ICMC - USP

EST5510 – Tópicos de Teoria Assintótica – $2^{\underline{Q}}/2018$ $8^{\underline{a}}$ lista de exercícios

- 1. $(X_n)_{n\geq 1}$ é uma sequência de variáveis aleatórias $\stackrel{\text{iid}}{\sim}$ Weibull $(\theta,1),\ \theta>0$, com função densidade de probabilidade $f(x;\theta)=\theta x^{\theta-1}\exp(-x^{\theta})I_{(0,\infty)}(x)$.
 - (a) Discuta a estimação de θ pelo método de máxima verossimilhança.
 - (b) Apresente, justificando, a distribuição assintótica do estimador de máxima verossimilhança de θ .
- 2. $(X_1,Y_1)^{\top},\ldots,(X_n,Y_n)^{\top}$ é uma amostra aleatória de uma população $\mathsf{normal}_2(\boldsymbol{\mu},\boldsymbol{\Sigma})$ com $\boldsymbol{\mu} = \left(\mathrm{E}(X_1),\mathrm{E}(Y_1)\right)^{\top} = (0,0)^{\top}$ e matriz de covariâncias $\boldsymbol{\Sigma} = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$. Um estimador para ρ é dado por $u_n = \sum_{i=1}^n X_i Y_i / n$, para $n \geq 1$.
 - (a) Verifique a consistência (forte e fraca) da sequência $(u_n)_{n\geq 1}$.
 - (b) Compare u_n com o estimador obtido no exercício 1(b) da $7^{\underline{a}}$ lista de exercícios.
- 3. $(X_n)_{n\geq 1}$ é uma sequência de variáveis aleatórias $\stackrel{\text{iid}}{\sim} \mathsf{normal}(\theta,1), \theta \in \mathbb{R}$.
 - (a) Prove que a informação de Fisher de θ é dada por $\mathcal{I}(\theta) = 1$.
 - (b) A fim de estimar θ , propõe-se o estimador

$$\widetilde{\theta}_n = \begin{cases} \overline{X}_n, & \text{se } |\overline{X}_n| \ge n^{-1/4}, \\ a\overline{X}_n, & \text{se } |\overline{X}_n| < n^{-1/4}, \end{cases}$$

em que \overline{X}_n denota a média amostral e $a \in \mathbb{R}$.

Prove que a distribuição limite de $n^{1/2}(\widetilde{\theta}_n - \theta)$, quando $n \to \infty$, é normal(0, 1), se $\theta \neq 0$, e é normal $(0, a^2)$, se $\theta = 0$.

- (c) Compare o estimador $\widetilde{\theta}_n$ com o estimador de máxima verossilhança de θ em termos de eficiência relativa assintótica.
- 4. $(X_n)_{n\geq 1}$ é uma sequência de variáveis aleatórias $\stackrel{\text{iid}}{\sim} \mathsf{normal}(\theta,1), \ \theta \in \mathbb{R}$. A fim de estimar θ , propõe-se o estimador

$$\widetilde{\theta}_n = \begin{cases} \overline{X}_n, & \text{com probabilidade } 1 - 1/n, \\ n^2, & \text{com probabilidade } 1/n, \end{cases}$$

em que \overline{X}_n denota a média amostral e a aleatorização, independente de X_n , é efetuada utilizando uma moeda com probabilidades 1 - 1/n e 1/n.

- (a) Calcule $E(\widetilde{\theta}_n \theta)$ e determine seu limite quando $n \to \infty$.
- (b) Calcule $Var(\widetilde{\theta}_n)$ e determine seu limite quando $n \to \infty$.
- (c) Determine a distribuição limite de $n^{1/2}(\widetilde{\theta}_n \theta)$ quando $n \to \infty$. A sequência $(\widetilde{\theta}_n)_{n \ge 1}$ é assintoticamente eficiente?
- 5. Suponha que $(V_n)_{n\geq 1}$ e $(V_n^*)_{n\geq 1}$ são duas sequuências de estatísticas de teste tais que $V_n V_n^* \stackrel{\mathrm{P}}{\longrightarrow} 0$ quando $n \to \infty$. Se V_n tem uma distribuição limite contínua F_0 sob H_0 , prove que a distribuição limite de (V_n^*) sob sob H_0 também é F_0 .
- 6. Considere duas amostras independentes tais que $X_1, \ldots, X_m \stackrel{\text{iid}}{\sim} \mathsf{Poisson}(\lambda)$ e $Y_1, \ldots, Y_n \stackrel{\text{iid}}{\sim} \mathsf{Poisson}(\mu)$. O objetivo é testar $H_0: \lambda = \mu$ contra $H_1: \lambda \neq \mu$. Definindo N = m + n, suponha que $m/N \to \tau$ e $n/N \to 1 \tau$ quando $n \to \infty$ e $m \to \infty$, em que $\tau \in (0,1)$. Apresente estatísticas de teste para testar as hipóteses acima.