USP – ICMC – Análise Exploratória de Dados $2^{\underline{a}}$ lista de exercícios – $1^{\underline{o}}/2010$

- 1. Obtenha a curva de sensibilidade da amplitude $(A = x_{(n)} x_{(1)})$.
- 2. Obtenha as expressões da variância (s^2) nas situações descritas abaixo.
 - (a) Os dados estão na forma $(x_1, f_1), \ldots, (x_k, f_k)$, sendo que f_j representa a frequencia absoluta de $x_j, j = 1, \ldots, k$.
 - (b) Os dados estão na forma $(x_1, f_1^*), \ldots, (x_k, f_k^*)$, sendo que f_j^* representa a frequencia relativa de $x_j, j = 1, \ldots, k$.
 - (c) Os dados estão na forma $(x_1^*, f_1), \ldots, (x_k^*, f_k)$, sendo que f_j representa a frequencia absoluta da classe com ponto médio $x_j^*, j = 1, \ldots, k$. A expressão obtida corresponde ao verdadeiro valor de s^2 ?
- 3. Demonstre a propriedade P3 da variância.
- 4. Que transformação deve ser aplicada aos dados $x_1, \ldots, x_n, n > 1$, para que a variável resultante tenha média e desvio padrão iguais a 0 e 1, respectivamente?
- 5. Prove que $\sum_{i=1}^{n} (x_i \overline{x})^2 = \sum_{i=1}^{n} x_i^2 n\overline{x}^2$. Utililze este resultado para obter uma expressão alternativa da variância.
- 6. Dados sobre o tempo de falha (em h) de um certo item foram coletados durante um período de 100 h fornecendo os valores

$$76, 63, 100^+, 36, 51, 45, 50 e 90,$$

sendo que a observação "100+" indica que o item ainda não havia falhado ao término da coleta dos dados.

- (a) Apresente a(s) medida(s) de dispersão que você considera que pode calcular de forma exata.
- (b) O que você pode afirmar sobre a amplitude e o desvio padrão?
- 7. Considere um conjunto de dados $x_1, \ldots, x_n, n > 1$, tal que $x_i \in [\min, \max], i = 1, \ldots, n$, com min $< \max, n$ par. Apresente a distribuição dos dados que maximiza o desvio padrão e o seu valor máximo. Se n for ímpar, qual a sua resposta?
- 8. Considere um conjunto de dados $x_1, \ldots, x_n, n > 1$, tal que $x_i \in [\min, \max], i = 1, \ldots, n$, com min $< \max$. Pode ser provado que $A_s \leq \sqrt{2(n-1)}$, sendo que A_s denota a amplitude studentizada. Conclua que este limite superior é atingido se tivermos um só valor igual a min, um só valor igual a max e todos os demais (se n > 2) iguais a $(\min + \max)/2$.

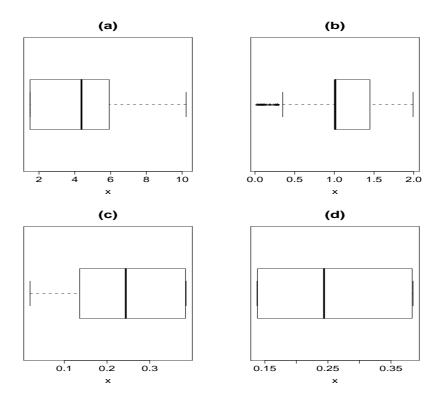


Figura 1: Gráficos de caixa.

- 9. No exercício 8 foi mencionada uma medida de posição chamada de centro (mid-range ou midrange), dada por $x_c = (\min + \max)/2$.
 - (a) x_c é uma medida resistente?
 - (b) Apresente a curva de sensibilidade de x_c .
- 10. Descreva conjuntos de dados correspondentes a cada um dos gráficos de caixa da Figura 1.
- 11. Os itens abaixo devem ser resolvidos utilizando os dados apresentados no exercício 10 da 1^a lista.
 - (a) Apresente o gráfico de caixa para os dados de mrpd. Se existir(em) observação(ções) extrema(s), identifique o(s) município(s).
 - (b) Calcule as medidas de dispersão que você considerar apropriadas.