Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

Avaliação de Desempenho Planejamento de Experimentos

Aula 2

Marcos José Santana Regina Helena Carlucci Santana

Lembrando.....

Etapas a serem consideradas

- Estudar o sistema e definir os objetivos
- 2. Determinar os serviços oferecidos pelo sistema
- 3. Selecionar métricas de avaliação
- 4. Determinar os parâmetros que afetam o desempenho do sistema
- 5. Determinar o nível de detalhamento da análise
- 6. Determinar a Técnica de Avaliação apropriada
- 7. Determinar a carga de trabalho característica
- 8. Realizar a avaliação e obter os resultados
- 9. Analisar e interpretar os resultados
- 10. Apresentar os resultados

Planejamento de Experimento

Técnica de Avaliação

Análise dos

Resultados

Avaliação de Desempenho

- 1. Planejamento de Experimentos
 - Motivação
 - Introdução à Avaliação de Desempenho
 - Etapas de um Experimento
 - Planejamento do Experimento
 - Conceitos Básicos
 - Carga de trabalho
 - Modelos para Planejamento de Experimento
- 2. Análise de Resultados
- 3. Técnicas para Avaliação de Desempenho

- Deve ser utilizado em qualquer experimento
- É uma técnica muito importante para a indústria pois seu emprego permite resultados mais confiáveis economizando dinheiro e tempo
- Requer uma quantidade exaustiva de cálculos tornando fundamental o emprego de ferramentas

Obter a maior precisão estatística possível na resposta a um menor custo

Terminologia

- Variável de Resposta Saída de um experimento
- Fatores Variável que afeta as variáveis de resposta e que podem assumir diversas alternativas
- Níveis Os valores que um determinado fator pode assumir
- Fatores Primários Fatores que causam um grande impacto em uma variável de resposta e que devem ser considerados
- Fatores Secundários Fatores cujo impacto na variável de resposta não é significante ou não se tem interesse em quantificar

Terminologia:

- Replicação Repetição de todo ou de parte de um experimento
- Projeto Determina o número de experimentos a serem considerados, incluindo o número de fatores e níveis, a combinação entre os níveis e o número de replicações para cada experimento
- Interação Dois fatores interagem se o efeito de um depende do nível do outro

Planejamento de Experimentos Terminologia – Exemplo

Empresa de telefonia celular - Sistema pré pago

Objetivo: determinar a influência de uma expansão no serviço prestado, mantendo sistema já utilizado

- 1. Variáveis de Resposta (métricas):
 - ·Tempo para recuperar uma informação
 - ·Número de informações recuperadas por unidade de tempo
 - ·Taxa de acerto ao cache

2. Definição dos Fatores primários e níveis

Quatro fatores:

Fator 1 – Tamanho do banco de dados

Fator 2 – Quantidade de usuários

Fator 3 – Quantidade de cache

Fator 4 – Forma de armazenamento

2. Definição dos Fatores primários e níveis

Fator 1 – Tamanho do banco de dados:

- •500 mil registros
- •1 milhão de registros
- •2 milhões de registros

Fator 2 – Quantidade de acessos:

- •10 mil acessos/dia
- •20 mil acessos/dia
- •40 mil acessos/dia

2. Definição dos Fatores primários e níveis

Fator 3 – Quantidade de cache:

- •1M byte
- •10M byte
- •20M byte

Fator 4 – Número de discos:

- •5 discos
- •10 discos
- •15 discos

2. Definição dos Fatores Secundários

- Processamento
- Velocidade do disco 10K RPM

Mais um ponto deve ser considerado....

O que vocês acham do Júpiter?

No período de matrícula...

Durante o semestre...

Nas férias...

Desempenho de um sistema:

- Ruim em qualquer situação
- Bom quando não sobrecarregado
- · Bom em qualquer situação

Mais um ponto deve ser considerado....

Carga de trabalho imposta ao sistema

Conteúdo - Parte II

- 1. Planejamento de Experimentos
 - Motivação
 - Introdução à Avaliação de Desempenho
 - Etapas de um Experimento
 - Planejamento do Experimento
 - Conceitos Básicos
 - Carga de trabalho
 - Modelos para Planejamento de Experimento
- 2. Técnicas para Avaliação de Desempenho
- 3. Análise de Resultados

Carga de Trabalho

"Conjunto de todas as informações de entrada que um sistema recebe durante qualquer período de tempo determinado" [MENASCÉ, ALMEIDA, 2003]

Muito importante no planejamento de capacidade e na avaliação de sistemas

Tipos Básicos de Carga de Trabalho

Precisamos agora de uma forma para representar a carga de trabalho.

Basicamente, duas formas:

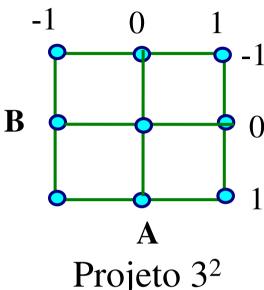
1. Carga de trabalho **Real**

Observada no sistema real em operação normal.

2. Carga de trabalho Sintética

Carga com características similares às reais

Conteúdo

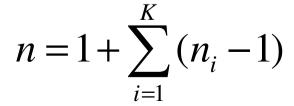

- 1. Planejamento de Experimentos
 - Motivação
 - Introdução à Avaliação de Desempenho
 - Etapas de um Experimento
 - Planejamento do Experimento
 - Conceitos Básicos
 - Carga de trabalho
 - Modelos para Planejamento de Experimento
- 2. Técnicas para Avaliação de Desempenho
- 3. Análise de Resultados

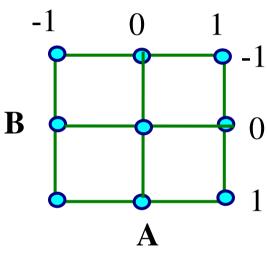
Tipos de Planejamento de Experimentos

Planejamento Simples

Planejamento Fatorial completo

Planejamento Fatorial parcial




2 Fatores 3 níveis

Tipos de Planejamento de Experimentos

Planejamento Simples

- Iniciar com uma configuração inicial
- Fixar todos os fatores e variar um fator por vez
- Número de experimentos:

Projeto 3²

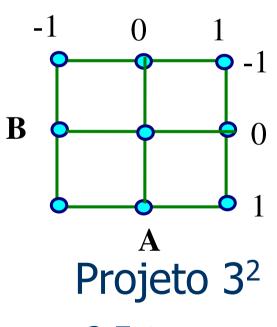
2 Fatores3 níveis

Empresa de telefonia celular - Sistema pré pago

4 fatores:

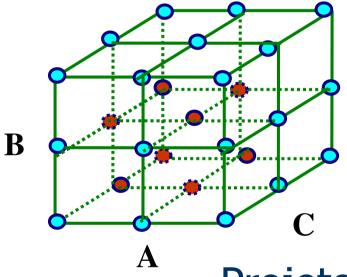
- Fator 1 Tamanho do banco de dados 3 níveis: 500 mil, 1 milhão 2 milhões de registros
- Fator 2 Quantidade de acessos 3 níveis: 10 mil, 20 mil e 40 mil acessos/dia
- Fator 3 Quantidade de cache 3 níveis: 1M bytes, 10M bytes e 20M bytes
- Fator 4 Número de discos 3 níveis: 5, 10 e 15 discos

$$n=1+(3-1)+(3-1)+(3-1)+(3-1)=9$$


Tipos de Planejamento de Experimentos Planejamento Simples

Não recomendado

Muito utilizado


Tipos de Planejamento de Experimentos Planejamento Totalmente Fatorial

 Utiliza todas as combinações considerando todos os fatores e todos os níveis

2 Fatores

3 Níveis

Projeto 3³

3 Fatores

3 Níveis

Tipos de Planejamento de Experimentos Planejamento Totalmente Fatorial

 Para um experimento com K fatores e n_i níveis no fator i, tem-se:

$$n = \prod_{i=1}^{K} n_i$$

– Para o exemplo sistema de telefonia tem-se:

n= 81 experimentos

Tipos de Planejamento de Experimentos

Planejamento Totalmente Fatorial

Vantagens

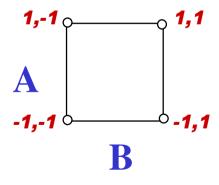
- Todos os fatores são avaliados
- Pode-se determinar o efeito de qualquer fator
- Interações entre fatores podem ser verificadas

Desvantagens

- Grande número de experimentos
- Alto custo para avaliação

Planejamento Totalmente Fatorial Formas para minimizar custos

1. Reduzir o número de níveis de cada fator


2. Reduzir o número de fatores

3. Utilização do método do Fatorial Parcial

Método Fatorial

- Pelo método fatorial pode-se ter k fatores com n_i níveis para cada fator i
- Para valores elevados de K e n_i o custo da avaliação pode tornar-se inviável, principalmente lembrando-se que diversas execuções de cada experimento devem ser consideradas.
- Forma recomendada: Selecionar poucos fatores e 2 níveis por fator.

- Análise através do modelo de regressão
- Considere um problema analisando dois fatores (A e B)
- Quatro experimentos são efetuados obtendo-se os valores y₁, y₂, y₃, y₄
- Os quatro experimentos consideram a seguinte següência

(A,B)

Experimento	A	В	у
1	-1	-1	y_1
2	1	-1	y_2
3	-1	1	y ₃
4	1	1	y ₄

Modelo para projeto 2² é dado por:

$$y = q_0 + q_A X_A + q_B X_B + q_{AB} X_{AB}$$

 Substituindo-se as quatro observações no modelo, obtêm-se os valores de q₀, q_A, q_B, q_{AB}

$$q_0 = \frac{1}{4} * (y_1 + y_2 + y_3 + y_4)$$

$$q_A = \frac{1}{4} * (-y_1 + y_2 - y_3 + y_4)$$

$$q_B = \frac{1}{4} * (-y_1 - y_2 + y_3 + y_4)$$

$$q_{AB} = \frac{1}{4} * (y_1 - y_2 - y_3 + y_4)$$

- A partir dos valores de q₀, q_A, q_B, q_{AB} pode-se determinar a soma dos quadrados
- A soma dos quadrados dará a variação total das variáveis de resposta e as variações devido a influência do fator A, do fator B e da interação entre A e B
- Soma dos Quadrados Total $SST = \sum_{i=1}^{\infty} (y_i \overline{y})^2$

ou
$$SST = 2^2 q_A^2 + 2^2 q_B^2 + 2^2 q_{AB}^2$$

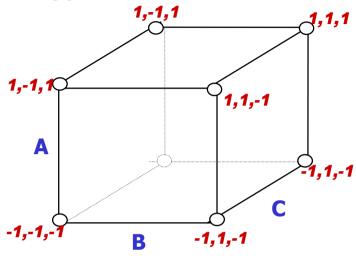
Soma dos Quadrados devido a influência do Fator A

$$SSA = 2^2 q_A^2$$

Influência do Fator A = SSA / SST

Soma dos Quadrados devido a influência do Fator B

$$SSB = 2^2 q_B^2$$


Influência do Fator B = SSB / SST

Soma dos Quadrados devido a interação entre os Fatores A e B

$$SSAB = 2^2 q_{AB}^2$$

Influência da interação entre os Fatores A e B = SSAB/SST

- Utilizado para avaliar experimentos com k fatores com 2 níveis cada
- Análise similar ao 2²

(A,B,C)

Para k = 3

$$SST = 2^{3}(q_{A}^{2} + q_{B}^{2} + q_{C}^{2} + q_{AB}^{2} + q_{AC}^{2} + q_{BC}^{2} + q_{ABC}^{2})$$

$$SSA = 2^3 q_A^2$$

$$SSB = 2^3 q_B^2$$

$$SSA = 2^3 q_A^2$$
 $SSB = 2^3 q_B^2$ $SSC = 2^3 q_C^2$

$$SSAB = 2^3 q_{AB}^2 \qquad \dots$$

$$SSABC = 2^3 q_{ABC}^2$$

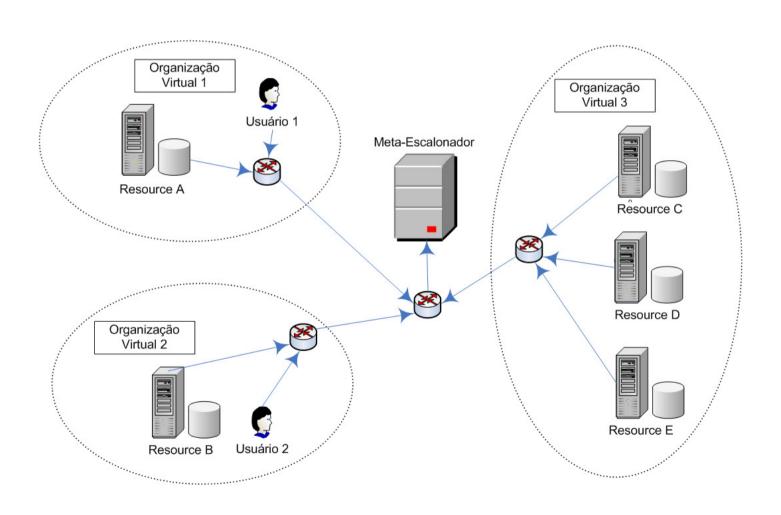
Projeto Fatorial

- Análise através do modelo de regressão
- Utilização de ferramentas para determinar influência dos fatores e interação:

MINITAB – fácil utilização

SAS – muito poderoso, utilização não trivial

SPSS – fácil utilização, utilizado mais por estatísticos


R - software gratuito para elaboração de gráficos e computação estatística

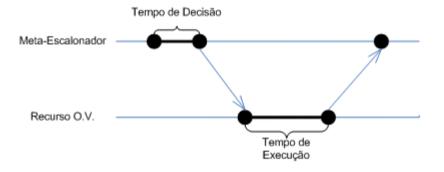
Exemplo...

Avaliação de desempenho de políticas para o meta-escalonador em um ambiente Grid

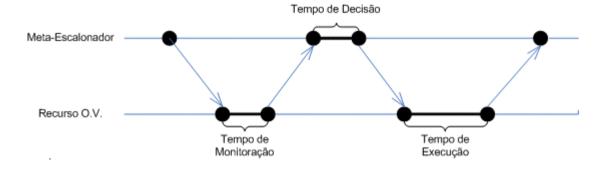
Trabalho desenvolvido na disciplina de Avaliação de Desempenho da pós graduação em Ciências de Computação e Matemática Computacional

Maycon Leone M. Peixoto

- Escalonamento em Grid é um tema bem discutido atualmente.
 - Algoritmos: RR, Workqueue...
- O Meta-Escalonador exerce as funções de:
 - Gerência das tarefas (submissão, pausa, finalização.).
 - Gerência dos recursos.
 - Adoção de políticas de uso.


Objetivo

Utilizar os conceitos adquiridos na disciplina de avaliação de desempenho para determinar o comportamento das políticas utilizadas pelo Meta-Escalonador no ambiente de simulação GridSim.


- São considerados quatro fatores e dois níveis para construção do planejamento de experimentos:
 - Número de usuários: 5 e 30
 - Políticas Externas: Round Robin e Counter Load Balanced.
 - Número de Tarefas: 50 e 100
 - Número de Recursos: 2 e 4 (homogêneos)

Políticas Externas

• RR Round Robin

• CLB Counter Load Balanced

- Variavéis de Resposta:
 - Custo = Tempo de resposta x 3\$.
 - Throughput.

A carga de trabalho é composta por:

- Tamanho (MIPS): representa o total de computação desejado por aquele objeto
- tamanho do arquivo a ser transmitido sobre a rede (bytes)
- tamanho do arquivo de retorno com a resposta (bytes)

Taxa de Chegada: distribuição exponencial negativa com media 2

Tabela 2: Configuração do Projeto Fatorial.

	FATORES								
	A	В	C	D					
Exp	Política	Qtd. Usuario	Qtd. Gridlet	Qtd. Recurso					
1	RR	5	50	2					
2	RR	5	50	4					
3	RR	5	100	2					
4	RR	5	100	4					
5	RR	30	50	2					
6	RR	30	50	4					
7	RR	30	100	2					
8	RR	30	100	4					
9	CLB	5	50	2					
10	CLB	5	50	4					
11	CLB	5	100	2					
12	CLB	5	100	4					
13	CLB	30	50	2					
14	CLB	30	50	4					
15	CLB	30	100	2					
16	CLB	30	100	4					

	Fatores	Níveis
A	Política	RR e CLB 1 e -1
В	Quantidade de Usuários	5 e 30 1 e -1
С	Quantidade de Gridlets	50 e 100 1 e -1
D	Quantidade de Recursos	2 e 4 1 e -1

	Fatores	Níveis
A	Política	RR e CLB 1 e -1
В	Quantidade de Usuários	5 e 30 1 e -1
С	Quantidade de Gridlets	50 e 100 1 e -1
D	Quantidade de Recursos	2 e 4 1 e -1

Tabela 3: Metodologia para o Projeto Fatorial.

	Fatores									Variáveis d	e Resposta						
Exp	A	В	\mathbf{C}	D	\mathbf{AB}	\mathbf{AC}	\mathbf{AD}	\mathbf{BC}	BD	CD	ABC	ABD	ACD	BCD	ABCD	Custo Médio	Throughput
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2776,57	0,02117
2	1	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1	-1	-1	1140,095	0,038293
3	1	1	-1	1	1	-1	1	-1	1	-1	-1	1	-1	-1	-1	5373,475	0,022156
4	1	1	-1	-1	1	-1	-1	-1	-1	1	-1	-1	1	1	1	1812,129	0,043641
5	1	-1	1	1	-1	1	1	-1	-1	-1	-1	-1	1	-1	-1	15690,516	0,00372
6	1	-1	1	-1	-1	1	-1	-1	1	-1	-1	1	-1	1	1	7927,512	0,006915
7	1	-1	-1	1	-1	-1	1	1	-1	1	1	-1	-1	1	1	31304,949	0,00374
8	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	15721,839	0,007344
9	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	1	-1	497,145	0,018023
10	-1	1	1	-1	-1	-1	1	1	-1	-1	-1	1	1	-1	1	455,268	0,017233
11	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	502,133	0,019037
12	-1	1	-1	-1	-1	1	1	-1	-1	1	1	1	-1	1	-1	453,916	0,01815
13	-1	-1	1	1	1	-1	-1	-1	-1	1	1	1	-1	-1	1	1869,408	0,003647
14	-1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	1	-1	662,126	0,004326
15	-1	-1	-1	1	1	1	-1	1	-1	-1	-1	1	1	1	-1	1994,114	0,003719
16	-1	-1	-1	-1	1	1	1	1	1	1	-1	-1	-1	-1	1	675,347	0,004421

	Fatores	Níveis
A	Política	RR e CLB 1 e -1
В	Quantidade de Usuários	5 e 30 1 e -1
С	Quantidade de Gridlets	50 e 100 1 e -1
D	Quantidade de Recursos	2 e 4 1 e -1

Tabela 4: Influência dos Fatores e suas Interações.

	Média I	Estimada		Soma dos	quadrados	Influência		
Parâm.	Custo	Throughput		Custo	Throughput			
q0			SST	1115643574	0,0024			
$\mathbf{q}\mathbf{A}$	4664,8518	0,0037	SSA	348173470	0,0002	31,2083	9,0728	
qB	-3927,1925	0,0100	SSB	246765455	0,0016	22,1187	67,9384	
qC	-1676,2039	-0,0006	SSC	44954551	0,0000	4,0295	0,2097	
qD	1947,5049	-0,0028	SSD	60684404	0,0001	5,4394	5,4093	
qAB	-3515,6259	0,0030	SSAB	197754005	0,0001	17,7256	5,9246	
qAC	-1658,5085	-0,0003	SSAC	44010407	0,0000	3,9448	0,0583	
qAD	1620,4870	-0,0029	SSAD	42015650	0,0001	3,7660	5,5522	
qBC	1267,1320	-0,0005	SSBC	25689976	0,0000	2,3027	0,1555	
qBD	-1286,5155	-0,0018	SSBD	26481954	0,0001	2,3737	2,1973	
qCD	1335,3790	0,0003	SSCD	28531793	0,0000	2,5574	0,0596	
qABC	1250,3456	-0,0003	SSABC	25013827	0,0000	2,2421	0,0451	
qABD	-982,0211	-0,0022	SSABD	15429848	0,0001	1,3830	3,2315	
qACD	-601,6970	0,0003	SSACD	5792628	0,0000	0,5192	0,0624	
qBCD	375,0238	0,0002	SSBCD	2250285	0,0000	0,2017	0,0391	
\mathbf{qABCD}	361,8806	0,0003	SSABCD	2095321	0,0000	0,1878	0,0441	

- Planejamento de Experimentos designa toda uma área de estudos da Estatística que desenvolve técnicas de planejamento e análise de experimentos.
- Existe um grande número de técnicas, com vários níveis de sofisticação e uma grande quantidade de ferramentas visando oferecer as condições necessárias para o planejamento de experimentos.
- Essas técnicas cobrem todas as possibilidades, diversos fatores, diferentes quantidades de níveis, tratamento de replicações, etc.
- Importância dentro de Avaliação de Desempenho saber como utilizar as técnicas/ferramentas e saber analisar os resultados

Erros Comuns em Experimentos

- Uso de apenas um fator por vez essa opção simplifica a experimentação mas não permite verificar interações
- Execução de muitos experimentos em um primeiro passo poucos fatores/níveis devem ser considerados. Com as conclusões iniciais, pode-se considerar outros fatores/níveis

Conteúdo

1. Planejamento de Experimentos

- Motivação
- Introdução à Avaliação de Desempenho
- Etapas de um Experimento
- Planejamento do Experimento
 - Conceitos Básicos
 - Carga de trabalho
 - Modelos para Planejamento de Experimento

2. Análise de Resultados

3. Técnicas para Avaliação de Desempenho