
Grids

SCC-211 - Capítulo 12
Grids

João Luís Garcia Rosa1

1Departamento de Ciências de Computação
Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo - São Carlos
http://www.icmc.usp.br/~joaoluis

2011

João Luís G. Rosa c© 2011 - SCC-211: XII. Grids 1/14

http://www.icmc.usp.br/~joaoluis


Grids

Sumário

1 Grids

João Luís G. Rosa c© 2011 - SCC-211: XII. Grids 2/14



Grids

Grids: mais comuns do que se pensa

Grids são a base para várias estruturas naturais.
Tabuleiros de xadrez são grids.
As quadras de uma cidade são tipicamente arranjadas em
uma grid.
De fato, a medida de distância mais natural - a distância
de Manhattan - pressupõe uma grid.
O sistema de longitudes e latitudes define uma grid sobre
a Terra, ainda que na superfície de uma esfera ao invés de
um plano.

João Luís G. Rosa c© 2011 - SCC-211: XII. Grids 3/14



Grids

Grids: mais comuns do que se pensa

Grids estão em todo lugar porque são a forma mais
natural de dividir espaços em regiões tal que as porções
possam ser identificadas.
No limite, essas células podem ser pontos individuais, mas
está-se interessado em grids maiores cujas células são
grandes o suficiente para ter uma forma.
Em grids regulares, cada uma das formas é idêntica e
ocorre em um padrão regular.
Subdivisões retangulares e retílineas são as grids mais
comuns, devido a sua simplicidade, mas grids hexagonais
baseadas em triângulos também são importantes.

João Luís G. Rosa c© 2011 - SCC-211: XII. Grids 4/14



Grids

Material do Steven Skiena

Os próximos 14 slides contêm material de Steven Skiena
disponíveis em [2].

João Luís G. Rosa c© 2011 - SCC-211: XII. Grids 5/14



Rectilinear Grids

Rectilinear grids are typically defined by regularly spaced
horizontal and vertical lines.
There are three important components of the planar grid: the
vertices, the edges, and the cell interiors. Sometimes we
are interested in the interiors of the cells, as in geometric
applications where each cell describes a region in space.
Sometimes we are interested in the vertices of the grid, such
as in addressing the pieces on a chessboard. Sometimes we
are interested in the edges of the grid, such as when finding
routes to travel in a city where buildings occupy the interior
of the cells.
Vertices in planar grids each touch four edges and the



interiors of four cells, except for vertices on the boundaries.
Vertices in 3D grids touch on six edges and eight cells. In
d-dimensions, each vertex touches2d edges and2d cells.
Cells in a planar grid each touch eight faces, four diagonally
through vertices and four through edges. Cells in a 3D grid
each touch 26 other cells, sharing a face with 6 of them, an
edge with 12 of them, and just a vertex with the other 8.



Traversal

It is often necessary to traverse all the cells of ann × m
rectilinear grid. Any such traversal can be thought of as
a mapping from each of thenm ordered pairs to a unique
integer from1 to nm.
The most important traversal methods are —

• Row Major – Here we slice the matrix between rows,
so the firstm elements visited belong to the first row, the
secondm elements to the second row, and so forth.

• Column Major – Here we slice the matrix between
columns, so the firstn elements belong to the first column,
the secondn elements to the second column, and so
forth. This can be done by interchanging the order of



the nested loops from row-major ordering. Knowing
whether your compiler uses row-major or column-major
ordering for matrices is important when optimizing for
cache performance and when attempting certain pointer-
arithmetic operations.

• Diagonal Order – Here we march up and down
diagonals. Note that ann×m grid hasm+n−1 diagonals,
each with a variable number of elements. This is a trickier
task than it appears at first glance.



Dual Graphs and Representations

Two-dimensional arrays are the natural choice to represent
planar rectilinear grids. We can letm[i][j] denote either
the(i, j)th vertex or the(i, j)th face, depending on which we
are interested in. The four neighbors of any cell follow by
adding±1 to either of the coordinates.
A useful concept in thinking about problems on planar
subdivisions is that of thedual graph, which has one vertex
for each region in the subdivision, and edges between the
vertices of any two regions which are neighbors of each other.
Observe that the dual graphs of both rectangular and hexag-
onal lattices are slightly smaller rectangular and hexagonal
lattices. This is why whatever structure we use to represent



vertex connectivities can also be used to represent face
connectivities.
An adjacency representation is the natural way to represent
an edge-weighted rectilinear grid. This might be most easily
done by creating a three-dimensional arraym[i][j][d],
whered ranges over four values (north, east, south, and west)
which denote the edge directions from point(i, j).



Triangular Lattices

Triangular lattices are constructed from three sets of equally
spaced lines, consisting of a horizontal “row” axis, a
“column” axis60o from horizontal, and a “diagonal” axis120o

from horizontal.
Vertices of this lattice are formed by the intersection of three
axis lines, so each face of the lattice is an equilateral triangle.
Each vertexv is connected to six others, those immediately
above and belowv on each of the three axes.
To identify the proper neighbors of each vertex requires
keeping track of two types of coordinate systems:

• Triangular/Hexagonal Coordinates – Here, one vertex is
designated as the origin of the grid, point(0, 0). We must



assign the coordinates such that the logical neighbors of
each vertex are easily obtainable. In a standard rectilinear
coordinate system, the four neighbors of(x, y) follow by
adding±1 to either the row or column coordinates.

Although the intersection of three lines defines each grid
vertex, in fact the row and column dimensions to specify
location.

A vertex (x, y) lies x rows above the origin, andy (60o)-
columns to the right of the origin. The neighbors of a
vertexv can be found by adding the following pairs to the
coordinates ofv, in counterclockwise order:(0, 1), (1, 0),
(1,−1), (0,−1), (−1, 0), and(−1, 1).

• Geometrical Coordinates – The vertices of a regular



triangular grid occur in half-staggered rows.

Assume that each lattice point is a distanced from its
six nearest neighbors, and that point(0, 0) in triangular
coordinates in fact lies at geometric point(0, 0). Then
triangular-coordinate point(xt, yt) must lie at geometric
point

(xg, yg) = (d(xt + (yt cos(60
o))), dyt sin(60

o))

by simple trigonometry, wherecos(60o) = 1/2 and
sin(60o) =

√
3/2,



Hexagonal Lattices

Deleting every other vertex from a triangular lattice leaves
us with ahexagonal lattice. Now the faces of the lattice are
regular hexagons, and each hexagon is adjacent to six other
hexagons. The vertices of the lattice now have degree 3,
because this lattice is the dual graph of the triangular lattice.
Hexagonal lattices have many interesting and useful proper-
ties, primarily because hexagons are “rounder” than squares.
To convert between triangular/hexagonal coordinates and
geometrical coordinates, we assume that the origin of both
systems is the center of a disk at(0, 0).
The hexagonal coordinate(xh,yh) refers to the center of
the disk on the horizontal rowxh and diagonal columnyh.



The geometric coordinate of such a point is a function of the
radius of the diskr, half that of the diameterd described in
the previous section:
hex_to_geo(int xh, int yh, double r, double *xg, double *yg)
{

*yg = (2.0 * r) * xh * (sqrt(3)/2.0);

*xg = (2.0 * r) * xh * (1.0/2.0) + (2.0 * r) * yh;
}

geo_to_hex(double xg, double yg, double r, double *xh, double *yh)
{

*xh = (2.0/sqrt(3)) * yg / (2.0 * r);

*yh = (xg - (2.0 * r) * (*xh) * (1.0/2.0) ) / (2.0 * r);
}

The row-column nature of the hexagonal coordinate system
implies a very useful property, namely that we can efficiently
store a patch of hexagons in a matrixm[row][column].
By using the index offsets described for triangular grids, we
can easily find the six neighbors of each hexagon.
There is a problem, however. Under the hexagonal coordinate
system, the set of hexagons defined by coordinates(hx, hy),



where 0 ≤ hx ≤ xmax and 0 ≤ hy ≤ ymax, forms
a diamond-shaped patch, not a conventional axis-oriented
rectangle. However, for many applications we are interested
in rectangles instead of diamonds.
To solve this problem, we define array coordinates so that
(ax,ay) refers to the position in an axis-oriented rectangle
with (0, 0) as the lower-left-hand point in the matrix:
array_to_hex(int xa, int ya, int *xh, int *yh)
{

*xh = xa;

*yh = ya - xa + ceil(xa/2.0);
}

hex_to_array(int xh, int yh, int *xa, int *ya)
{

*xa = xh;

*ya = yh + xh - ceil(xh/2.0);
}



Longitude and Latitude

A particularly important coordinate grid is the system
of longitude and latitude which uniquely positions every
location on the surface of the Earth.
The lines that run east-west, parallel to the equator, are called
lines of latitude. The equator has a latitude of0o, while the
north and south poles have latitudes of90o North and90o

South, respectively.
The lines that run north-south are called lines oflongitude or
meridians. The prime meridian passes through Greenwich,
England, and has longitude0o, with the entire range of
longitudes spanning from180o West to180o East.
Every location on the surface of the Earth is described by



the intersection of a latitude line and a longitude line. For
example, the center of the universe (Manhattan) lies at40o47′

North and73o58′ West.
A great circle is a circular cross-section of a sphere which
passes through the center of the sphere. The shortest distance
between pointsx andy turns out to be the arc length between
x andy on the unique great circle which passes throughx and
y.
Denote the position of pointp by its longitude-latitude
coordinates,(plat, plong), where all angles are measured in
radians. Then the great-circle distance between pointsp and
q is

d(f, s) = R × arccos((sin(l[f ]) × sin(l[s])) + (cos(l[f ]) × cos(l[s]) × cos(dg)))

whereR is the radius of the Great circle,dg = longitude(f)-
longitude(s), andl[f ] = lattitude of f.



Grids

A row-column coordinate-system for triangular grids [1]

João Luís G. Rosa c© 2011 - SCC-211: XII. Grids 6/14



Grids

Deleting alternate vertices from a triangular lattice yields a hexagonal

lattice [1]

João Luís G. Rosa c© 2011 - SCC-211: XII. Grids 7/14



Grids

A disk packing with hexagonal coordinates, as well as differing array

coordinates (below in italics) [1]

João Luís G. Rosa c© 2011 - SCC-211: XII. Grids 8/14



Apêndice
Exercício para Nota
Referências

Exercício para Nota

Bee Maja (10182)

João Luís G. Rosa c© 2011 - SCC-211: XII. Grids 9/14



Apêndice
Exercício para Nota
Referências

Bee Maja (10182)

Maja is a bee. She lives in a bee hive with thousands of
other bees. This bee hive consists of many hexagonal
honey combs where the honey is stored in.
But bee Maja has a problem. Willi told her where she can
meet him, but because Willi is a male drone and Maja is a
female worker they have different coordinate systems.

João Luís G. Rosa c© 2011 - SCC-211: XII. Grids 10/14



Apêndice
Exercício para Nota
Referências

Bee Maja (10182)

Maja’s Coordinate System (left):
Maja who often flies directly to a special honey comb has
laid an advanced two dimensional grid over the whole hive.

Willi’s Coordinate System (right):
Willi who is more lazy and often walks around just
numbered the cells clockwise starting from 1 in the middle
of the hive.

Help Maja to convert Willi’s system to hers. Write a
program which for a given honey comb number gives the
coordinates in Maja’s system.

João Luís G. Rosa c© 2011 - SCC-211: XII. Grids 11/14



Apêndice
Exercício para Nota
Referências

Bee Maja (10182)

Input Specification:
The input file contains one or more integers which
represent Willi’s numbers. Each number stands on its own
in a separate line, directly followed by a newline. The honey
comb numbers are all less than 100 000.

Output Specification:
You should output the corresponding Maja coordinates to
Willi’s numbers, each coordinate pair on a separate line.

João Luís G. Rosa c© 2011 - SCC-211: XII. Grids 12/14



Apêndice
Exercício para Nota
Referências

Bee Maja (10182)

Sample Input
1
2
3
4
5

Sample Output
0 0
0 1
-1 1
-1 0
0 -1

João Luís G. Rosa c© 2011 - SCC-211: XII. Grids 13/14



Apêndice
Exercício para Nota
Referências

Referências I

[1] Skiena, Steven S.; Revilla, Miguel A.
Programming Challenges - The Programming Contest
Training Manual - chapter 11.
Springer, 2003.

[2] Skiena, Steven
CSE 392 - Programming Challenges. Spring 2010 - Lecture
12 (week12.pdf).
http://www.cs.sunysb.edu/~skiena/392/
newlectures/

João Luís G. Rosa c© 2011 - SCC-211: XII. Grids 14/14

http://www.cs.sunysb.edu/~skiena/392/newlectures/
http://www.cs.sunysb.edu/~skiena/392/newlectures/

	Grids
	Appendix
	Apêndice
	
	



