Mobile Communications
Chapter 7: Wireless LANs

- Characteristics
- IEEE 802.11 (PHY, MAC, Roaming, .11a, b, g, h, i, n ... z)
- Bluetooth / IEEE 802.15.x
- IEEE 802.16/.20/.21/.22
- RFID
- Comparison

Prof. Jó Ueyama
Mobile Communication Technology according to IEEE (examples)

WiFi
- Local wireless networks
 - **WLAN** 802.11
 - 802.11a → 802.11h
 - 802.11i/e/.../n/.../z
 - 802.11b → 802.11g

ZigBee
- Personal wireless nw
 - **WPAN** 802.15
 - 802.15.4 → 802.15.4a/b/c/d/e
 - 802.15.5, .6 (WBAN)
 - 802.15.1
 - 802.15.2
 - 802.15.3 → 802.15.3b/c

Bluetooth
- Wireless distribution networks
 - **WMAN** 802.16 (Broadband Wireless Access)
 - **WiMAX**
 - + Mobility
 - [802.20 (Mobile Broadband Wireless Access)]
 - 802.16e (addition to .16 for mobile devices)
Main features of the existing wireless technologies

- 200 Mbps: 802.11n
- 54 Mbps: 802.11a,g
- 5–11 Mbps: 802.11b
- 4 Mbps: UMTS/WCDMA-HSDPA, CDMA2000-1xEVDO
- 1 Mbps: 802.15.1
- 384 Kbps: UMTS/WCDMA, CDMA2000
- 56 Kbps: IS-95, CDMA, GSM

Distance:
- Interna: 10–30m
- Externa: 50–200m
- Externa de meia distância: 200m–4km
- Externa de longa distância: 5km–20km
Characteristics of wireless LANs

- **Advantages**
 - very flexible within the reception area
 - Ad-hoc networks without previous planning possible
 - (almost) no wiring difficulties (e.g. historic buildings, firewalls)
 - more robust against disasters like, e.g., earthquakes, fire - or users pulling a plug...

- **Disadvantages**
 - typically very low bandwidth compared to wired networks (1-10 Mbit/s) due to shared medium
 - many proprietary solutions, especially for higher bit-rates, standards take their time (e.g. IEEE 802.11n)
 - products have to follow many national restrictions if working wireless, it takes a vary long time to establish global solutions like, e.g., IMT-2000
Design goals for wireless LANs

- global, seamless operation
- low power for battery use (e.g. WSNs and cell phones)
- no special permissions or licenses needed to use the LAN
- robust transmission technology
- simplified spontaneous cooperation at meetings
- easy to use for everyone, simple management
- protection of investment in wired networks (i.e. interoperable with wired LANs)
- security (no one should be able to read my data), privacy (no one should be able to collect user profiles), safety (low radiation)
- transparency concerning applications and higher layer protocols, but also location awareness if necessary
Comparison: infrared vs. radio transmission

- **Infrared**
 - uses IR diodes, diffuse light, multiple reflections (walls, furniture etc.)

- **Advantages**
 - simple, cheap, available in many mobile devices
 - no licenses needed
 - simple shielding possible

- **Disadvantages**
 - interference by sunlight, heat sources etc.
 - many things shield or absorb IR light
 - low bandwidth

- **Example**
 - IrDA (Infrared Data Association) interface available everywhere

- **Radio**
 - typically using the license free ISM band at 2.4 GHz

- **Advantages**
 - experience from wireless WAN and mobile phones can be used
 - coverage of larger areas possible (radio can penetrate walls, furniture etc.)

- **Disadvantages**
 - very limited license free frequency bands
 - shielding more difficult, interference with other electrical devices

- **Example**
 - Many different products
Comparison: infrastructure vs. ad-hoc networks

infrastructure network

ad-hoc network

AP: Access Point
802.11 - Architecture of an infrastructure network

- **Station (STA)**
 - terminal with access mechanisms to the wireless medium and radio contact to the access point

- **Basic Service Set (BSS)**
 - group of stations using the same radio frequency

- **Access Point**
 - station integrated into the wireless LAN and the distribution system

- **Portal**
 - bridge to other (wired) networks

- **Distribution System**
 - interconnection network to form one logical network (EES: Extended Service Set) based on several BSS

![Diagram of 802.11 LAN network components: STA, BSS, Access Point, Portal, Distribution System.](image)
802.11 - Architecture of an ad-hoc network

- Direct communication within a limited range
- Station (STA): terminal with access mechanisms to the wireless medium
- Independent Basic Service Set (IBSS): group of stations using the same radio frequency
IEEE standard 802.11

- Mobile terminal
- Access point
- Infrastructure network

Logical Link Control (LLC): Interface between different medias

<table>
<thead>
<tr>
<th>Application</th>
<th>802.11 MAC</th>
<th>802.3 MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP</td>
<td>802.11 PHY</td>
<td>802.3 PHY</td>
</tr>
<tr>
<td>IP</td>
<td>802.11 PHY</td>
<td>802.3 PHY</td>
</tr>
</tbody>
</table>

802.11 PHY

802.3 PHY

802.11 MAC

802.3 MAC
802.11 - Layers and functions

- **MAC**
 - access mechanisms, fragmentation, encryption
- **MAC Management**
 - synchronization, roaming, MIB, power management

PHY Management includes
- **PLCP** Physical Layer Convergence Protocol
 - clear channel assessment signal (carrier sense)
- **PMD** Physical Medium Dependent
 - modulation, coding, transforms bits into signals

- **Station Management**
 - coordination of all management functions
802.11 - Physical layer (legacy)

- 3 versions: 2 radio (typ. 2.4 GHz), 1 IR
 - data rates 1 or 2 Mbit/s
- FHSS (Frequency Hopping Spread Spectrum)
 - spreading, despreading
 - Frequency multiplexing
- DSSS (Direct Sequence Spread Spectrum)
 - Multiplexes by code (i.e. using a chipping code)
 - Implementation is more complex than FHHS
 - chipping sequence: +1, -1, +1, +1, -1, +1, +1, -1, -1, -1 (Barker code)
 - DATA XOR chipping code
- Infrared
 - Wavelength around 850-950 nm, diffuse light, typ. 10 m range
 - uses near visible light
 - carrier detection, up to 4Mbits/s data rate
FHSS PHY packet format (legacy)

- **Synchronization**
 - synch with 010101... pattern

- **SFD (Start Frame Delimiter)**
 - 0000110010111101 start pattern

- **PLW (PLCP_PDU Length Word)**
 - length of payload incl. 32 bit CRC of payload, PLW < 4096

- **PSF (PLCP Signaling Field)**
 - data rate of the payload (0000 -> the lowest data rate)

- **HEC (Header Error Check)**
 - checksum with the standard ITU-T polynomial generator

![Diagram of FHSS PHY packet format](image-url)
DSSS PHY packet format (legacy)

- **Synchronization**
 - synch., gain setting, energy detection, frequency offset compensation
- **SFD (Start Frame Delimiter)**
 - 1111001110100000
- **Signal**
 - data rate of the payload (0A: 1 Mbit/s DBPSK; 14: 2 Mbit/s DQPSK)
- **Service**
 - future use, 00: 802.11 compliant
- **Length**
 - length of the payload
- **HEC (Header Error Check)**
 - protected by checksum using ITU-T standard polynomial error check

![PLCP preamble and header diagram](image)
802.11 - MAC layer I - DFWMAC

- MAC layer has to fulfill several tasks including:
 - control medium access
 - support for roaming
 - authentication
 - power conservation

- In summary, it has two key tasks:
 - traffic services
 - access control
Traffic services (two implementations)
- Asynchronous Data Service (mandatory)
 - exchange of data packets based on "best-effort"
 - support of broadcast and multicast
- Time-Bounded Service (optional)
 - implemented using PCF (Point Coordination Function)

Access methods
- DFWMAC-DCF CSMA/CA (mandatory)
 - collision avoidance via randomized "back-off" mechanism
 - minimum distance between consecutive packets
 - ACK packet for acknowledgements (not for broadcasts)
- DFWMAC-DCF w/ RTS/CTS (optional)
 - Distributed Foundation Wireless MAC
 - avoids hidden terminal problem
- DFWMAC- PCF (optional)
 - access point polls terminals according to a list
Priorities
- defined through different inter frame spaces
- no guaranteed, hard priorities
- SIFS (Short Inter Frame Spacing)
 - highest priority, for ACK, CTS, polling response
- PIFS (PCF IFS)
 - medium priority, for time-bounded service using PCF
- DIFS (DCF Inter frame spacing)
 - lowest priority, for asynchronous data service
802.11 - CSMA/CA access method I

- station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment)
- if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type)
- if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time)
- if another station occupies the medium during the back-off time of the station, the back-off timer stops (fairness)
802.11 - competing stations - simple version

- busy: medium not idle (frame, ack etc.)
- \(bo_e \): elapsed backoff time
- \(bo_r \): residual backoff time
- \(\downarrow \): packet arrival at MAC

Diagram:

- Station 1
 - DIFS
 - Busy
 - \(bo_e \) for \(bo_r \)

- Station 2
 - Busy
 - \(bo_e \) for \(bo_r \)

- Station 3
 - Busy

- Station 4
 - Busy
 - \(bo_e \) for \(bo_r \)

- Station 5
 - Busy
 - \(bo_e \) for \(bo_r \)

Diagram shows the timing and state transitions of competing stations in a simple 802.11 network scenario.
802.11 - CSMA/CA access method II

- Sending unicast packets
 - station has to wait for DIFS before sending data
 - receivers acknowledge at once (after waiting for SIFS) if the packet was received correctly (CRC)
 - automatic retransmission of data packets in case of transmission errors
802.11 - DFWMAC

- Sending unicast packets
 - station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium)
 - acknowledgement via CTS after SIFS by receiver (if ready to receive)
 - sender can now send data at once, acknowledgement via ACK
 - other stations store medium reservations distributed via RTS and CTS
Fragmentation

- **DIFS**
- **RTS**
- **SIFS**
- **CTS**
- **SIFS**
- **ACK**
- **SIFS**
- **DIFS**

sender
- RTS
- **SIFS**
- CTS
- **SIFS**
- **ACK**
- **SIFS**
- **ACK**
- **SIFS**

receiver
- NAV (RTS)
- NAV (CTS)
- NAV (frag1)
- NAV (ACK1)
- NAV (ACK2)
- **SIFS**

other stations
- NAV (frag1)
- NAV (ACK1)
- NAV (ACK2)

t
- data

contention
DFWMAC-PCF I (almost never used)

D – downstream data
U – upstream data
DFWMAC-PCF II

D – downstream data
U – upstream data

point coordinator
wireless stations
stations’ NAV

contention free period
contention period

D_3 PIFS D_4 SIFS U_4 CF_{end}
802.11 - Frame format

- **Types**
 - control, management (e.g., beacon) and data frames
- **Sequence numbers**
 - important against duplicated frames due to lost ACKs
- **Addresses**
 - receiver, transmitter (physical), BSS identifier, sender (logical)
- **Miscellaneous**
 - sending time, checksum, frame control, data

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Frame Control</th>
<th>Duration/ID</th>
<th>Address 1</th>
<th>Address 2</th>
<th>Address 3</th>
<th>Sequence Control</th>
<th>Address 4</th>
<th>Data</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bits</th>
<th>Protocol version</th>
<th>Type</th>
<th>Subtype</th>
<th>To DS</th>
<th>From DS</th>
<th>More Frag</th>
<th>Retry</th>
<th>Power Mgmt</th>
<th>More Data</th>
<th>WEP</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
MAC address format

<table>
<thead>
<tr>
<th>scenario</th>
<th>to DS</th>
<th>from DS</th>
<th>address 1</th>
<th>address 2</th>
<th>address 3</th>
<th>address 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ad-hoc network</td>
<td>0</td>
<td>0</td>
<td>DA</td>
<td>SA</td>
<td>BSSID</td>
<td>-</td>
</tr>
<tr>
<td>infrastructure network, from AP</td>
<td>0</td>
<td>1</td>
<td>DA</td>
<td>BSSID</td>
<td>SA</td>
<td>-</td>
</tr>
<tr>
<td>infrastructure network, to AP</td>
<td>1</td>
<td>0</td>
<td>BSSID</td>
<td>SA</td>
<td>DA</td>
<td>-</td>
</tr>
<tr>
<td>infrastructure network, within DS</td>
<td>1</td>
<td>1</td>
<td>RA</td>
<td>TA</td>
<td>DA</td>
<td>SA</td>
</tr>
</tbody>
</table>

DS: Distribution System
AP: Access Point
DA: Destination Address
SA: Source Address
BSSID: Basic Service Set Identifier
RA: Receiver Address
TA: Transmitter Address
Address1 – destination
Address2 – source (ACK will be sent to)
Address3 – filter (often it will carry BSSID addr)
Address4 – Address of the source Access Point
Special Frames: ACK, RTS, CTS

Acknowledgement

- **ACK**
 - Frame Control: 2 bytes
 - Duration: 2 bytes
 - Receiver Address: 6 bytes
 - CRC: 4 bytes

Request To Send

- **RTS**
 - Frame Control: 2 bytes
 - Duration: 2 bytes
 - Receiver Address: 6 bytes
 - Transmitter Address: 6 bytes
 - CRC: 4 bytes

Clear To Send

- **CTS**
 - Frame Control: 2 bytes
 - Duration: 2 bytes
 - Receiver Address: 6 bytes
 - CRC: 4 bytes
802.11 - MAC management

- **Synchronization**
 - try to find a LAN, try to stay within a LAN
 - timer etc.

- **Power management**
 - sleep-mode without missing a message
 - periodic sleep, frame buffering, traffic measurements

- **Association/Reassociation**
 - integration into a LAN
 - roaming, i.e. change networks by changing access points
 - scanning, i.e. active search for a network

- **MIB - Management Information Base**
 - managing, read, write
Synchronization using a Beacon (infrastructure)

beacon interval (20ms – 1s)

access point medium

value of the timestamp

beacon frame
Synchronization using a Beacon (ad-hoc)

- Beacon interval
- Station 1: B_1
- Station 2: B_2
- Medium: busy
- Value of the timestamp
- Beacon frame
- Random delay
Power management

- Idea: switch the transceiver off if not needed
- States of a station: sleep and awake
- Timing Synchronization Function (TSF)
 - stations wake up at the same time
- Infrastructure
 - Traffic Indication Map (TIM)
 - list of unicast receivers transmitted by AP
 - Delivery Traffic Indication Map (DTIM)
 - list of broadcast/multicast receivers transmitted by AP
- Ad-hoc
 - Ad-hoc Traffic Indication Map (ATIM)
 - announcement of receivers by stations buffering frames
 - more complicated - no central AP
 - collision of ATIMs possible (scalability?)
- APSD (Automatic Power Save Delivery)
 - new method in 802.11e replacing above schemes
Power saving with wake-up patterns (infrastructure)

TIM interval

DTIM interval

access point

medium

station

T TIM

D DTIM

B broadcast/multicast

p PS poll

d data transmission to/from the station

busy

awake

data transmission to/from the station

7.32
Power saving with wake-up patterns (ad-hoc)

- **Station 1**
 - B_1 beacon frame
 - Random delay
 - A transmit ATIM
 - D transmit data
 - Awake

- **Station 2**
 - B_2 beacon frame
 - a acknowledge ATIM
 - d acknowledge data

Diagram Details
- ATIM window
- Beacon interval

Legend
- B beacon frame
- awake
- a acknowledge ATIM
- d acknowledge data
802.11 - Roaming

- No or bad connection? Then perform:
- Scanning
 - scan the environment, i.e., listen into the medium for beacon signals or send probes into the medium and wait for an answer
- Reassociation Request
 - station sends a request to one or several AP(s)
- Reassociation Response
 - success: AP has answered, station can now participate
 - failure: continue scanning
- AP accepts Reassociation Request
 - signal the new station to the distribution system
 - the distribution system updates its data base (i.e., location information)
 - typically, the distribution system now informs the old AP so it can release resources
- Fast roaming – 802.11r
 - e.g. for vehicle-to-roadside networks
WLAN: IEEE 802.11b

- **Data rate**
 - 1, 2, 5.5, 11 Mbit/s, depending on SNR
 - User data rate max. approx. 6 Mbit/s

- **Transmission range**
 - 300m outdoor, 30m indoor
 - Max. data rate ~10m indoor

- **Frequency**
 - DSSS, 2.4 GHz ISM-band

- **Security**
 - Limited, WEP insecure, SSID

- **Availability**
 - Many products, many vendors

- **Connection set-up time**
 - Connectionless/always on

- **Quality of Service**
 - Typ. Best effort, no guarantees (unless polling is used, limited support in products)

- **Manageability**
 - Limited (no automated key distribution, sym. Encryption)

- **Special Advantages/Disadvantages**
 - Advantage: many installed systems, lot of experience, available worldwide, free ISM-band, many vendors, integrated in laptops, simple system
 - Disadvantage: heavy interference on ISM-band, no service guarantees, slow relative speed only
IEEE 802.11b – PHY frame formats

Long PLCP PPDU format

- **synchronization**: 128 bits
- **SFD**: 16 bits
- **signal**: 8 bits
- **service**: 8 bits
- **length**: 16 bits
- **HEC**: 16 bits
- **payload**: variable bits

PLCP preamble

- 192 µs at 1 Mbit/s DBPSK

PLCP header

- 1, 2, 5.5 or 11 Mbit/s

Short PLCP PPDU format (optional)

- **short synch.**: 56 bits
- **SFD**: 16 bits
- **signal**: 8 bits
- **service**: 8 bits
- **length**: 16 bits
- **HEC**: 16 bits
- **payload**: variable bits

PLCP preamble

- (1 Mbit/s, DBPSK)
 - 96 µs

PLCP header

- (2 Mbit/s, DQPSK)
 - 2, 5.5 or 11 Mbit/s
Channel selection (non-overlapping)

Europe (ETSI)

- Channel 1: 2400 MHz to 2412 MHz
- Channel 7: 2442 MHz to 2454 MHz
- Channel 13: 2472 MHz to 2483.5 MHz

US (FCC)/Canada (IC)

- Channel 1: 2400 MHz to 2412 MHz
- Channel 6: 2437 MHz to 2449 MHz
- Channel 11: 2462 MHz to 2474 MHz

Frequency range: 22 MHz
WLAN: IEEE 802.11a

- **Data rate**
 - 6, 9, 12, 18, 24, 36, 48, 54 Mbit/s, depending on SNR
 - User throughput (1500 byte packets): 5.3 (6), 18 (24), 24 (36), 32 (54)
 - 6, 12, 24 Mbit/s mandatory

- **Transmission range**
 - 100m outdoor, 10m indoor
 - E.g., 54 Mbit/s up to 5 m, 48 up to 12 m, 36 up to 25 m, 24 up to 30 m, 18 up to 40 m, 12 up to 60 m

- **Frequency**
 - Free 5.15-5.25, 5.25-5.35, 5.725-5.825 GHz ISM-band

- **Security**
 - Limited, WEP insecure, SSID

- **Availability**
 - Some products, some vendors

- **Connection set-up time**
 - Connectionless/always on

- **Quality of Service**
 - Typ. best effort, no guarantees (same as all 802.11 products)

- **Manageability**
 - Limited (no automated key distribution, sym. Encryption)

- **Special Advantages/Disadvantages**
 - Advantage: fits into 802.x standards, free ISM-band, available, simple system, uses less crowded 5 GHz band
 - Disadvantage: stronger shading due to higher frequency, no QoS
IEEE 802.11a – PHY frame format

- **PLCP preamble**
- **signal**
- **data**

PLCP header

- Rate (4 bits)
- Reserved (1 bit)
- Length (12 bits)
- Parity (1 bit)
- Tail (6 bits)
- Service (16 variable bits)
- Payload (6 variable bits)
- Tail (1 bit)
- Pad (variable bits)

Symbols

- 6 Mbit/s
- 6, 9, 12, 18, 24, 36, 48, 54 Mbit/s
Operating channels of 802.11a in Europe

Center frequency = 5000 + 5*channel number [MHz]
Operating channels for 802.11a / US
U-NII

channel

center frequency = 5000 + 5*channel number [MHz]
OFDM in IEEE 802.11a

- OFDM with 52 used subcarriers (64 in total)
 - 48 data + 4 pilot
 - (plus 12 virtual subcarriers)
 - 312.5 kHz spacing