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Random Network
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Poission distribution

Random Network
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For many such properties, there is a critical property
pc(N). If p(N) grows more slowly than pc(N), then
almost every graph with connection probability p(N)
fails to have property Q. If p(N) grows somewhat

faster than pc(N), then almost every graph has Q.
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Random Network

A few important special cases are:

1) The critical probability of having a tree of order k is

pc(N) = cN-k/(k-1);

2) The critical probability of having a cycle of order k

is pc(N) = cN-1;

3) The critical probability of having a complete

subgraph of order k is pc(N) = cN-2/(k-1);

Small-world network

D. J. Watts and S. H. Strogatz, Nature, 393, 440–442 (1998).

RandomSmall-worldRegular

Increasing randomness

This process generates pNK/2 long-range connections.
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Small-world network

Average path length
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dij: shorest path between i and j.

ni: number of triangles connected to i.
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Small-world network

Example: vertice 1 has 4 neighbors (ki = 4). Among

them, only 1 pair is connected (n1 = 1). The total

number of triangles passing vertice i is thus 1. Then,

C1 = 1 / 6.
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Small-world network

Scale-free 
Network
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Scale-free 
Network

Degree distribution obeys 

power law: P(k) ~ kα. 

A.-L. Barabasi and, R. Albert, 
Science 286, 509 (1999).

Scale-free Network

A.-L. Barabasi and, R. Albert, Science 286, 509 (1999).

(1) Growth: Starting with a small number (m0) of vertices, at 

every timestep we add a new vertex with m edges (that will be 

connected to the vertices already present in the system).

(2) Preferential attachment: When choosing the vertices to 

which the new vertex connects, we assume that the probability  

that a new vertex will be connected to vertex i depends on the 

connectivity ki of that vertex, such that
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Scale-free Network
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Scale-free Network
The solution of this equation, with the initial condition that 
vertex i was added to the system at time ti with connectivity 
ki(ti) = m, is
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Scale-free Network
The solution of this equation, with the initial condition that 
vertex i was added to the system at time ti with connectivity 
ki(ti) = m, is
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Scale-free Network

Assuming that we add the vertices at equal time intervals to 

the system, the probability density of ti is
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Scale-free Network
The probability density for P(k) can be obtained using
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Predicting 3=γ

Random Network
(1) Growth: Starting with a small number of vertices (m0), at 
every timestep we add a new vertex with m edges.
(2) Uniform attachment: We assume that the new vertex 
connects with equal probability to the vertices already present 
in the system, i.e. 
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Random Network
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ki = m(ln(m0 + t − 1) − ln(m0 + ti − 1) + 1)

Random Network
The probability that vertex i has connectivity ki(t) smaller than k is
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Random Network

The probability that vertex i has connectivity ki(t) smaller than k is
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Master Equation Approach
We study the probability p(k, ti, t) that a vertex i that 
entered the system at time ti has degree k at time t. 
During the graph process the degree of a vertex
i increases by one with probability k/2t .

A master equation for this probability p(k, ti, t) is of 
the form:
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Master Equation Approach

Master Equation Approach
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Master Equation Approach

Rate Equation Approach
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Master Equation Approach 

A. Barrat, M. Barthélemy and A. Vespignani, Dynamical process on
Complex networks, Cambridge University Press, 2008.

Master Equation Approach 
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A particular configuration of the network at time t is represented by 

( ) ( ) ( ) ( )( )tttt Nσσσσ ,...,, 21=

( )tP ,σ : Probability of finding the system at time t in a given 
configuration σ
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Master Equation Approach 
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( )σσ →'W : Transition rate from one state to another

If the change of state of node i is determined only by the local 
interaction with the nodes directly connected to it and the local 
dynamics have the same parameters for all nodes, the transition 
rates can be simplified and read

( )iVj ∈ j is a neighbor of i

Master Equation Approach 
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( )σσ →'W : Transition rate from one state to another

If the change of state of node i is determined only by the local 
interaction with the nodes directly connected to it and the local 
dynamics have the same parameters for all nodes, the transition 
rates can be simplified and read
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Master Equation Approach 
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Given any function of the state of the system A(σ), it is 
possible to compute its average value at time t as

Master Equation Approach - example 

Let us consider a very simple system in which each node can be in
only two states: σi=A and σi=B. The dynamics of the system are
described by a reaction process of the type A + B → 2B. The 
transition from A to B is irreversible and occurs with rate β each 
time a node in thestate A is connected to at least one node in the
state B. 
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Master Equation Approach - example 

We use the following quantity:
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Average number of node in state A or B at time t

Master Equation Approach 
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Master Equation Approach 
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Master Equation Approach 
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Supose that the probability for each node to be in the 
state A or B is pA = NA/N and pB = NB/N. 

In addition, neglecting correlations allows us to write

( ) ∏=
i i
ptP ',' σσ

Then we have
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Master Equation Approach 
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The latter happens if at least one of the connected nodes 
j is in the state B. This will happen with probability
1-(1-pB)k, where k is the number of neighbors of i.

Master Equation Approach 
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By using the expressions of pA and pB and summing 
over all nodes i we obtain

As a final simplification, we consider NB/N << 1 that
yeilds the dynamical equation 


