

Um Estudo Comparativo Aplicado à Segmentação de Imagens de Rochas Reservatório

ENEIDA ARENDT REGO

- INTRODUÇÃO
- IMAGENS DE ROCHAS RESERVATÓRIO
- REVISÃO BIBLIOGRÁFICA
- APLICAÇÃO BINARIZAÇÃO DE IMAGENS DE ROCHAS RESERVATÓRIO VIA REDES NEURAIS
 - METODOLOGIA
 - TÉCNICAS
 - **RESULTADOS**
- CONCLUSÕES

Escopo do Problema

- Necessidade de determinação de propriedades físicas de rochas reservatório para indústria de exploração e produção de petróleo;
- Experimentos em laboratório consomem tempo e custos elevados;
- Vantagens do uso de PDI na determinação de propriedades físicas de rochas reservatório:
 - Baixo custo na montagem de laboratório computacional de análise de imagens;
 - Possibilidade do uso de amostras de calha.

- Binarização de Imagens é uma etapa crítica do Sistema de Processamento de Imagens;
- Métodos de segmentação/binarização não são universais não produzem bons resultados para todos os tipos de imagens;
- Imagens digitais de rochas reservatório possuem características e propriedades específicas a serem analisadas;
 - Resquícios de óleo e/ou grãos manchados de óleo;
 - Diferentes tonalidades de minerais;
 - Não-linearidade.

 Pesquisar um método que efetue a correta binarização dos padrões das imagens de rochas reservatórios em fase porosa e fase granular.

• Acumulação de Petróleo

- Rocha com porosidade e permeabilidade adequadas à acumulação de petróleo.
- Maioria das reservas são encontradas em rochas sedimentares;
 - Arenitos (representam 60% das rochas reservatório);
 - Carbonatos (representam 35% das rochas reservatório).

ROCHAS RESERVATÓRIO

Propriedades Físicas - Porosidade

- Mede a capacidade de armazenamento de um ou mais fluídos na rocha.
 - **Porosidade Absoluta** relação entre o volume de poros de uma rocha e o volume total da mesma;
 - **Porosidade Efetiva** relação entre o volume de poros interconectados de uma rocha e o volume total da mesma;

ROCHAS RESERVATÓRIO

Propriedades Físicas - Permeabilidade

- Capacidade de um meio poroso de se deixar atravessar por fluídos.
 - Expressa em Darcy [D] ou miliDarcys [mD];
- Permeabilidade Intrínseca somente um fluído satura o meio poroso;
- Permeabilidade Relativa dois ou mais fluídos saturam o meio poroso.

ROCHAS RESERVATÓRIO

Tipos de amostras de Rochas Reservatório

- Testemunho: cilindros completos retirados do poço por uma broca especial;
- Amostra lateral: adquirida através do canhoneio na parede do poço;
- Amostra de calha: rocha triturada durante a perfuração do poço.

Amostra 6m = ~R\$ 300.000,00 Amostra 20m = ~US\$ 200.000,00 •IMAGENS ROCHAS RESERVATÓRIO

PDI ROCHAS RESERVATÓRIO

Sistema de Processamento de Imagens

de

INTRODUÇÃO
 IMAGENS ROCHAS RESERVATÓRIO
 REVISÃO BIBLIOGRÁFICA
 APLICAÇÃO
 CONCLUSÕES
 DIROCHAS RESERVATÓRIO

Preparação das Lâminas

PDI ROCHAS RESERVATÓRIO

Aquisição das Imagens

- Microscópios ópticos + câmeras digitais acopladas a computadores.
- Para cada lâmina petrográfica é obtido um conjunto de imagens.
- Aumentos utilizados foram de 25x e 50x.
- Imagens coloridas RGB e tamanho 640x480 pixels.

Pré-Processamento

- Processo de manipulação da imagem para produzir um resultado mais adequado que o original para uma aplicação específica.
 - Filtros suavização
 - Transformações modelo cor

PDI ROCHAS RESERVATÓRIO

Segmentação e Binarização

- A segmentação consiste em dividir uma imagem em suas regiões, fases ou objetos de interesse, dependendo do problema a ser resolvido.
- Binarização é o processo de segmentação usado para separar o objeto de interesse do fundo
 - Conversão de uma imagem em tons de cinza ou colorida em uma imagem binária;
 - Pixeis podem assumir apenas dois valores (0 ou 1, preto ou branco);
 - Uma das fases mais críticas do Sistema Processamento de Imagens.

PDI ROCHAS RESERVATÓRIO

Caracterização

- Tem como objetivo extrair informações de interesse, descrever as características dos objetos e classificá-los, além de obter informações quantitativas.
- No estudo de imagens de rochas reservatório estas informações quantitativas estão relacionadas as propriedades como:
 - Porosidade;
 - Permeabilidade;
 - Distribuição de tamanho dos poros;
 - Curvas de auto-correlação e auto-conectividade.

PDI ROCHAS RESERVATÓRIO

Reconstrução 3D

- Reconstrução baseada em uma simulação estocástica de uma Gaussiana truncada procurando preservar os dois primeiros momentos da função de fase Z(x).
 - Porosidade
 - Função de autocorrelação

Figura 2. Meio reconstruido com o modelo de Gaussiana truncada

PDI ROCHAS RESERVATÓRIO

Simulação de Processos

• Determinação da permeabilidade através de simulações numéricas do escoamento com o modelo booleano de gás em rede (Santos *et al.*, 2002)

Figura 3. Campo de velocidades de uma simulação de escoamento monofásico.

REVISÃO BIBLIOGRAFICA

Processamento de Imagens de Rochas Reservatório

(Philippi *et al.*, 1994)

 Estudo da distribuição de tamanho de poros utilizando-se processo misto, curvas de adsorção (experimental) e caracterização com análise de imagens (numérico).

(Zhirong *et al.*, 1996)

 Reconstrução 3D baseada em uma simulação estocástica de uma Gaussiana truncada através da porosidade e da função de autocorrelação.

(Fernandes *et al.*, 1996)

• Determinação da permeabilidade intrínseca através da simulação de intrusão de mercúrio de estruturas 3D.

(CEREPI et al., 2000),

• Descreve a caracterização das propriedades através dos métodos experimentais *versus* análise de imagens petrográficas.

(BUENO et al., 2002),

 Determinação da permeabilidade relativa através da simulação do fluxo bifásico em estruturas 3D usando os algoritmos de configurações de equilíbrio.

(Santos *et al.*, 2002)

• Estimativa de permeabilidade através de simulações do modelo booleano de gás em rede em estruturas 3D.

(Fernandes et al., 2003)

• Determinação da permeabilidade intrínseca utilizando o modelo sérieparalelo. Usa a média aritmética da distribuição de tamanho de poros das imagens 2D de determinada lâmina.

(Schaewer *et al.*, 2006)

• Simulação da permeabilidade e cálculo do dano de formação em estruturas 3D.

REVISÃO BIBLIOGRAFICA

Redes Neurais no Processamento de Imagens

- Bem fundamentada em todos os campos do conhecimento
- Em um artigo de revisão sobre segmentação de imagens, Pal e Pal (1993) previram que Redes Neurais seriam amplamente usadas no processamento de imagens
- Grande número de trabalhos em todas as áreas do processamento imagens
 - Pré-processamento
 - Redução dados / Extração características
 - Segmentação
 - Detecção e reconhecimento objetos
 - Compreensão da Imagem Nível semântico
 - Otimização

REVISÃO BIBLIOGRAFICA

- Segmentação a partir dos valores dos <u>pixeis</u> da imagem
 - Feed-forward
 - SOM
 - Hopfield
 - Rede Probabilística
 - Função de base radial
 - Correlação oscilatória

REVISÃO BIBLIOGRAFICA

- RNAs treinadas para classificar o conteúdo das imagens com base em:
 - Textura
 - Combinação de textura e forma
- Também usadas para pré e pós processamento de segmentação
 - Delimitação dos contornos
 - Conexão de pixels de borda
 - Identificação de superfícies
 - Clustering de pixeis

REVISÃO BIBLIOGRAFICA

- Segmentação a partir de características da imagem
 - Feed-forward
 - SOM
 - Redes recursivas
 - Variâncias RBF
 - Hopfield
 - PCA
 - Redes dinâmicas

REVISÃO BIBLIOGRAFICA

- RNAs treinadas para segmentar imagens baseado na diferença de:
 - Textura
 - Combinação de textura e forma
- Além de classificação direta, RNAs também têm sido utilizadas para:
 - Estimativa de intervalos
 - Mapeando de histograma
 - Estimativa do fluxo óptico
 - Conexão de bordas e linhas
 - Crescimento de regiões

APLICAÇÃO

Modelo de cor RGB

Modelo de cor HSI

Limiar de Otsu

Redes Neurais

(Gasperi, P. M. S. D., 1999) Estimativa de Propriedades Petrofísicas Através da Reconstrução 3D do Meio Poroso a Partir da Análise de Imagens

- Aquisição de propriedades petrofísicas com software VCLab
 - Porosidade
 - Função de autocorrelação
 - Permeabilidade
 - Diâmetro médio dos poros
 - Diâmetro médio das gargantas
 - Curvas de pressão capilar

REVISÃO BIBLIOGRAFICA

Binarização pelo modelo RGB

- Binarização através do modelo RGB com uso do software *Ultimage/Pro* da *Graftech*.
- Definição manual de limites para cada componente de cor RGB o que confere um caráter subjetivo ao método.
- A experiência do operador na manipulação de imagens petrográficas pode fornecer variações no resultado final.
- Resultados diferentes quando a operação é realizada por mais de um operador.

REVISÃO BIBLIOGRAFICA

Binarização pelo modelo RGB

REVISÃO BIBLIOGRAFICA

Resultado binarização pelo modelo RGB

Comparação Porosidade

31

REVISÃO BIBLIOGRAFICA

Resultado binarização pelo modelo RGB

- Resolução das Imagens variação do valor de porosidade para diferentes resoluções
- Subjetividade do processo manual variação do valor de porosidade para diferentes operadores
- Modelo experimental para determinação de porosidade via expansão à gás

(Gaspari, 2006). Determinação Computacional da Permeabilidade de Rochas Reservatório.

- Aquisição de propriedades petrofísicas com software Imago
 - Porosidade
 - Curvas de autocorrelação
 - Distribuição de tamanho de poros
 - Permeabilidade *Fast k* (Philippi, 2000)
 - Permeabilidade *Fast k* (Marshall, 1958)
 - Permeabilidade Gás em Rede (Santos, 2002)

REVISÃO BIBLIOGRAFICA

Binarização pelo modelo HSI

- Binarização manual através do modelo HSI com uso do software Imago.
- A experiência do operador na manipulação de imagens petrográficas pode fornecer variações no resultado final.
- Resultados diferentes quando a operação é realizada por mais de um operador.
- Aplicação de filtro passa baixa em domínio espacial.

REVISÃO BIBLIOGRAFICA

Binarização pelo modelo HSI

APLICAÇÃO

REVISÃO BIBLIOGRAFICA

Resultado binarização pelo modelo HSI

Comparação da Porosidade

REVISÃO BIBLIOGRAFICA

Resultado binarização pelo modelo HSI

- Taxas de erro da porosidade ótica versus petrofísica acima de 45%.
- Presença de informações duvidosas em regiões em que fica difícil definir com boa exatidão os limites entre minerais e poros devido ao efeito de borda.
- Problemas com a binarização afetou o cálculo das propriedades petrofísicas.

- As imagens das amostras de rochas reservatório foram fornecidas pelo CENPES/Petrobras;
- Total de 290 imagens distribuídas em 22 amostras;
- 8 amostras com dados de porosidade via porosímetro à gás, em um total de 100 imagens.

METODOLOGIA

Pré-processamento das imagens

Binarização das imagens

Caracterização das imagens -> porosidade

Análise comparativa dos resultados

BINARIZAÇÃO Otsu

Limiar de Otsu

- Aplicado sobre o histograma de níveis de cinza
- Tem como fundamento encontrar um limiar que minimize a variância dos valores de uma classe e maximize a variância entre duas classes distintas.

BINARIZAÇÃO *Redes Neurais*

Redes Neurais

- Estratégia:
 - Entradas da RN = pixeis RGB das imagens
 - Treinar a RN
 - Tonalidades resina+óleo = Fase porosa
 - Demais tonalidades = Fase granular
- Topologia
 - MLP

BINARIZAÇÃO *Redes Neurais*

Redes Neurais

- Conjunto de treinamento
 - Seleção das imagens com padrões que representassem a amostra
 - Composição do conjunto de treinamento
 - Captura de pixeis de poros e grãos
 - 2.738 padrões poros/grãos
 - Treinamento 75% (1916 amostras)
 - Validação 15% (411 amostras)
 - Teste 15% (411 amostras)

BINARIZAÇÃO Redes Neurais

43

Treinamento

- Algoritmo backpropagation com termo momentum
 - Taxa de aprendizado= 0,2
 - Constante momentum=0,8

BINARIZAÇÃO *Redes Neurais*

Binarização

• Processamento dos dados

Arq. Texto Imagem 123 45 234
Processamento Rede
Arq. Saída 0.009361

- Reconstrução da imagem
 - Threshold
 - Reconstrução imagem (PBM) de acordo com imagem original

BINARIZAÇÃO *Redes Neurais*

Validação

- Caracterização das imagens
 - Cálculo da porosidade
 - Cálculo erro em relação a porosidade experimental
- Análise visual

RESULTADOS

Amostra P148_K2

- Arenito com muitas áreas escuras;
- Total de 20 imagens;
- Na conversão para tons de cinza os poros são dificilmente identificáveis.

•APLICAÇÃO

RESULTADOS

Análise visual - P148_K2

Imagem Original

(a)

(C)

Amostra P262_K441

- Carbonato com grãos claros e escuros;
- Na conversão para tons de cinza os poros adquirem tonalidade intermediária aos grãos;
- Total de 10 imagens.

(a) Imagem colorida.

(c) Histograma.

⁽b) Imagem tons de cinza.

•APLICAÇÃO

RESULTADOS

Análise visual - P262_K441

(a)

Amostra P275_K316

- Arenito com muitas áreas manchadas de óleo;
- Na conversão para tons de cinza os poros e os grãos opacos se confundem;
- Total de 20 imagens.

Áreas manchadas de óleo
Grãos opacos

•APLICAÇÃO

RESULTADOS

Análise visual - P275_K316

(a)

(c)

CONCLUSÕES

Principais problemas

- Presença de óleo;
- Grande dificuldade de interpretação poro/grão;
- Não-linearidade das imagens;
- Conversão para tons de cinza;

- O método RN conseguiu contornar fatores como presença de óleo e nãolinearidade das imagens;
- Produziu valores de porosidade mais próximos aos valores experimentais;
- Independe da experiência do operador, não possui variação dos valores.

CONCLUSÕES

Trabalhos Futuros

- Agregar novos padrões de imagens de rocha reservatório
- Avaliar os resultados para:
 - Tipos de redes neurais diferentes
 - SOM
 - Correlação Oscilatória
 - etc
 - Segmentação via redes neurais com base em características da imagem
 - Textura
 - Contorno

Um Estudo Comparativo Aplicado a Segmentação de Imagens de Rochas Reservatório

ENEIDA ARENDT REGO eneida@lenep.uenf.br

