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Abstract

In this report we briefly discuss about two aspects related to the understand-
ing of complex networks’ structure and dynamics. First of all, is shown how we
can use an Information theory approach to describe networks’ characteristics such
as heterogeneity and assortativeness; in addition, some network models like “Ran-
dom Graphs“ and “Lattice Networks“ are classified following that approach. After
that, the collective dynamics will be presented with a focus on synchronization of
identical, non-identical and chaotic oscillators.
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1 Fundamentals

In this report we briefly discuss about two aspects related to complex networks’ structure
and dynamics. First of all, it is shown how we can use an Information theory approach to
describe networks’ characteristics as heterogeneity and assortativeness; in addition, some
network models like “Random Graphs“ and “Lattice Networks“ are classified following
that approach. Also, we are going to discuss the collective dynamics with a focus on
synchronization of identical, non-identical and chaotic oscillators together with some
background in chaotic systems.

Therefore, some important fundamentals are summarized in this section. We start
with a short description about complex networks, after that the concepts of Informa-
tion Theory used in Section 2 are described followed by a preview about the collective
dynamics contents discussed in Section 3.

1.1 Complex Networks

Complex networks describe a wide variety of systems, from the chemicals reactions within
cells to social networks and the Internet. The complex networks perspective aim an
general explanation for several questions about the structure and the dynamics of these
networks: “What makes common structures emerge in so different contexts?”, “How
self-organization emerges from uncoordinated interactions?”.

These and other questions have been studied by a statistical mechanics approach,
so far the most successfully option since that complex networks became a well studied
topic. In this section we review the main concepts used along the text, ranging from the
degree probability distribution,node degree correlations until preferential attachment on
evolving networks.

Random graphs were first studied by the hungarian Paul Erdös and Alfred Rényi,
according to their models, every pair of nodes has a probability p of being connected,
leading to a graph with approximately pN(N − 1)/2 edges distributed randomly [1].
Although that was the beginning of studies in complex networks, today is known real
networks deviates from a random graph, consequently, to understand the topology of the
interactions between nodes and components in a network is important topic.
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An important aspect concerning complex network is the degree distribution. Not every
node has the same number of edges (node degree), in this case, the diversity of node’s
degrees can be characterized by a distribution function Pk, which gives the probability
that a random selected node has exactly k edges. One of the most important discoveries
of this field was that most real large networks don’t have a Poisson distribution degree
distribution, what means that they diverge from a random graph, it is rather common in
these cases degree distributions following a power-law such Pk ∼ k−γ, these networks are
called scale-free.

The scale-free networks contain a low number of high-degree nodes, and a high number
of low-degree nodes. This characteristic is consequence of the dynamical process that
creates scale-free networks, which states that along the time in real networks, high-degree
nodes tend to receive more new connections than low-degree ones.

1.2 Information Theory

The Information Theory [2] was initially developed as a subfield of communication theory
to answer questions like “What is the ultimate data compression?” and “What is the
ultimate transmission rate of communication?”, however, along the years it has made
fundamental contributions in much more diverse areas such statistical physics, computer
science, statistical inference and probability and statistics [3]. Most of the questions
that emerged by that time were explained by concepts related to entropy and mutual
information, in this section we briefly discuss these and another concepts required for
better understand the subject of Section 2.

First of all, we define entropy as a measure of the average uncertainty in a random
variable X with a probability mass function of p(x). In other words, the entropy is the
average number of bits (assuming logarithms to base 2) required to describe a random
variable.

Definition 1 (Entropy [3]) Let X be a discrete random variable with alphabet ξ and
probability mass function p(X = x), with x ∈ ξ. The entropy H(X) is defined by:

H(X) = −
∑
x ∈ ξ

p(x) log p(x) (1)

It is interesting to observe that H(X) = 1 (its maximum value) when p(x) equal 1/2,
i.e. maximum uncertainty. Also noteworthy, H(X) = 0 when p(x) = 0 or p(x) = 1, what
makes sense because in this cases the variable is not random at all, and so there is not
uncertainty.

As a result of entropy’s definition we can define mutual information as a measure of the
amount of information that one random variable contains about another random variable.
In other words, mutual information is the reduction of uncertainty of one random variable
due the information about another random variable.

Definition 2 (Mutual Information [3]) Consider two random variables X and Y with
a joint probability mass function p(X = x, Y = y), and marginal probability mass func-
tions p(X = x) and p(Y = y). The mutual information I(X, Y ) is defined by:

I(X, Y ) =
∑
x ∈ ξ

∑
y ∈ ξ

p(x)p(y) log
p(x, y)

p(x)p(y)
(2)
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Information theory is vast area, despite of that, Entropy and Mutual Information are
sufficient for the context discussed at Section 2, hence we stop here, a more profound
discussion about the topic can be found in [3] and [4].

1.3 Collective Dynamics

In the real world, everything is dynamic. And the interaction of multiple dynamic units
is very complex. To give a measure of complexity, the orbit of two masses interacting
through gravity is known to be analytically solvable. In other words, it is possible to
predict the behavior of those masses by solving the differential equations.

If we add a third body to the previous system, however, the system is not analytical
solvable anymore, but chaotic. In fact, the orbit is so complex that even if the system
is simplified to be a problem with two masses much bigger than the third mass. This
simplified system is still not analytically solvable and presents chaotic dynamics caused
by homoclinic crossings.

Therefore, if we wish to understand the behavior of collective network dynamics a
different view should be used. The understanding of chaos is very important, specially
because when many objects are interacting the system is almost certainly chaotic. Instead
of trying to explicitely predict systems, which can be most of the times unattainable in
collective dynamics. The approach have to be more qualitative, that is, using character-
istics of the system such as its Lyapunov exponents.

The literature of collective dynamics is vast as well as the background to understand
it. In this essay, it will be presented briefly the most important background aspects to
understand it and an overview of the area, specially in synchronous systems.

2 Information Theory for Complex Networks

Several correlation measures have been defined in order to characterize the structure
of complex networks. Here we show how mutual information and entropy can be used
to define some characteristics of networks on static graphs. This chapter describes and
expands the analytical analysis described on the paper [5] for some simple examples. The
original paper purposes that real networks are clustered in a well-defined domain of the
entropy-noise space.

First of all we need to define some entropy-based measures that could be used to
quantify the heterogeneity of a network by looking at the degree distribution (Pk). The
degree distribution gives us the probability of a randomly selected node to have degree
k. Furthermore, several statistical properties such as: average degree, clustering and
diameter were defined to try characterize the properties of networks, most of them can
be obtained from the adjacency matrix. In this text, we will focus three important
characteristics to qualitatively describe complex networks: Randomness, heterogeneity
and modularity (Figure 1); therefore, we show how these characteristics can be derived
from Information Theory point of view.
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Figure 1: In this qualitative space, three relevant characteristics are included: random-
ness, heterogeneity and modularity. Image originally published in [5].

2.1 Measuring Correlations

Beyond the degree distribution and average statistical measures, correlation measures
offer considerable insight into the structural properties displayed by complex networks.
One particularly interesting is the Asortative Mixing (AM) [6], which implies that high
degree vertices tend to be attached to other high-degree vertices. At the other extreme
there are graphs displaying Dissortative Mixing (DM), or anti-correlation.

To identify AM or DM we will not focus in the degree distribution Pk but instead in
the remaining degree q(k) which refers to the number of vertices leaving the vertex other
than the one we arrived along, the Figure 2 better illustrates the remaining degree, and
the Equation (3) describes how that value can be calculated, where 〈k〉 =

∑
k kPk.

Figure 2: Here two given, connected nodes si, sj, with different degrees ki, kj. The
remaining degrees is indicated as qi, qj. Image originally published in [5].
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q(k) =
(k + 1)Pk+1

〈k〉
, (3)

In addition to q(k) there is q(k, k′) which gives the probability of observing a vertex
with k degree linked to another vertex of k′ degree, this value is related to conditional
probabilities π(k|k′) which measures the probability of observing a vertex with k edges
leaving it provided that the vertex at the other end of the chosen edge has k′ leaving
edges. The Equation (4) summarizes these definitions, and represents the diversity of
linked pairs with given remaining degrees:

q(k, k′) =
π(k|k′)
q(k′)

(4)

The definition of information within the context of communication channels implies
additional statistical quantities (such as channel entropy and noise) that provide a de-
tailed characterization of system’s complexity.

2.2 Entropy and Information

By using the previous distribution Q = (q(1), . . . , q(i), . . . , q(n)), an entropy measure
H(q) can be defined, in this context, it provides an average measure of network’s hetero-
geneity, since it measures the diversity of the link distribution, see Equation (5).

H(Q) = −
n∑
k=1

q(k) log q(k). (5)

The maximum entropy (Hmax(Q) = log n) is obtained when q(k) = 1/n(∀k = 1, . . . , n),
what means that for each k ∈ {1, . . . , n} there is one node in the network. The minimum
entropy (Hmin(Q) = 0) instead occurs when Q = (1, 0, . . . , 0), i.e. all nodes have the
same remaining degree. Similarly the joint entropy can be defined by Equation (6).

H(Q,Q′) = −
n∑
k=1

n∑
k′=1

q(k, k′) log q(k, k′). (6)

By now, we can also define the conditional entropy (or noise) using conditional prob-
abilities π(k, k′), see Equation (7).

H(Q|Q′) = −
n∑
k=1

n∑
k′=1

q(k, k′)π(k, k′) log π(k, k′)

= −
n∑
k=1

n∑
k′=1

q(k, k′) log
q(k, k′)

q(k′)
(7)

Consequently we can define Mutual Information as the difference between entropy
and conditional entropy which can be extended to Equation (8), where π(k|k′) is the
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probability of observing a vertex with k edges leaving it provided that the vertex at the
other end of the chosen edge has k′ leaving edges:

I(Q) = H(Q)−H(Q|Q′)

= −
n∑
k=1

q(k) log q(k) +
n∑
k=1

n∑
k′=1

q(k, k′) log
q(k, k′)

q(k′)

= −
n∑
k=1

n∑
k′=1

q(k, k′) log
q(k)

π(k|k′)

=
n∑
k=1

n∑
k′=1

q(k, k′) log
q(k, k′)

q(k)q(k′)
(8)

In this case, the maximum information transfer, for a given {q(k)}, is obtained when
H(Q|Q) = 0, i. e. when the conditional probabilities are such that π(k|k′) = 1 or 0 for
all k, k = 1, . . . , n. Another interesting case is given by π(k|k′) = δk,k′ , which implies that
q(k, k′) = q(k)δk,k′ which is precisely the case of perfectly assortative network.

By using the measures previously described we can characterize: (a) the amount of
correlation between nodes, measured by the information; (b) the noise level, measured
by the conditional entropy (also provides a measure of assortativeness) and (c) the en-
tropy of the q(k) distribution. In the next section we will demonstrate the use of these
aforementioned functions, for complex networks characterization.

2.3 Model Networks

2.3.1 Lattices Networks

Lattices networks represent the highest degree of homogeneity,having no randomness;
this type of networks is common in parallel computers. The Figure 3 illustrates a lattice-
like network, in this case, all vertices have the same degree z, hence, considering the
Kronecker’s delta function, in Equation (9), we have Pk = δk,z.

Figure 3: Lattice network where every node has z = 4 degree. Image originally published
in [5].

δk,z =

{
1 if k = z

0 otherwise.
(9)
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Furthermore we can simplify the remaining degree (Equation 3) considering peculiar-
ities of a lattice like networks, as a result:

q(k) =
(k + 1) Pk+1

〈k〉

=
(k + 1) Pk+1∑n

k=1 k Pk

=
(k + 1) δk,(z−1)

k δk,(z−1)

=
k δk,(z−1) + δk,(z−1)

k δk,(z−1)

q(k) = δk,(z−1) (10)

In a lattice network there is not assortativeness taking effect, that is, every node can
be seen as an independent random variable, what leads us to define Equation (11)1:

q(k, k′) = q(k) q(k′)

= δk,(z−1) δk′,(z−1) (11)

Now, we can calculate through Equation (8) the amount of correlation between nodes
in a lattice-like graph, as q(k) q(k′) = q(k, k′) and log(1) = 0 this value is I(Q) = 0:

I(Q) =
n∑
k=1

n∑
k′=1

q(k, k′) log
q(k, k′)

q(k)q(k′)

=
n∑
k=1

n∑
k′=1

δk,(z−1) δk′,(z−1) log
δk,(z−1) δk′,(z−1)

δk,(z−1)δk′,(z−1)

I(Q) = 0 (12)

2.3.2 Random Graphs

Random graphs (or Erdös-Renyi graphs) are built joining every two nodes with some
probability p, consequently their average degree is 〈k〉 ≈ pn, where n is the total number
of nodes. This random building process implies a randomly chosen degree for each node,
consequently, the degree distribution can be represented by a Poisson distribution [7],
defined by the Equation (13), where x is a random variable with expected number of oc-
currences per unit equal to m, for random graphs that equation leads us to Equation (14).

P (x) =
e−mmx

x!
(13)

Pk =
e−〈k〉〈k〉k

k!
(14)

1If there was assortative mixing q(k, k′) would differ from the result of Equation (11).
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The remaining degree equation can be obtained similarly, as we show next, its value
is equal to Pk.

q(k) =
(k + 1) Pk+1

〈k〉

=
(k + 1)

〈k〉
e−〈k〉〈k〉(k+1)

(k + 1)!

=
e−〈k〉

〈k〉
〈k〉(k+1)

k!

q(k) =
e−〈k〉〈k〉k

k!
= Pk (15)

The network is built by a random process, therefore, there is no intense assortativeness,
i.e. q(k, k′) ≈ q(k)q(k′) for a large n, thus, the information transfer function should lead
to a near zero value.

I(Q) ≈
n∑
k=1

n∑
k′=1

q(k)q(k′) log
q(k)q(k′)

q(k)q(k′)

I(Q) ≈ 0 (16)

2.3.3 Star graph

A star graph defines an extreme situation which one node has degree n − 1 and all
the others have degree 1. This structure is commonly found in scale-free networks, and
represents a strong evidence of assortativeness. The degree distribution in a star graph
can be described by Equation (17), and the respective remaining degree by Equation (18).

Pk =
n− 1

n
δk,1 +

1

n
δk,(n−1)

Pk =
1

n

[
(n− 1)δk,1 + δk,(n−1)

]
(17)

q(k) =
(k + 1)

〈k〉
Pk+1

=
(k + 1)

〈k〉n
[
(n− 1)δk,0 + δk,(n−2)

]
=

(k + 1)n

2(n− 1)n

[
(n− 1)δk,0 + δk,(n−2)

]
=

(k + 1)(n− 1)δk,0 + (k + 1)δk,(n−2)

2(n− 1)

=
(k + 1)

2
δk,0 +

(k + 1)

2(n− 1)
δk,(n−2)

q(k) =
1

2
(δk,0 + δk,(n−2)) (18)
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The joint probabilities of remaining degrees can, so, be deduced from Equation (4):

q(k, k′) = q(k′)π(k|k′)

=
1

2

[
δk,0 + δk,(n−2)

]
[δk′,0 + δk′,(n−2)]

=
1

2
δk,0δk′,0 +

1

2
δk,0δk′,(n−2)

1

2
δk,(n−2)δk′,0 +

1

2
δk,(n−2)δk′,(n−2)

= 0 +
1

2
δk,0δk′,(n−2) +

1

2
δk,(n−2)δk′,0 + 0

q(k, k′) =
1

2
(δk,0δk′,(n−2) + δk,(n−2)δk′,0) (19)

By these results we can calculate the mutual information using Equation (8):

I(Q) =
n∑
k=1

n∑
k′=1

q(k, k′) log
q(k, k′)

q(k)q(k′)

=
n∑
k=1

n∑
k′=1

1

2
(δk,0δk′,(n−2) + δk,(n−2)δk′,0) log

( 1
2
(δk,0δk′,(n−2) + δk,(n−2)δk′,0)

1
4
(δk,0 + δk,(n−2))(δk′,0 + δk′,(n−2))

)
= 2

[
1

2
log

( 1
2
(δk,0δk′,(n−2) + δk,(n−2)δk′,0)

1
4
(δk,0 + δk,(n−2))(δk′,0 + δk′,(n−2))

)]
= 2

[
1

2
log

(
2δk,0δk′,(n−2)

δk,0 + δk,(n−2)

)]
I(Q) = log 2 = 1 (20)

2.4 Summary

In this section we discussed about the utilization of an Information-theoretic approach
to measure some complex networks’ characteristics such heterogeneity and correlation.
Through the approach described network models were classified, including Erdös-Renyi
random graphs, Lattice networks and Star graphs. These examples aimed make clear
the power of Information Theory for describe complex networks, being a very interesting
option when there is nonlinear relationships between nodes.

3 Collective Dynamics

Networks of dynamical systems have been used to model almost everything. Examples
are present in physics (neutrino synchronization) [8], chemistry (chemical reactions) [9]
and earth sciences(geophysics and geology) [10].

However, little can be said of the collective dynamics of such systems when they are
coupled together [11]. Collective dynamics can be quite challenging, since they span a big
number of disciplines from dynamical systems, statistical learning to neuroscience. Here
the focus will be on synchronization with some brief explanations of learning networks
and other collective dynamic systems.
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3.1 Oscillators Synchronization and Other Behaviors

The most common studied synchronous behavior is the synchronization of oscillators.
They are present in the brain, clock and other systems as well. Although common, there
are other types of synchronization such as the spike synchronization, which is commonly
found in the brain [12].

Here we will analyse systems with identical oscillators, non-identical oscillators and
chaotic oscillators. And build a theoretical framework for the understanding and predic-
tion of behavior of general synchronization.

3.1.1 Identical Oscillators

Identical oscillators are found in many biological systems like the waves of the brain, heart,
intestine and nervous system [13]. When the set of identical oscillators are coupled by
smooth interactions. They often synchronize or form patterns dependent of the network
symmetry [14]. On the other hand, when oscillators communicate by sudden impulses
as commonly found in biology such as neuron spikes. It was proved that N identical
integrate-and-fire oscillators (IFO) connected in a all-to-all network will end up firing
in unison independent of their initial state [15], [16]. With such simple models it is yet
possible to observe systems which result in synchronization or self-organized criticality
[17].

3.1.2 Self-Organized Criticality

The behavior of a system to self-organize around a critical point is called self-organized
criticality (SOC) [18],[19]. The self-organize capacity is defined as a inner dynamic prop-
erty of the system. Which independent of its parameters or interferences would drive the
system toward a given state. Critical point has a varied number of definitions depending
on the context it is applied. In mathematics it is the point where either the derivative
is 0 or it is non differentiable [20]. In physics it is where a phase boundary (such as the
vapor-liquid point) ceases to exist [21]. Sometimes, a broad definition definition is used
defining a point where a system properties change suddenly to be a critical point. This
concept was developed in 1987 but is still view with skepticism due to its ubiquitous
application.

3.1.3 Non-identical Oscillators

In [9] almost identical limit-cycle oscillators were shown to exhibit completely desyn-
chronized behavior when weakly couped. And a mixture of synchronized behavior and
desynchronized behavior when strongly coupled.

3.1.4 Kuramoto Model

The Kuramoto model is composed of N oscillators in a complete graph (all-to-all con-
nections, illustrated in Figure 4) and each one has the following dynamics [9]:

∂θi
∂t

= ωi +
K

N

N∑
j=1

sin(θj − θi), i = 1 . . . N, (21)
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where ωi is the natural frequency of the ith oscillator, θi is its phase and K is the coupling
strength (identical for all edges). The ωi were drawn from a Lorentzian distribution
defined by:

f(ω;ω0, γ) =
1

π

[
γ

(ω − ω0)2 + γ2

]
, (22)

Figure 4: Diagram of a complete graph illustrating the scenario where the Kuramoto
model is applied.

To solve this model analytically when N → ∞, Kuramoto applied the following
transformation:

reiψ =
1

N

N∑
j=1

eiθj , (23)

where ψ is the average phase and r measures the coherence of the oscillators. Resulting
in the following equation:

∂θi
∂t

= ωi +Kr sin(ψ − θi) (24)

In the limit (as N →∞ and t→∞), Kuramoto found that the following behavior occurs:

r =

{
0, K < Kc√

1− Kc

K
, K ≥ Kc

, (25)

where Kc = 2γ. Therefore, when K < Kc the oscillators are not synchronized. On the
other hand whenK ≥ Kc part of the oscillators synchronize, or more specifically lock their
phases (∂θi

∂t
= 0) and part are rotating out of synchrony. When the coupling increases to

the limit as K →∞, the oscillators become totally synchronized approximately to their
average phase θi ≈ ψ at the same time that r → 1.

Extensions to the Kuramoto model are still in research [22], for the complete proof
or more information on variations of the Kuramoto model, such as general frequency
distributions, refer to [23].
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3.2 Stability of Synchronized states

Frequently, the master stability function and Lyapunov exponents are used to infer the
stability of the synchronization in a number of systems.Therefore, the following subsec-
tions will briefly define the topics and give sufficient information for understanding the
later analysis.

3.2.1 Master Stability Function

The master stability function (MSF) is a framework developed to study the synchroniza-
tion state complex of network topologies independent of the peculiarities of the oscillators.
It is based on the premise that all nodes are identical dynamical units, described by the
following equation:

∂xi
∂t

= F (xi), (26)

where xi is a m-dimensional vector and F (xi) is its evolution function (which is the same
for every node). The output of the system is described by H(xi), which is also identical
for all N dynamical units and is a coupling map of the nodes. For example, in y-coupled
oscillators H(xi) = (0, y, 0), where they are only communicating with each other through
the y component. The complex network is defined by the node’s adjacencies aij and their
respective weights wij (for unweighted matrix consider wij = 1) expressed by:

∂xi
∂t

= F (xi) + σ
N∑
i=1

aijwij(H(xj)−H(xi))

= F (xi) +−σ
N∑
j=1

Gij(H(xj)),

(27)

where σ is the uniform coupling strength (σ > 0 for diffusive coupling) and G is a coupling
matrix defined by:

Gij =

{
−aijwij i 6= j∑N

j=1 aijwij i = j
, (28)

it follows that G has zero row-sum. Then the synchronization occurs when for all nodes
the coupling term vanishes. When this occurs, the nodes will be based solely on their
internal dynamics which happen to be the same for all N nodes. Resulting in a state
called synchronization manifold, which happens when:

x1(t) = x2(t) = ... = xN(t) = xs(t). (29)

The synchronization manifold occurs as a consequence of Equation 29 because the matrix
is a zero row-sum and the function H(x) is the same for any node. The stability of
synchronization is secured when the system remains entirely inside the synchronization
manifold. However, in the real world system are susceptible to perturbations, in this
scenario the following equation holds:

∂x̃i
∂t

= [JF (xs)− σλiJH(xs)]x̃i, (30)

where x̃i is the deviation from the xs(t) for xi(t), J is the Jacobian operator and λ is the
eigenvalue of the respective m conditional Lyapunov exponents. Conditional Lyapunov
exponents for each value of σλi can now be acquired.
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3.2.2 Lyapunov exponent

The Lyapunov exponent is defined as the rate of separation of two orbits. It is a measure
of sensitivity of a given dynamic system from its initial conditions, exactly calculated by:

λ = lim
t→∞

lim
δx0→0

1

t
ln
|δx(t)|
|δx0|

, (31)

where δx0 is the initial difference between the two orbits and δx(t) is the difference
between the two orbits in instant t. A dynamics system with m-dimensional phase space
will have m exponents, forming the Lyapunov spectrum λ1, λ2, ..., λm. The largest value of
the Lyapunov spectrum is known as the maximum Lyapunov exponent (MLE) or simply
λmax.

Usually, Lyapunov exponents are used in synchronization to verify the stability of
a system under small perturbations of its orbit. To verify it, the behavior of λmax is
used. If λmax < 0 the system is stable because all the remaining Lyapunov is also smaller
than λmax which is negative. On the other hand, if λmax ≥ 0 the system is said to be
unstable, because one exponent is already positive and the system will have by definition
an exponential divergence of orbits. It is important to note that although necessary the
Lyapunov exponents do not offer a sufficient condition for the stability of the system. As
it will be seen later in the unusual behavior of chaotic systems.

Extensions of the master stability function are still under research, recent results are
the MSF near identical systems [24].

3.3 Unusual Behavior of Chaotic Oscillators

When analyzing chaotic systems, some interesting phenomena may appear and cause a
desynchronization or characteristic behavior of the system. Here only the bursting and
short-length bifurcation will be described.

3.3.1 Bursting

In some systems like the ones from [25] and [26] which are y-coupled Rössler systems.
After reaching synchronous state above a coupling threshold (i.e., after the longest-
wavelength mode becomes stable), they still present a difference between the average
x and its component x shown in Figure 5. This difference is expected to be close to 0
in synchronized systems. To this effect was given the name of bursting and they may
appear because of unstable periodic orbits (UPO).

3.3.2 Short-length Bifurcation and Size Effect

Although counterintuitive, there is a possible limit in the number of chaotic coupled oscil-
lators which can produce synchrony. Coupled modified Rössler oscillators desynchronize
with the increase in the coupling strength as shown in [27]. This is known as the short-
wavelength bifurcation, because the higher modes go unstable first. In Figure 6 this is
illustrated. This can happen in any system where each node has internal dynamics which
are not directly coupled to other nodes. For example, this can happen in the biological
cell scenario, where cells have internal chemical dynamics, but only communicate via
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Figure 5: The difference from the average observed in the x variable of y-coupled Rössler
systems. Image from [26].

Figure 6: Stability diagram showing the short-length bifurcation of x-coupled Rössler
systems. Image from [26].

hormones, voltages and other chemical exchanges. Another interesting behavior which
contradicts the naive view that the Kuramoto model would be extensible to chaotic sys-
tems is the size effect. Which states that depending on the choice of oscillator and
its respective variables a system may have a limit in the number of oscillators that can
be coupled for it to achieve synchronous chaotic behavior [28]. This happens because
the system does not have a coupling state where all modes are stable, since the short
wavelength goes unstable when or before the longest wavelengths goes stable as shown
in Figure 7.

3.4 Robustness of Scale-free Networks and its Synchronization
Consequences

Random removal of nodes in a scale-free network will not affect greatly. Since there are
exponentially more nodes with lower degree than higher degree nodes. However, scale-
free networks are more susceptible to intentional attacks than random networks [29]. As
noted by [30]:

The bad news is that the inhomogeneous topology has its drawbacks as well:
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Figure 7: Stability diagram showing the size effect of 16 x-coupled Rössler systems. Image
from [26].

scale-free networks are rather vulnerable to attacks. Indeed, the absence of a
tiny fraction of the most connected nodes will break the network into pieces.
Calculations indicate that removing nodes in the order of their degree leads
to the rather small critical threshold.

This robustness (or vulnerability) also affects the collective dynamics of scale-free net-
works, since synchronization inside scale-free networks can sustain random removal of
5% of its nodes with minor affects in behavior. While 1% of wisely selected nodes might
destroy completely the synchronization [31], [32].

3.5 Synchronization of Robots, Vehicles and other Objects

Much of the last subsections can be extended easily to synchronization of particles, robots
and other object related trajectories. Since, any object with an trajectory can be de-
scribed in polar coordinates and then the same equations apply.

3.6 Network Learning Dynamics

Networks can be composed of memory and some interaction based on statistical learning
[30]. And although recognized as learning systems, perceptrons and other learning ma-
chines are based on simple equations and memory. This equations are mostly based on
rules for updating the weights and calculating the output of a network. Some of these
models even derive from statistical physics [33], [34]. The nodes of such systems will be
other networks or some other complex machine. For the sake of brevity, this section will
not go into the detail or give any equation. It will give a rather overview of some different
behavior as illustration of other possible collective behaviors.

3.6.1 Teacher and Student

The situation where a student node learn from a teacher node. Which is exactly the
interaction defined in supervised learning [35]. The unique difference is that in the super-
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vised learning setting the teacher is not specifically defined as a network node. Dynamics
in this simple situation are well defined and studied, an example using two perceptrons is
shown on Figure 8. Supposing the student has a multilayer-perceptron node, it is known

Figure 8: Example of dynamics between teacher and student. Where W variables are
weights, X are input, B are the bias, f(x) is the activation function and Y is the result
from the teacher. The rectangles represent the nodes in this small network of two units.

that independent of the function present in the teacher node, the student will be able
to learn it. Provided that the student has a sufficient number of hidden nodes using a
back-propagation or equivalent learning algorithm [34].

3.6.2 Self-Interacting

Suppose now the situation where an already trained node is interacting with itself [30].
The node can be trained in any arbitrary sequence. This time, however, the node is
learning the opposite of its own prediction. Which leads to a situation where its prediction
error is 100% and the sequence produced by the node is close to random [36]. In the case
of a Hebbian training with a Boolean perceptron in N dimensions, the bit sequence has
an average length defined by Equation 32:

L w 2.2N . (32)

When a second Boolean perceptron is added to predict the sequence, it has 78% of
prediction error. Which is somewhat better than the self-interacting node, but still
worse than a 50% random guessing [37]. The Figure 9 illustrates the example with two
perceptrons, note that this example can be extended to other learning machines.
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[17] Á. Corral, C.J. Pérez, A. Diaz-Guilera, and A. Arenas. Self-organized criticality and
synchronization in a lattice model of integrate-and-fire oscillators. Physical review
letters, 74(1):118–121, 1995.

[18] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality: An explanation of
the 1/f noise. Physical Review Letters, 59(4):381–384, 1987.

[19] D.L. Turcotte. Self-organized criticality. Reports on progress in physics, 62:1377,
1999.

[20] J. Stewart. Calculus: early transcendentals. Cengage Learning EMEA, 2008.

[21] Y.A. Cengel and M.A. Boles. Thermodynamics: an engineering approach, volume
988. McGraw-Hill Higher Education, 2006.

[22] EA Martens, E. Barreto, SH Strogatz, E. Ott, P. So, and TM Antonsen. Exact
results for the kuramoto model with a bimodal frequency distribution. Physical
Review E, 79(2):026204, 2009.

[23] J.A. Acebrón, L.L. Bonilla, C.J.P. Vicente, F. Ritort, and R. Spigler. The kuramoto
model: A simple paradigm for synchronization phenomena. Reviews of modern
physics, 77(1):137, 2005.

[24] J. Sun, E.M. Bollt, and T. Nishikawa. Master stability functions for coupled nearly
identical dynamical systems. EPL (Europhysics Letters), 85:60011, 2009.

[25] P. Ashwin, J. Buescu, and I. Stewart. Bubbling of attractors and synchronisation of
chaotic oscillators. Physics Letters A, 193(2):126–139, 1994.

[26] L.M. Pecora, T.L. Carroll, G.A. Johnson, D.J. Mar, and J.F. Heagy. Fundamen-
tals of synchronization in chaotic systems, concepts, and applications. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 7:520, 1997.

[27] J.F. Heagy, L.M. Pecora, and T.L. Carroll. Short wavelength bifurcations and size
instabilities in coupled oscillator systems. Physical review letters, 74(21):4185–4188,
1995.

19



[28] L.M. Pecora. Synchronization conditions and desynchronizing patterns in coupled
limit-cycle and chaotic systems. Physical Review E, 58(1):347, 1998.

[29] R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin. Breakdown of the internet
under intentional attack. Physical Review Letters, 86(16):3682–3685, 2001.

[30] S. Bornholdt, H.G. Schuster, and J. Wiley. Handbook of graphs and networks. Wiley
Online Library, 2003.
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