- 1. Particionando a matriz $\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 2 \\ 3 & 4 & 2 & 7 \end{bmatrix}$ de forma conveniente, determine sua inversa.
- 2. Determine a matriz A associada às formas quadráticas

a.
$$f(x_1,x_2,x_3) = 2 x_1^2 - 2 x_1 x_2 + x_2^2 + 4 x_1 x_3 - 3 x_3^2$$

$$b^*$$
. $f(x_1, x_2, x_3) = x_1^2 + 3 x_1 x_2 + 2 x_1 x_3 + 3 x_2 x_3 + 5 x_3^2$

- 3. Mostre que as raízes características de uma matriz triangular são os elementos da diagonal principal.
- 4*. Sejam as variáveis aleatórias $Y_1 = X$ e $Y_2 = 1 X$, em que $E(X) = \mu$ e V ar $E(X) = \sigma^2$. Obtenha a matriz de variância e covariância de $E(Y_1, Y_2)$ e mostre que é positiva semidefinida.
- 5. Prove que 5 $x_1^2 + 4 x_1 x_2 + 4 x_2^2 > 0$ para todo $(x_1, x_2) \in \mathbb{R}^2$.
- 6*. Seja $Y \sim N_n(\mu, \Sigma)$. Prove que se $Y'AY \sim \chi^2_{r,\lambda}$ então $(Y \mu)'A(Y \mu) \sim \chi^2_r$.
- 7*. Se $Y \sim N_n(\mu, \Sigma)$, com $r(\Sigma) = n$, determine a distribuição de $Y' \Sigma^{-1} Y$.
- 8*. Se Y₁, ..., Y_n é uma amostra aleatória da distribuição $N(\mu, \sigma^2)$, prove que \overline{Y} e S² = $\frac{\sum_{i=1}^{n}(Y_i-\overline{Y})^2}{n-1}$ são variáveis aleatórias independentes. (Dica: Escreva \overline{Y} e S²em forma matricial).
- 9. Se $Y \sim N_n(\mu, \Sigma)$, com $Y = (Y_1, Y_2, Y_3)'$, $\mu = (\mu, \mu, \mu)'$ e $\Sigma = \begin{bmatrix} 1 & a & 0 \\ a & 1 & a \\ 0 & a & 1 \end{bmatrix}$, determine o valor de a para que $Y_1 + Y_2 + Y_3$ e $Y_1 Y_2 Y_3$ sejam independentes.
- 10*. Considere o modelo de regressão linear simples

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, i = 1, ..., n,$$

com a suposição de normalidade $\epsilon_i \sim N(0, \sigma^2)$ e ϵ_i não correlacionado com ϵ_j para i, j = 1, ..., n e $i \neq j$. Reescreva o modelo acima utilizando a notação matricial, especificando cada elemento do modelo e mostre que nesse caso

$$\widehat{\boldsymbol{\beta}} = (X'X)^{-1}(X'\boldsymbol{Y}) = \begin{bmatrix} \widehat{\beta}_0 \\ \widehat{\beta}_1 \end{bmatrix} = \begin{bmatrix} \overline{Y} - \widehat{\beta}_1 \overline{X} \\ S_{xy}/S_{xx} \end{bmatrix}.$$