PIPGEs ICMC/USP UFSCar EST5510 – Tópicos de Teoria Assintótica – $2^{Q}/2019$ $4^{\underline{a}}$ lista de exercícios

- 1. A e $(A_n)_{n\geq 1}$ são eventos de um espaço de probabilidade (Ω, \mathcal{A}, P) . Prove que $I_{A_n} \xrightarrow{\mathcal{D}} I_A$ se, e somente se, $\lim_{n\to\infty} P(A_n) = P(A)$, em que $I_A = 1$, se o evento A ocorre; 0, caso contrário.
- 2. F_1, \ldots, F_k são funções distribuição e suas respectivas funções características são $\varphi_1, \ldots, \varphi_k$. Além disso, $\lambda_j \in [0, 1]$, para $j = 1, \ldots, k$, são tais que $\sum_{i=1}^k \lambda_j = 1$.
 - (a) Prove que $F = \sum_{j=1}^{k} \lambda_j F_j$ é uma função distribuição.
 - (b) Prove que a função característica correspondente a F é dada por $\sum_{j=1}^{k} \lambda_j \varphi_j$.
 - (c) Apresente a função característica de uma variável aleatória com distribuição exponencial dupla (ou Laplace) com parâmetros de localização e escala iguais a 0 e 1, respectivamente.
- 3. Prove que se φ é uma função característica, então $\operatorname{Re}(\varphi)$ e $|\varphi|^2$ também são funções características, em que $\operatorname{Re}(\varphi)$ denota a parte real de φ . Sugestão. $\operatorname{Re}(\varphi) = (\varphi + \overline{\varphi})/2$ e $|\varphi|^2 = \varphi \overline{\varphi}$.
- 4. Considere $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathsf{Cauchy}(\mu, \sigma)$, com $\mu \in \mathbb{R}$ e $\sigma \in (0, \infty)$. Prove que $(X_1 + \cdots + X_n)/n$ tem a mesma distribuição de X_1 .
- 5. $(X_n)_{n\geq 1}$ é uma sequência de variáveis aleatórias independentes. Sejam $S_n = X_1 + \cdots + X_n$ e φ_j a função característica de X_j , $j=1,\ldots,n$. Suponha que $S_n \stackrel{\text{q.c.}}{\longrightarrow} S$. Prove que a função característica de S é dada por $\prod_{j=1}^{\infty} \varphi_j(t)$, para $t \in \mathbb{R}$.
- 6. $(X_n)_{n\geq 1},\,(Y_n)_{n\geq 1}$ e X são variáveis aleatórias em um mesmo espaço de probabilidade.
 - (a) Prove que se $X_n \xrightarrow{D} X$ e $X_n Y_n \xrightarrow{P} 0$, então $Y_n \xrightarrow{D} X$.
 - (b) Prove que convergência em probabilidade $(X_n \xrightarrow{P} X)$ implica convergência em distribuição $(X_n \xrightarrow{D} X)$.
- 7. Considere $(X_n)_{n\geq 1}$ tal que $X_n \xrightarrow{\mathcal{D}} X \sim \mathsf{normal}(0, \sigma^2)$ e $Y_n \xrightarrow{\mathcal{D}} Y \equiv \sigma^2$, com $\sigma^2 \in (0, \infty)$. Apresente a distribuição limite de $(X_n^2/Y_n)_{n\geq 1}$.
- 8. Seja $W_n = c_n X_n + Y_n$, em que $c_n = n^{-1}$, $X_n \sim \mathsf{Cauchy}(0,1)$ e $Y_n \sim \mathsf{normal}(0,1)$, para $n \geq 1$.
 - (a) A variável W_n tem momentos?
 - (b) Apresente a distribuição limite de $(W_n)_{n\geq 1}$, quando $n\to\infty$.
 - (c) Há uma contradição entre os itens (a) e (b)?
- 9. $(X_n)_{n\geq 1}$ é uma sequência de variáveis aleatórias tal que $X_n \stackrel{\mathrm{D}}{\longrightarrow} X$.
 - (a) Prove que se $Y_n = X_n + o_p(1)$, então $Y_n \stackrel{\mathrm{D}}{\longrightarrow} X$.
 - (b) Prove que se $W_n = X_n\{1 + o_p(1)\}$, então $W_n \stackrel{\mathcal{D}}{\longrightarrow} X$.