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FIG. 5. Dlustration of the graph evolution process for the
Erdos-Rényi model. We start with N'=10 isolated nodes (up-
per panel), then connect every pair of nodes with probability
p. The lower panel of the figure shows two different stages in
the graph’s development. corresponding to p=0.1 and p
=0.15. We can notice the emergence of trees (a tree of order 3,
drawn with long-dashed lines) and cycles (a cycle of order 3,
drawn with short-dashed lines) in the graph, and a connected
cluster that unites half of the nodes at p=0.15=1.5/N.
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For many such properties, there is a critical property
p.(N). If p(N) grows more slowly than p.(N), then
almost every graph with connection probability p(N)
fails to have property Q. If p(N) grows somewhat

faster than p.(N), then almost every graph has Q.
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A few important special cases are:

1) The critical probability of having a tree of order k is
p.(N) = cNK/k-D);

2) The critical probability of having a cycle of order k
is pc(N) = cN1;

3) The critical probability of having a complete

subgraph of order k is p,(N) = cN-2/k-1);
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Small-world network

Regular Small-worId
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Increasing randomness

This process generates pNK/2 long-range connections.

D. J. Wattsand S. H. Strogatz, Nature, 393, 440-442 (1998).
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Small-world network

~ Example: vertice 1 has 4 neighbors (£ = 4). Among
them, only 1 pair is connected (n, = 1). The total
number of triangles passing vertice /is thus 1. Then,
Gg=1/6.
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Scale-free Network

(1) Growth: Starting with a small number Jjnof vertices, at
every timestep we add a new vertex witledges (that will be
connected to the vertices already present in thersyste

(2) Preferential attachment: When choosing the \estio
which the new vertex connects, we assume that thmapildy
that a new vertex will be connected to vertex i depemdthe

connectivityk; of that vertex, such that
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A.-L. Barabasi and, R. Albert, Science 286, 509 (1999).
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Scale-free Network

The solution of this equation, with the initial conditithat
vertexi was added to the system at titpeith connectivity

k(t) =m,is
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The solution of this equation, with the initial conditithat
vertexi was added to the system at titpeith connectivity

kl(tl) =m, iS
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Scale-free Network

Assuming that we add the vertices at equal time inteteals
the system, the probability densitytpis
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Scale-free Network
The probability density foP(k) can be obtained using

_oP(k(t)<k) _ 2m’t 1
ok m, +t k®

P(k)

Predicting y = 3
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Random Network

(1) Growth: Starting with a small number of verticag)( at
every timestep we add a new vertex witledges.

(2) Uniform attachment: We assume that the new vertex
connects with equal probability to the vertices alreaishsent
in the system, i.e.
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The probability that vertexhas connectivity (t) smaller thark is

Pk <k)= P(ti > (my +t —1)ex;{1—%) -m, +1)
P(ti > (m, +t—1)ex;{1—%j—mo +1)

st-Dexf1- X |-m, +1
m, e Ll
m, +t
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The probability that vertexhas connectivityk (t) smaller thark is

Pl = Sex{ -
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Master Equation Approach

We study the probabilitp(k, t;, t) that a vertex i that
entered the system at time t; has degree k at time t.
During the graph process the degree of a vertex

i increases by one with probability k/2t .

A master equation for this probabilipk, t;, t) is of
theform:

B tit) = D Wi (Kt 8) — Wi 2t )]
£
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Master Equation Approach

Here Wi denotes the probability of changing from state &’ to state k. In our
model this probability is obviously

k!

W, kol = _(jk’ k-1 y where é‘i,j = { ! L=J

0 otherwise L8]

is the Kronecker symbol.
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By summing up over all vertices inserted up to time t, we define the proba-

(k
bility P(k,t) == E"% that some arbitrary vertex has degree k.
As we are interested in a stationary distribution, we are looking for the point
where the derivative with respect to time is zero.

ty, '(kt-t zi p(k,t:,1)

0= P(k,t) =

Zp (k. ; t) = %P(k,t)

1
H ket — ke p k i ) = E'{'rk—bk-’ p(k\ tz.t)]) = EP“C.tJ

.r

5M 1P(K, t)—ﬁtsuv 1P(k, )D —%P(k,t)

( 3" Wir—i P(E', 1) - Wi P(k, t)]) - %P(k,t)
k

s Pk —1,t )fﬂp(m)
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Master Equation Approach

There is now a ' so that for every time ¢ greater than t' we get the stationary
distribution, P(k). This results in the recursive equation P(k) = i;—éP{k— 1) for
k = m + 1. For the case k = m the probability directly results from the scaling
condition of the probability measure: P(m) = miw

This directly yields the power law of the form Pr[k] = k%‘_ﬁ—ﬂgﬁ which con-

verges to the value of the power law found using the continuum theory, 2m?y =3,
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Rate Equation Approach

We are considering the average number (over all graphs of the state of the
process) Ni(t) of vertices that have exactly degree k at time f. Asymptotically
we have, by the strong law of large numbers, the following for large #: Nj.(t)/t ~
Prik] and ", ENg(t)/t ~ 2m.

It a new vertex enters the network, N (t) changes as follows:

ONG (k—1)Np_1(t) — kNw(t)

Pr[k] = 5 =™ S kN + Ok m- (13.8)




Master Equation Approach

A. Barrat, M. Barthélemy and A. Vespignani, Dynamicalgass on
Complex networks, Cambridge University Press, 2008.
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Master Equation Approach

9,P(0,t)=> [Plo",tW(o" - 0)-Plo,tW(o - o)
o, : state gf node i
o, =12,...k

A particular configuration of the network at time represented by

a(t)=(0,(t). o> (t).....0\ (1))

P(G t) : Probability of finding the system at tinhén a given
- configurationo
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Master Equation Approach

0,P(o,t)= ;[P(a',t)\N(a' - 0)-P(o,tW(o - o)

—
P \~

W(G T ) : Transition rate from one state to another

If the change of state of nodes determined only by the local
interaction with the nodes directly connected to d #re local
dynamics have the same parameters for all nodegathgtion
rates can be simplified and read

W(o - 0)=[woi - o12,)

j DV(E) j 1S a neighbor of

——

, o

—
] \~

Master Equation Approach

0,P(o,t)= ;[P(a',t)\N(a' - 0)-P(o.tW(o - o)

W(G T ) : Transition rate from one state to another

If the change of state of nodes determined only by the local
interaction with the nodes directly connected to d #re local
dynamics have the same parameters for all nodegathgtion
rates can be simplified and read

Wo' - 0)=[]uli - a11o)

15
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Master Equation Approach
9,P(0,t)=> [Plo",tW(o" - o)-P(o,tW(o - o)

Given any function of the state of the systera)Aft is
possible to compute its average value at time t as

(At)) = Za: Alo)P(o,t)
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Master Equation Approach - example

Let us consider a very simple system in which eademan be in
only two stateso,=A ando;=B. The dynamics of the system are
described by a reaction process of the type A=+ BB. The
transition from A to B is irreversible and occurs wittte3 each
time a node in thestate A is connected to at leasinode in the

state B.
WA - Alg, = A
=w(B - B|o, =B

WA - B|o, =B)

wB - B|o, = A
3

B

N—
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Master Equation Approach - example

We use the following quantity:

NA(t):Za:ZJMP(a,t)
NB(t):ZU:ZJG,BP(a,t)

Average number of node in state A or B at timet
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Master Equation Approach
N5 (t) =3 9, 0.P(a 1)
=355 0,00l ~ 107010, [Toles ~ 1o Pl
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Master Equation Approach
ZZW(Uk - 0 |UJ):1
@' |%
Zaq,sl_lv‘(al; - 0, |JJ):W(0| -0, :B|0})

We have

NB(t):Zzaai,BatP(o-’t)
:ZZ{UW(U - g, :B|0})°(0“,t)}—N t
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Master Equation Approach

Supose that the probability for each node to be in the
state Aor B is p= N,/N and g = Ng/N.

In addition, neglecting correlations allows us to write

P(d’t) A |_|i P

Then we have
V\(U B|a) Plo' 1)

:;{w(a;: a=8ia)n,[] p, +vlo=8 - =elo)n ] », |
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Master Equation Approach
Remember that

wo =B - 0 =B|0})=1

wo=A- 0 =B|g)=p

The latter happens if at least one of the connected nodes

j is in the state B. This will happen with probability
1-(1-ps)%, wherek is the number of neighbors f

atNB(t) = Z,(/@A(l_(l_ ps)k)"' ps)_ NB(t)
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Master Equation Approach

By using the expressions of @nd i and summing
over all nodes we obtain

N, (t) = pNA[l—(l— N%\ka

As a final simplification, we considergiN << 1 that
yeilds the dynamical equation

N,Ng

atNB(t) =X N
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