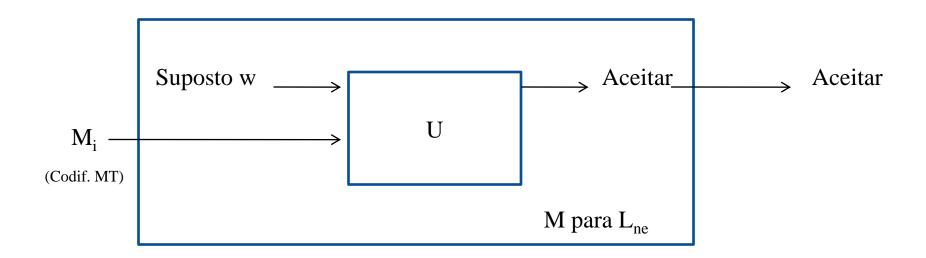
Seja $L_{ne} = \{M \mid L(M) \neq \emptyset\}$ - conj. das MT cuja linguagem contém ao menos uma cadeia

Logo, Le e Lne são complementos uma da outra.

L_{ne} é a "mais fácil" das duas e é RE, mas não recursiva, ou seja, é indecidível. Por outro lado, L_e é não-RE, ou seja, não computável. Por que?

Teorema: L_{ne} é recursivamente enumerável.

Prova: Temos que exibir uma MT para ela.



A operação de M segue:

- -M toma como entrada o código de uma MT M_i
- -Usando sua capacidade não-determinística, M supõe uma entrada w que M_i poderia aceitar.
- -M testa se M_i aceita w. Para essa parte, M pode simular a MT universal U.
- -Se M_i aceita w, então M aceita sua própria entrada, M_i.

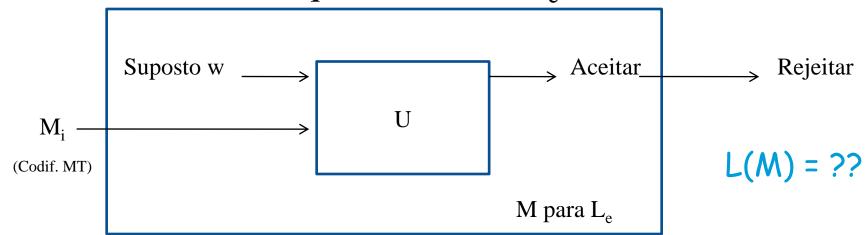
Dessa maneira, se M_i aceita até mesmo uma única cadeia, M irá supor essa cadeia (entre todas as outras) e aceitará M_i . Porém, se $L(M_i) = \emptyset$, então nenhuma suposição de w levará à aceitação por M_i e assim M não aceitará M_i . Desse modo, $L(M) = L_{ne}$.

Teorema: L_{ne} é não-recursiva (indecidível).

(para MT cuja linguagem é vazia, M não para)

Teorema: L_e não é RE (é não computável).

(não existe uma MT que reconhece L_e)



Teorema de Rice: Todas as propriedades não-triviais das linguagens RE são indecidíveis.

- •Se a linguagem aceita por uma MT é finita
- •Se a linguagem aceita por uma MT é uma LR
- •Se a linguagem aceita por um MT é uma LLC
- •Se a linguagem aceita por uma MT é não vazia

•Atenção: características sobre MT, e não sobre as linguagens aceitas, podem ser decidíveis. Ex. é decidível se uma MT tem cinco estados. Basta examinar o código da MT e contar o número de estados que aparecem em qualquer de suas transições.

Há uma analogia do Teorema de Rice para programas: qualquer propriedade não-trivial que envolva aquilo que o programa faz é indecidível:

- Se termina para uma entrada x;
- Se termina para todas as entradas;
- Se é equivalente a outro programa;
- etc.

Decidibilidade e Intratabilidade

- Distinguir problemas indecidíveis é importante também para orientar programadores sobre o que podem fazer via programação.
- No entanto, alguns problemas, embora decidíveis, exigem tempo demais para sua resolução. São chamados "intratáveis", e mais do que os indecidíveis, são enfrentados diariamente e apresentam muitos desafios.
- Precisamos, assim, de ferramentas que nos ajudem a decidir se um problema é indecidível ou intratável e o que fazer nesse último caso₂₆