ICMC - USP

Introduction to VHDL (part 2 of 2)

Prof. Vanderlei Bonato - vbonato@icmc.usp.br

8/20/13

Summary

« Data Types

* Assignments

« Data Conversions

* Operators
 Component Instantiation
» Bi-directional Pins

« EXercises

8/20/13

Data Types

Data types

Synthesizable values

BIT, BIT_VECTOR

STD_LOGIC, STD_LOGIC_VECTOR
STD_ULOGIC, STD_ULOGIC_VECTOR
BOOLEAN

NATURAL

INTEGER

SIGNED

UNSIGNED

User-defined mteger type

User-defined enumerated type
SUBTYPE

ARRAY

RECORD

0.1
X, 07, 1, 2 (resolved)

X, 07, ‘1, *Z (unresolved)

True, False

From 0 to +2, 147, 483, 647

From —2,147,483,647 to +2,147,483,647
From —2,147,483,647 to +2,147,483,647
From 0 to +2,147,483,647

Subset of INTEGER

Collection enumerated by user

Subset of any type (pre- or user-defined)
Single-type collection of any type above
Multiple-type collection of any types above

8/20/13

Dealing with Data Types

TYPE byte IS ARRAY (7 DOWNTO 0) OF STD LOGIC;

TYPE meml IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD LOGIC;
TYPE mem2 IS ARRAY (0 TO 3) OF byte;

TYPE mem3 IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR(O TO 7);
SIGNAL a: STD LOGIC; -
SIGNAL b: BIT; -
SIGNAL x: byte; -- 1D
SIGNAL y: STD LOGIC_VECTOR (7 DOWNTO 0); -- 1D
SIGNAL v: BIT VECTOR (3 DOWNTO 0); -- 1D
SIGNAL z: STD LOGIC_VECTOR (x'HIGH DOWNTO 0); -- 1D
SIGNAL wl: meml; -=- 2D
SIGNAL w2: mem2; -
SIGNAL w3: mem3; -

1D

array
2D

array
1Dx1D
array
1Dx1D
array

scalar signal

scalar signal

signal
signal
signal
signal
signal

1Dx1D signal

1Dx1D signal

8/20/13

Scalar Assignments

X(2) <= a;

y(0) <= x(0);
z(7) <= x(5);

b <=v(3);
wl(0,0) <= x(3);

wl(2,5) <i= vy(7);
w2(0)(0) <= x(2);
w2(2)(5) <= y(7);
wl(2,5) <= w2(3)(7);

same
same
same
same

same

same
same
same

same

types
types
types
types
types

types
types
types
types

(STD_LOGIC), correct indexing
(STD_LOGIC), correct indexing
(STD_LOGIC), correct indexing
(BIT), correct indexing

(STD LOGIC), correct indexing

(STD _LOGIC), correct indexing
(STD _LOGIC), correct indexing
(STD_LOGIC), correct indexing
(STD_LOGIC), correct indexing

8/20/13

Vector Assignments

<= "11111110";
<= ('1','1','1',"'1','1','1','0"','%2");
"11111" & "000";
<= (OTHERS => '1');
<= (7 =>'0', 1 =>'0', OTHERS => '1');
Z <= Y;
y(2 DOWNTO 0) <= z(6 DOWNTO 4);
w2(0)(7 DOWNTO 0) <= "11110000";
w3(2) <=y;
z <= w3(1);
z(5 DOWNTO 0) <= w3(1l)(2 TO 7);
w3(1l) <= "00000000";
w3 (1) <= (OTHERS => '0');
w2 <= ((OTHERS=>'0"'), (OTHERS=>'0"'), (OTHERS=>'0"), (OTHERS=>'0"));
w3 <= ("11111100", ('0O','0','0','0','2"','2",'2",'2",),
(OTHERS=>'0"'), (OTHERS=>'0"));
wl <= ((OTHERS=>'Z'), "11110000" ,"11110000", (OTHERS=>'0"'));

MOX N KON
A
I

8/20/13

llegal Assignments

------- Illegal scalar assignments: ————cemmm e

b <= a; -- type mismatch (BIT x STD LOGIC)
wl(0)(2) <= x(2); —-—- index of wl must be 2D
w2(2,0) <= a; —— index of w2 must be 1Dx1D

—=—==== TIllegal array assignments: ————eemm o

X <= y; -- type mismatch

y(5 TO 7) <= z(6 DOWNTO 0); -- wrong direction of y
wl <= (OTHERS => '1"'); -- wl is a 2D array
wl(0, 7 DOWNTO 0) <="11111111"; -- wl is a 2D array

w2 <= (OTHERS => 'Z"'); -— W2 1is a 1Dx1D array
w2(0, 7 DOWNTO 0) <= "11110000"; -— index should be 1Dx1D

8/20/13 7

DOWNTO and TO

SIGNAL x: BIT;

-- X 1s declared as a one-digit signal of type BIT.

SIGNAL y: BIT VECTOR (3 DOWNTO 0);
-— y is a 4-bit vector, with the leftmost bit being the MSB.

SIGNAL w: BIT VECTOR (0 TO 7);
-— w 1s an 8-bit vector, with the rightmost bit being the MSB.

x<= lll;

-- X 1s a single-bit signal (as specified above), whose value is

--— '1l'., Notice that single guotes (' ') are used for a single bit.
y <= "0111";

-- y 1is a 4-bit signal (as specified above), whose value is "0111"
-— (MSB='0"'). Notice that double quotes (" ") are used for

-- vectors.

w <= "01110001";
-- w 1is an 8-bit signal, whose value is "01110001" (MSB='1').

8/20/13 8

Bit Levels

« BIT (and BIT_VECTOR): 2-level logic (‘0°, “I")

« STD_LOGIC (and STD_LOGIC_VECTOR): 8-valued logic system introduced in
the IEEE 1164 standard.

‘X" Forcing Unknown (synthesizable unknown)

‘0> Forcing Low (synthesizable logic ‘1)

‘1" Forcing High (synthesizable logic “0)

‘2’ High impedance (synthesizable tri-state buffer)
‘W’ Weak unknown

‘L Weak low

‘H> Weak high
‘> Don’t care

Most of the std_logic are intended for simulation only!

8/20/13 9

ULOGIC

« STD_ULOGIC (STD_ULOGIC_VECTOR): 9-level logic system introduced in
the IEEE 1164 standard (*U’°, X, “0°, ‘1", *Z°, “W’, ‘L’, ‘H’, *2).

- STD_LOGIC system described above is a subtype of STD_ULOGIC. The latter
includes an extra logic value, ‘“U’, which stands for unresolved. Thus, contrary to
STD_LOGIC, conflicting logic levels are not automatically resolved here, so output
wires should never be connected together directly. However, if two output wires are
never supposed to be connected together, this logic system can be used to detect
design errors.

8/20/13 10

SIGNED and UNSIGNED

* Their syntax similarto STD_LOGIC VECTOR

 SIGNED and UNSIGNED are intended mainly
for arithmetic operations

* Logic operations are not allowed

SIGNAL x: SIGNED (7 DOWNTO 0);
SIGNAL y: UNSIGNED (0 TO 3);

8/20/13 11

Data Conversion

« VHDL does not allow direct operations
between data of different types

« Conversions are necessary

« Several data conversion functions can be

found in the std_logic_arith package of IEEE
library

8/20/13 12

std_logic_arith Conversion Functions

« conv_integer(p) : Converts a parameter p of type INTEGER, UNSIGNED,
SIGNED, or STD_ULOGIC to an INTEGER value. Notice that STD_LOGIC_
VECTOR is not included.

* conv_unsigned(p, b): Converts a parameter p of type INTEGER, UNSIGNED,
SIGNED, or STD ULOGIC to an UNSIGNED value with size b bits.

« conv_signed(p, b): Converts a parameter p of type INTEGER, UNSIGNED,
SIGNED, or STD _ULOGIC to a SIGNED value with size b bits.

 conv_std_logic_vector(p, b): Converts a parameter p of type INTEGER, UN-
SIGNED, SIGNED, or STD_LOGIC to a STD_LOGIC_VECTOR value with size
b bits.

8/20/13 13

Operators

Operator type Operators Data types
Assignment <=, =, => Any
Logical NOT, AND, NAND, BIT, BIT_VECTOR,
OR, NOR, XOR, XNOR STD_LOGIC, STD_LOGIC_VECTOR,
STD_ULOGIC, STD_ULOGIC_VECTOR
Arithmetic +, =, % [, R INTEGER, SIGNED, UNSIGNED
(mod, rem, abs)*
Comparison =, [=, <, >, <=, >= All above
Shift sll, srl, sla, sra, rol, ror BIT VECTOR
Concatenation &, (,,,) Same as for logical operators, plus SIGNED and
UNSIGNED

8/20/13 14

The concatentation operator &

VARIABLE shifted, shiftin : BIT_VECTOR (0 TO 3)=

STRIRLEN [e="SURIRRNAR A 8 8 8.2 = 3 e 281 =

SHIFTIN

SHIFTED 3 J

The exponentiation operator **

TR T

¥
K.
¥

s

Component instantiation
(Structural VHDL)

component fifo_cam is

port(data :in STD_LOGIC_VECTOR (31 downto 0);

wrreq :in STD_LOGIC ;

rdreq :in STD_LOGIC ;

rdclk :in STD_LOGIC ;

wrclk :in STD_LOGIC ;

aclr :in STD_LOGIC ;

q :out STD_LOGIC _VECTOR (31 downto 0);
rdempty :out STD LOGIC;

wrfull :out STD_LOGIC);

end component;

fifo: fifo_cam port map(pixel,'1',read_cs,clk _n,ready pixel,aclr_fifo,readdata,waitrequest,fifofull);

8/20/13 16

Bidirectional pin

ENTITY proc_eld2 is

PORT(clk, rst S in STD _LOGIC;
data : inout STD_LOGIC_VECTOR(7 downto 0);
web_oeb : buffer STD_LOGIC;
address :out STD _LOGIC _VECTOR(7 downto 0);
pc_out, ir_out :out STD _LOGIC_VECTOR(7 downto 0);
saida :out STD_LOGIC_VECTOR(2 downto 0)

);
END proc_eld2;

signal ACC : std_logic_vector(7 downto 0);

web_oeb <=1"'; --1 escreve e 0 |é da mem.
data <= ACC WHEN web oeb="'1'else "Z2Z2Z27277727",

web_oeb <=‘0"; --1 escreve e 0 |é da mem.
ACC <= data;

8/20/13

17

Tips

* The ENTITY name and the file name must be
the same

* Physical and time data types are not
synthesizable for FPGAs

— ohm, kohm
— fs, ps, ns, um, ms, min, hr

8/20/13

18

And more ...

* Function
— Produce a single return value
— Requires a RETURN statement
* Procedure
— Produce many output values
— Do not require a RETURN statement

 Testbench
— Generate stimulus for simulation
— Compare output responses with expected values

8/20/13

19

Implemente em VHDL
0s seguintes componentes

e FFsdotipoD, TeJK

» Registrador de deslocamento da direita para a esquerda
« Conversor de binario para display de 7 segmentos

* Crie um componente somador completo de 1 bit e
instancie esse mesmo componente para formar um
somador/subtrator de 8 bits do tipo ripple-carry.
Considere que os numeros estao em complemento de 2;
e para o controle da operacao utilize C=0 para adicao e
C=1 para subtracao. Indique também overflow. Utilize
ST%_LOGIC_VECTOR para os sinais de entrada e
saida

8/20/13 20

References

* Pedroni, Volnei A. Circuit Design with VHDL,
MIT Press, 2004

 DARPA/Tri-Services RASSP Program
— http://www.vhdl.org/rassp/

 Brown, S. and Vranesic, Z.. Funhdamentals of
Digital Logic with VHDL Design, 2"9 Ed., P.
939, 2005.

8/20/13 21

