Na aula passada...

- ☐ Protocolos de comunicação multimídia:
 - O RTP
 - RTSP (Real Time Streaming Protocol)
 - RTCP (Real Time Control Protocol)
 - O H.323
- Exercício:
 - Construir uma aplicação que utilize RTP + (RTSP ou RTCP) + (TCP ou UDP). Mostrar a arquitetura e explicar os módulos

Pilha do H.323

Speech	Control						
G.7xx	RTCP	H.225	Q.931	H.245			
RTP		(RAS)	(Call signaling)	(Call control)			
UDP			TCP				
IP							
Data link protocol							
Physical layer protocol							

Demo e Projeto

- □ fone@RNP http://www.rnp.br/_arquivo/voip/ref0343a.pdf
- ☐ Programação de um streamer (RTP e RTSP)

Nesta aula....

- QoS
 - Definições Gerais
 - QoS em LANs
 - QoS na Internet

Nesta aula...

QoS – Quality of Service

Aula originalmente produzida por

Luciana A. F. Martimiano e

Paulo Sérgio Lopes de Souza

os slides desta aula foram adaptados do material desenvolvido pelo

Prof. Dr. José Augusto Suruagy Monteiro, disponível em:

http://www.nuperc.unifacs.br/suruagy/redes/index.html

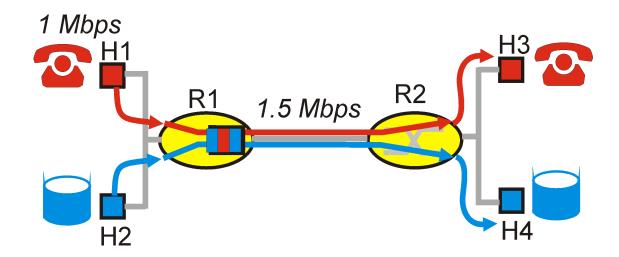
Tópicos importantes em QoS em redes

- princípios do fornecimento de QoS
 - classificação (ou marcação) de pacotes
 - isolamento e regulação
 - alto índice de uso dos recursos
 - aceitar/rejeitar chamadas
- mecanismos de escalonamento
 - marcação
 - o fifo, filas de prioridade, *round-robin*, fila justa ponderada
- mecanismos de policiamento
 - o regulação
 - algoritmo do balde furado
 - algoritmo do balde de símbolos (ou permissões)

Tópicos importantes em QoS em redes

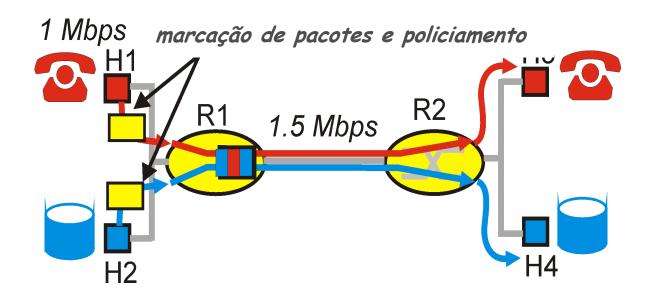
- serviços integrados
 - RSVP (Resource reSerVation Protocol)
 - reserva recursos para o fluxo
- ☐ serviços diferenciados
 - não se preocupa com o fluxo, mas sim com as classes de serviços que enviam pacotes

Melhorando a QoS em redes IP

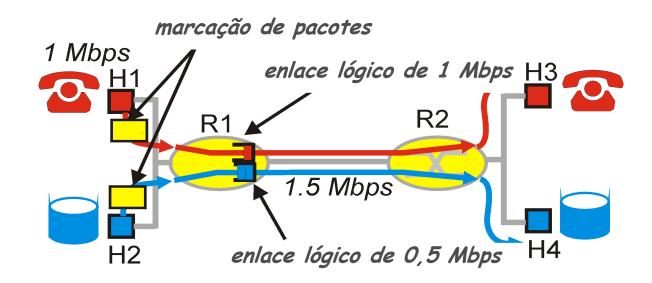

- grupos do IETF estão trabalhando para melhorar a QoS nas redes IP
 - objetivo: ir além do "melhor esforço", fornecer algumas garantias à QoS
- trabalho em andamento inclui:
 - serviços integrados e o protocolo RSVP (1995-1997)
 - serviços diferenciados (1999)
- ex.: considerar um modelo simples para estudos de compartilhamento e congestionamento
 Enlace de 1,5 Mbps

H1 R2 H3

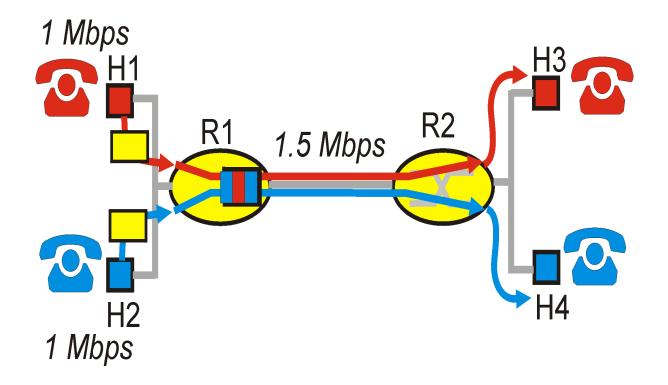
R2 Fila de interface de saída de R1


Princípios para a garantia da QoS

- considere uma aplicação de telefonia a 1Mbps e outra de FTP compartilhando um enlace de 1,5 Mbps
 - surtos de FTP podem congestionar o roteador e causar perda de pacotes de áudio
 - gostaríamos de dar prioridade ao tráfego de áudio sobre o de FTP
- PRINCÍPIO 1: É preciso marcar (ou melhor classificar) os pacotes para que o roteador faça uma distinção entre as classes diferentes; e uma nova política no roteador para tratar os pacotes de forma diferenciada: uma questão política


Princípios para a garantia da QoS (cont.)

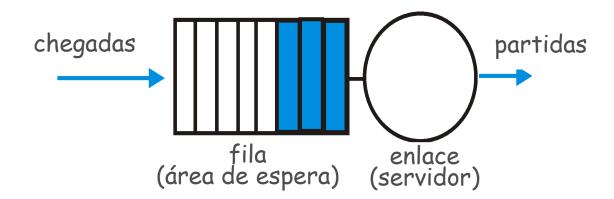
- aplicações podem se comportar mal
 - áudio envia pacotes a uma taxa maior do que os 1Mbps acordados
- PRINCÍPIO 2: fornecer proteção (isolamento) de uma classe sobre as demais
- requer mecanismos de policiamento para garantir que as fontes realmente aderem aos requisitos de largura de banda
 - escalonamento e policiamento devem ser feitos na borda da rede


Princípios para a garantia da QoS (cont.)

- alternativa ao escalonamento e policiamento: alocar uma dada porção da largura de banda para cada fluxo das aplicações
- pode levar ao uso ineficiente da banda se um destes fluxos não utilizar o que lhe foi alocado
 - ex.: fluxo de áudio pode não usar os 1Mbps e o FTP não poderá usar a banda acima de 0,5Mbps
- □ PRINCÍPIO 3: ao mesmo tempo em que se fornece isolamento, é desejável que os recursos sejam utilizados de forma eficiente

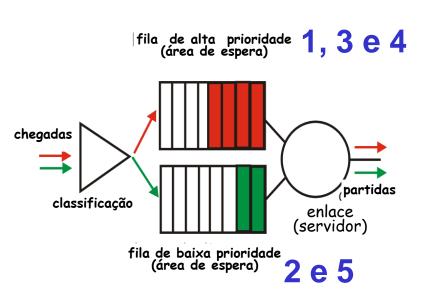
Princípios para a garantia da QoS (cont.)

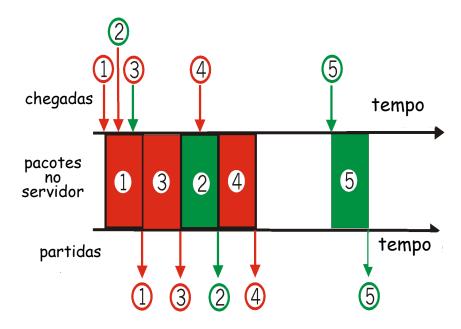
- não é possível atender a um tráfego superior à capacidade do enlace
- PRINCÍPIO 4: é preciso um "processo de admissão de chamadas"; o fluxo da aplicação declara as suas necessidades, a rede pode bloquear a chamada se não puder atendê-las


Requisitos da QoS

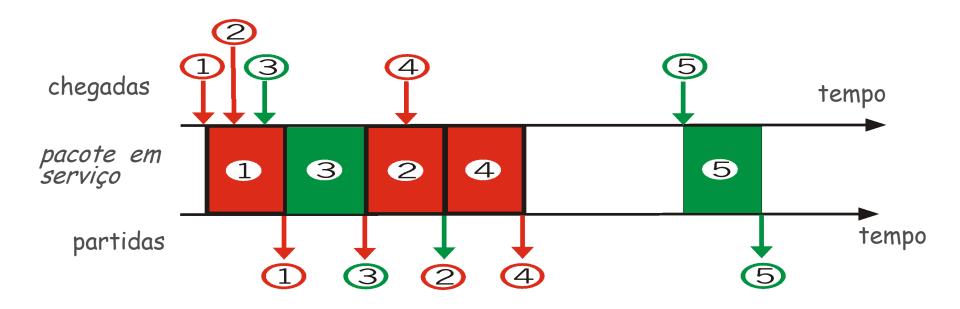
- necessidades de cada fluxo podem ser caracterizadas por 4 parâmetros:
 - o confiabilidade, atraso, variação de atraso (jitter) e largura de banda
- esses parâmetros definem a QoS que o fluxo exige

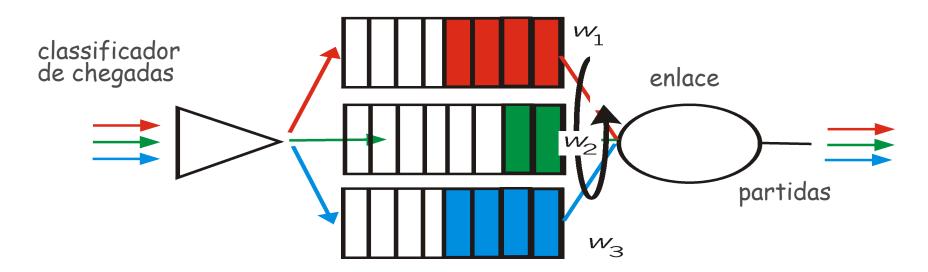
Application	Reliability	Delay	Jitter	Bandwidth
E-mail	High	Low	Low	Low
File transfer	High	Low	Low	Medium
Web access	High	Medium	Low	Medium
Remote login	High	Medium	Medium	Low
Audio on demand	Low	Low	High	Medium
Video on demand	Low	Low	High	High
Telephony	Low	High	High	Low
Videoconferencing	Low	High	High	High


Mecanismos de escalonamento e policiamento


- escalonamento: a escolha do próximo pacote para transmissão em um canal pode ser feita através de diversas políticas diferentes
 - também conhecido como programação de pacotes
- a mais simples FIFO: na ordem de chegada à fila
 - pacotes que chegarem e encontrarem o buffer cheio podem ser descartados;
 - pode haver também uma política de descarte
 - determina qual pacote será descartado (o que chegou ou outro da fila?)

Políticas de escalonamento

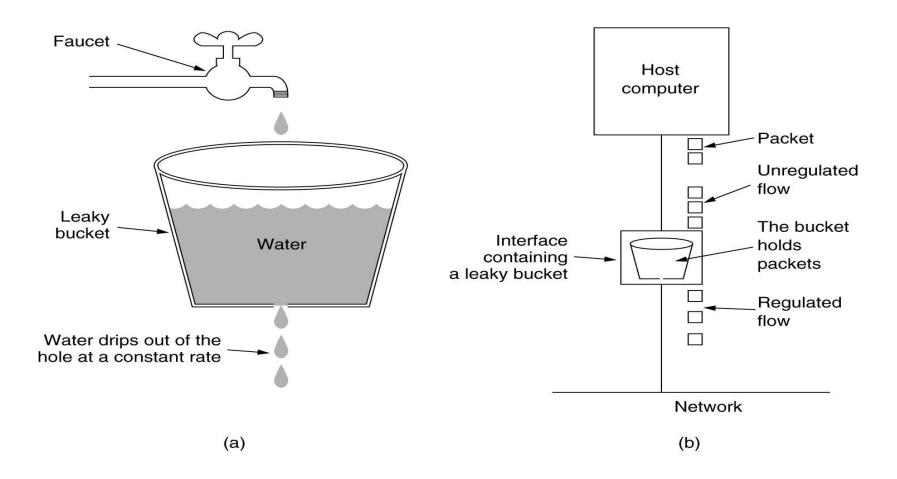

- filas de prioridades ou enfileiramento com prioridades:
 - classes têm prioridades diferentes que podem depender de uma marcação implícita ou outras informações do cabeçalho
 - ex: endereço origem ou destino, número da porta TCP, etc.
- transmite um pacote da classe de mais alta prioridade cuja fila não esteja vazia
- versões com e sem preempção


Políticas de escalonamento (cont.)

- □ round robin (circular):
 - varre as filas das classes transmitindo um pacote de cada classe cuja fila n\u00e3o estiver vazia

Políticas de escalonamento (cont.)

- Weighted Fair Queuing WFQ (ou fila justa ponderada):
 - fila circular generalizada
 - tenta-se fornecer para cada classe um tempo de serviço diferenciado dentro de um dado período de tempo


Garantia de banda para uma classe *i*: $w_i/(\Sigma w_j)$ Taxa de transmissão = $R^*(w_i/(\Sigma w_i))$

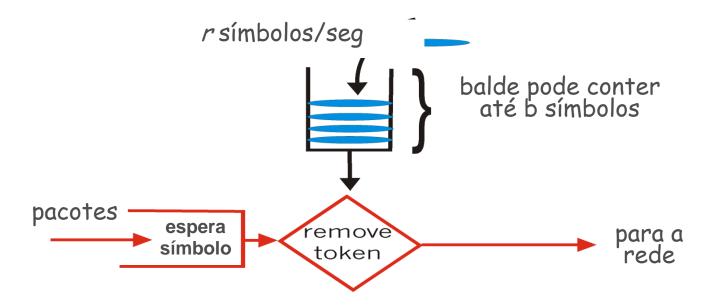
Mecanismos de policiamento (regulação)

☐ três critérios:

- taxa média (longo prazo)
 - 100 pacotes por segundo ou 6000 pacotes por minuto?
 - comprimento do intervalo é crucial
- o taxa de pico:
 - 6000 pacotes. por minuto em média e 1500 pacotes por segundo no pico
- comprimento do surto (tamanho da rajada):
 - número máximo de pacotes enviados consecutivamente (período curto de tempo)
- dois algoritmos para regular fluxo:
 - algoritmo do balde furado (*leaky bucket*)
 - algoritmo do balde de símbolos ou de permissões (token bucket)

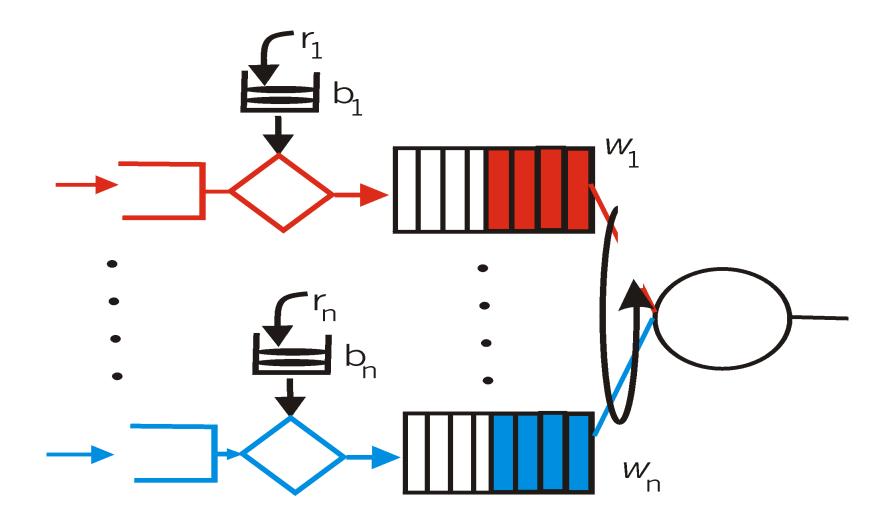
Mecanismos de policiamento: balde furado

<u>Se</u> há espaço, pacote é enfileirado para envio <u>Senão</u>, pacote é descartado

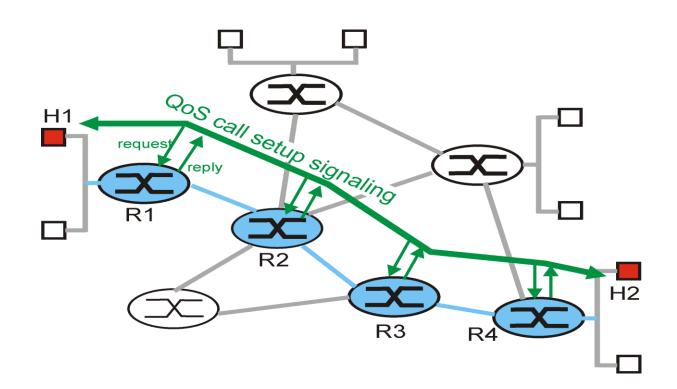

Mecanismos de policiamento: balde furado

- sistema de enfileiramento de um servidor com tempo de serviço constante
 - computador gera um fluxo irregular de pacotes que entram no balde
 - taxa de saída do balde é constante (suaviza rajadas / reduz congestionamentos)
 - entrada e saída podem considerar pacotes ou bytes
 - que são transmitidos a cada clock tick
- algumas desvantagens:
 - taxa de saída é inflexível
 - não pode aumentar quando ocorrem rajadas
 - pode ocorrer a perda de pacotes/bytes quando o balde enche
 - descarta pacotes/bytes quando cheio

Mecanismos de policiamento: balde de símbolos


- também chamado de balde de permissões (token bucket)
 - balde contém símbolos gerados a uma taxa de r por segundo
 - o fornece um meio para limitar a entrada para um dado comprimento do surto e taxa média de pacotes
 - o tipo de modelagem do tráfego diferente do balde furado
 - permite um certo volume no fluxo de saída e respostas mais rápidas nas rajadas
 - descarta capacidade de transmissão quando cheio → descarta símbolos (ou permissões de envio)

Mecanismos de policiamento: balde de símbolos

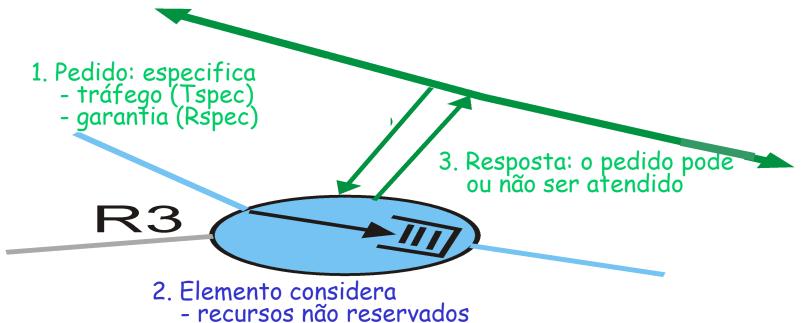

- em um intervalo de tempo t, o número de pacotes que são admitidos é menor ou igual a (r t + b).
- balde de símbolos e WFQ podem ser combinados

Mecanismos de policiamento: balde de símbolos

Serviços integrados (IntServ)

- uma arquitetura para fornecer garantias de QoS em redes IP para sessões individuais de aplicações
- depende da reserva de recursos e os roteadores devem manter informação de estado (Circuito Virtual??), manter registros dos recursos alocados e responder aos pedidos de estabelecimento de conexões

Serviços integrados: admissão de chamadas


- sessão deve declarar antes os seus requisitos de QoS e caracterizar o tráfego que irá enviar através da rede
 - R-spec: define a QoS que está sendo requisitada/reservada
 - Ex: garantir uma taxa **R** de transmissão para os pacotes
 - T-spec: define as características do tráfego
 - dadas por um balde de símbolos e seus parâmetros:
 - r (taxa de entrada de símbolos) e b (nº. máximo de símbolos no balde)
 - é preciso um protocolo de sinalização para levar as R-spec e T-spec aos roteadores envolvidos com a reserva de recursos
 - modo específico da R-spec e da T-spec varia de acordo com o serviço requisitado
 - RSVP é um um protocolo de sinalização
 - nos roteadores onde for necessária a reserva

Serviços integrados: admissão de chamadas

roteadores poderão aceitar as chamadas

- recursos solicitados

- baseados nas suas R-spec e T-spec
- baseados na alocação de recursos atual nos roteadores para outras chamadas

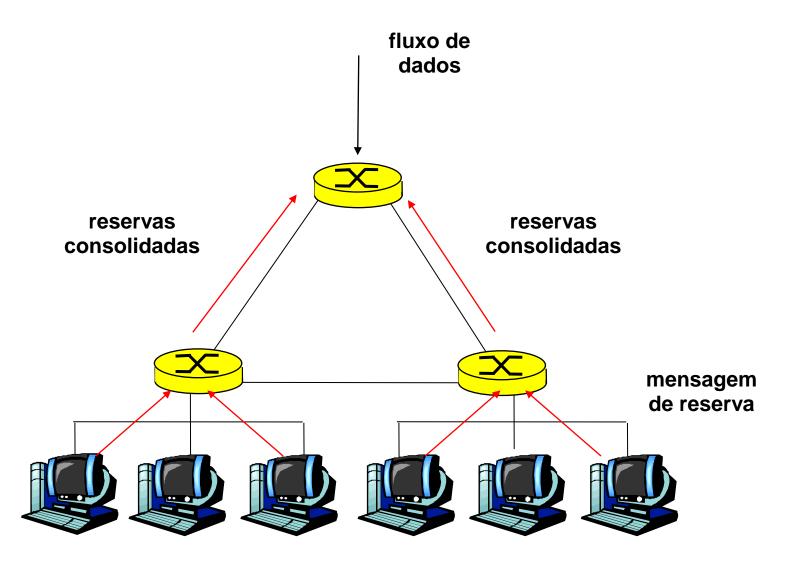
Classes de serviços integrados

classe com QoS garantida:

- limites estritos de atraso de enfileiramento no roteador
- projetado para aplicações pesadas de tempo-real altamente sensíveis à média esperada e à variância

classe com carga controlada:

- QoS <u>muito próxima</u> da QoS fornecida por um roteador com carga leve;
- projetado para aplicações de tempo-real atuais da rede IP que tenham um bom desempenho em uma rede sem carga
- não fornece garantias quantitativas do serviço
- aplicações multimídia


Serviços integrados: RSVP

- □ RSVP Resource reSerVation Protocol
- ☐ é um protocolo de sinalização
 - permite que aplicações façam reserva de recursos na internet
 - o largura de banda, espaço de buffer e ciclos de CPU
 - (deve estar) presente nos receptores, remetentes e roteadores
- duas características principais:
 - o reservas de recursos em árvores multicast
 - o orientado ao receptor
 - receptor do fluxo inicia e mantém a reserva de recursos para a sessão

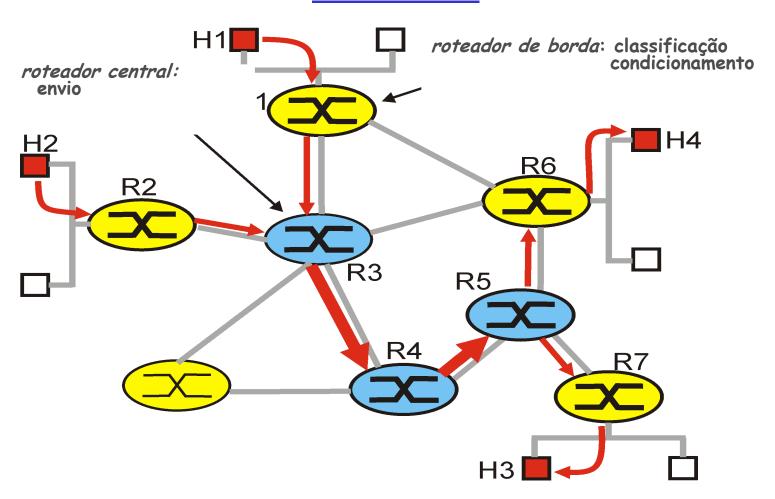
Serviços integrados: RSVP

- o que o RSVP não faz?
 - não especifica como a rede fornece largura de banda reservada aos fluxos
 - provavelmente isso é feito pelos mecanismos de escalonamento
 - o não é um protocolo de roteamento
 - mas depende de um para determinar as rotas

Serviços integrados: RSVP

Serviços diferenciados (DiffServ)

- □ IntServ:
 - o fluxos individuais e duas classes específicas de serviços
- DiffServ: resolve dificuldades com o IntServ e o RSVP (sobrecarga);
 - escalabilidade: a manutenção de estados pelos roteadores em redes de alta velocidade é difícil devido ao grande número de fluxos
 - o modelos de serviço flexíveis:
 - mais classes de serviço qualitativas;
 - distinção relativa entre serviços (Platina, Ouro, Prata, e ...)
 - sinalização mais simples: (que a do RSVP) muitas aplicações e usuários podem querer especificar uma noção de serviço apenas de forma mais qualitativa

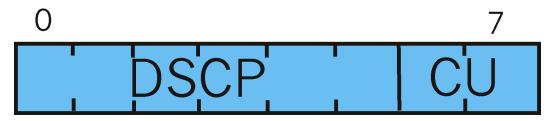

Serviços diferenciados

- □ abordagem:
 - o apenas funções simples no núcleo da rede
 - funções mais complexas nos roteadores que estão nas extremidades (ou hosts)
 - não define classes de serviços
 - fornece componentes funcionais com os quais as classes de serviço podem ser construídas
 - SLA (Service Level Agreement): acordos de serviço

Serviços diferenciados: funções de borda e no núcleo

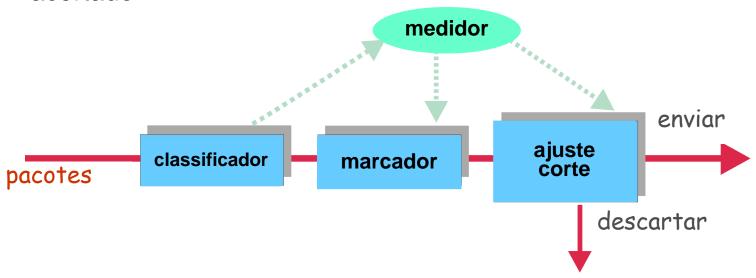
- funções de borda
 - em um host habilitado para DS (differentiated service)
 ou no 1º roteador habilitado para DS
 - <u>classificação</u>: bordas marcam os pacotes de acordo com as regras de classificação definidas por:
 - um administrador (manualmente) ou um protocolo
 - condicionamento do tráfego: borda pode enviar o pacote diretamente à rede, atrasá-lo e depois retransmiti-lo, ou então descartá-lo
- funções no núcleo: envio
 - de acordo com o PHB (*Per-Hop-Behaviour*) especificado para a classe particular de pacote;
 - baseia-se estritamente na marcação das pacotes
 - define as políticas e prioridades aplicadas aos pacotes nos saltos no roteadores no núcleo da rede

Serviços diferenciados: funções de borda e no núcleo



Não é necessário manter nenhuma informação de estado nos roteadores!

[0 34


Serviços diferenciados: classificação e condicionamento

- pacote é marcado no campo
 - o tipo de serviço (ToS) no IPv4, 8 bits
 - classe de tráfego (CoT) no IPv6, 8 bits
- 6 bits para fornecer a codificação dos Serviços
 Diferenciados e determinar a PHB que o pacote receberá
 - DSCP Differentiated Service Code Point
 - 64 (2⁶) tipos de serviços
- 2 bits não estão sendo usados
 - CU Currrently Unused

Serviços diferenciados: classificação e condicionamento

- pode ser desejável limitar a taxa de tráfego para alguma classe
 - usuário declara o seu perfil de tráfego
 - ex: taxa e comprimento das rajadas
 - tráfego é medido e moldado, se não estiver de acordo com o perfil acertado

Serviços diferenciados: encaminhamento (PHB)

- função do núcleo da rede: presente nos roteadores
 - PHB resulta num comportamento de desempenho do envio diferente dependo da classe (é observável e mensurável)
 - PHB não especifica quais os mecanismos devem ser utilizados para garantir o comportamento de desempenho requisitado
 - exemplos:
 - classe A recebe x% da taxa de transmissão do enlace de saída dentro de intervalos de tempo de comprimento especificado
 - · pacotes da classe A deixam os buffers antes dos pacotes da classe B

Serviços diferenciados: encaminhamento (PHB)

□ PHBs propostos:

- EF (Expedited Forwarding Encaminhamento Expresso)
 - taxa de partida dos pacotes de uma classe é maior ou igual a uma taxa especificada
 - baixo atraso, perda e jitter → rígido controle de admissão
 - enlace lógico com uma taxa mínima garantida
 - implica em isolamento de tráfego
 - garantia vigora independentemente da intensidade do tráfego
 - Para voz, vídeo e aplicações em tempo real

Serviços diferenciados: encaminhamento (PHB)

PHBs propostos:

- AF (Assured Forwarding Encaminhamento Assegurado)
 - é mais complexo
 - controle de congestionamento
- define 4 níveis de prioridade de tráfego (Ouro, Prata, Bronze e Best Effort).
 - a cada nível é garantida uma quantidade mínima de largura de banda e armazenamento
 - para cada nível de prioridade são definidos 3 preferências de descarte de pacotes

QoS em redes – resumo (1)

Internet pode evoluir para oferecer QoS garantida às aplicações

princípios do fornecimento de QoS

classificação de pacotes, isolamento e regulação, alto índice de uso dos recursos e aceitar/rejeitar chamadas

quatro parâmetros que juntos definem a QoS que o fluxo exige: confiabilidade, retardo, flutuação e largura de banda

mecanismos de escalonamento (ou marcação) fifo, filas de prioridade, *round-robin e* fila justa ponderada (WFQ)

mecanismos de policiamento (regulação)
algoritmo do balde furado e algoritmo do balde de símbolos (ou permissões)

QoS em redes – resumo (2)

serviços integrados:

duas classes de serviço
classe de serviço com QoS garantida
classe de serviço de carga controlada
exigem um protocolo de sinalização: RSVP

desvantagem: escalabilidade por precisar manter o estado por fluxo

serviços diferenciados:

não mantém o estado por salto classifica os pacotes apenas em classes agregadas requer poucas mudanças nos protocolos e nas infra-estruturas atuais

Leitura mínima recomendada

Kurose, Ross

Redes de Computadores e a Internet: uma nova abordagem

Cap. 07 – seções 7.6 a 7.9

Tanenbaum

Redes de Computadores, 4a. ed.

Cap. 05 – seção 5.4