
HEAD-DRIVEN STATISTICAL MODELS FOR NATURALLANGUAGE PARSINGMichael CollinsA DISSERTATIONinComputer and Information Science
Presented to the Faculties of the University of Pennsylvaniain Partial Ful�llment of the Requirements for the Degree of Doctor of Philosophy1999

Professor Mitch MarcusSupervisor of Dissertation
Professor Jean GallierGraduate Group Chair

COPYRIGHTMichael Collins1999

Acknowledgements
Mitch Marcus was a wonderful advisor. He gave consistently good advice, and allowed anideal level of intellectual freedom in pursuing ideas and research topics. I would like tothank the members of my thesis committee | Aravind Joshi, Mark Liberman, FernandoPereira and Mark Steedman | for the remarkable breadth and depth of their feedback.I had countless impromptu but inuential discussions with Jason Eisner, Dan Melamedand Adwait Ratnaparkhi in the LINC lab. They also provided feedback on many draftsof papers and thesis chapters. Paola Merlo pushed me to think about many new angles ofthe research. Dimitrios Samaras gave invaluable feedback on many portions of the work.Thanks to James Brooks for his contribution to the work that comprises chapter 5 of thisthesis.The community of faculty, students and visitors involved with the Institute for Researchin Cognitive Science at Penn provided an intensely varied and stimulating environment.I would like to thank them collectively. Some deserve special mention for discussionsthat contributed quite directly to this research: Breck Baldwin, Srinivas Bangalore, DanBikel, Mickey Chandresekhar, David Chiang, Christy Doran, Kyle Hart, Al Kim, TonyKroch, Robert Macintyre, Max Mintz, Tom Morton, Martha Palmer, Je� Reynar, JosephRosenzweig, Anoop Sarkar, Matthew Stone, Debbie Steinig, Ann Taylor, John Trueswell,Bonnie Webber, Fei Xia, and David Yarowsky. I would also like to thank Amy Dunn, MikeFelker and Betsy Norman for making administrative matters run smoothly.There was also some crucial input from sources outside of Penn. In the summer of 1996I worked at BBN Technologies: discussions with Scott Miller, Richard Schwartz and RalphWeischedel had a deep inuence on the research. Manny Rayner and David Carter fromiii

SRI Cambridge supervised my Masters thesis at Cambridge: their technical supervisionwas the beginning of this research, and their enthusiasm and support was really whatpropelled me into working in computational linguistics.Finally, and most importantly, thanks to my parents and my sister Sarah, for givingtheir unwavering support during and before this work.

iv

Abstract
HEAD-DRIVEN STATISTICAL MODELS FOR NATURAL LANGUAGE PARSINGMichael CollinsSupervisor: Professor Mitch MarcusStatistical models for parsing natural language have recently shown considerable suc-cess in broad-coverage domains. Ambiguity often leads to an input sentence having manypossible parse trees; statistical approaches assign a probability to each tree, thereby rank-ing competing trees in order of plausibility. The probability for each candidate tree iscalculated as a product of terms, each term corresponding to some sub-structure withinthe tree. The choice of parameterization is the choice of how to break down the tree. Thereare two critical questions regarding the parameterization of the problem:1. What linguistic objects (e.g., context-free rules, parse moves) should the model'sparameters be associated with? I.e., How should trees be decomposed into smallerfragments?2. How can this choice be instantiated in a sound probabilistic model?This thesis argues that the locality of a lexical head's inuence in a tree should motivatemodeling choices in the parsing problem. In the �nal parsing models a parse tree is repre-sented as the sequence of decisions corresponding to a head-centered, top-down derivationof the tree. Independence assumptions then follow naturally, leading to parameters thatencode the X-bar schema, subcategorization, ordering of complements, placement of ad-juncts, lexical dependencies, wh-movement, and preferences for close attachment. All ofthese preferences are expressed by probabilities conditioned on lexical heads.v

The goals of the work are two-fold. First, we aim to advance the state of the art. Wereport tests on Wall Street Journal text showing that the models give improved accuracyover other methods in the literature. The models recover richer representations than pre-vious approaches, adding the complement/adjunct distinction and information regardingwh-movement. Second, we aim to increase understanding of statistical parsing models.Each parameter type is motivated through tree examples where it provides discriminativeinformation. An empirical study of prepositional phrase attachment ambiguity is used toinvestigate the e�ectiveness of dependency parameters for ambiguity resolution. A numberof parsing models are tested, and we give a breakdown of their performance on di�erenttypes of construction. Finally, we give a detailed comparison of the models to others inthe literature.

vi

Contents
Acknowledgements iiiAbstract v1 Introduction 11.1 An Overview of this Chapter . 21.2 The Practical Motivation for Parsing . 31.3 A Major Problem: Ambiguity . 51.4 Previous Approaches . 71.4.1 Rule-Based Approaches . 71.4.2 Statistical Methods . 81.5 This Thesis . 91.5.1 An Example: Belief Networks and Causality 111.5.2 Modeling Parse Structures . 131.5.3 A Motivation for the Choice of Decomposition: Causality and Locality 161.5.4 A Sketch of the Parameter Types . 171.5.5 Results . 261.5.6 A Summary of the Argument . 271.6 Overview . 281.6.1 Reader's Guide . 302 Statistical Models 312.1 Introduction . 31vii

2.2 Probability Theory . 322.2.1 Maximum Likelihood Estimation . 332.2.2 Notation . 332.2.3 Probabilistic Approaches for Supervised Machine Learning Problems 342.2.4 A Note on the De�nition of the Event Space 352.3 De�ning Probabilities over Structured Events: Some General Results 362.3.1 De�ning the Model Structure: Associating Probabilities with Sub-Structures . 372.3.2 Maximum-Likelihood Estimation in Structured Models 392.3.3 Two Conditions for Model Structures 422.3.4 Summary . 442.4 De�ning Sentence Probabilities Using Markov Processes 452.4.1 The Importance of the STOP Symbol 462.5 De�ning Tagged-Sentence Probabilities Using Hidden Markov Processes . . 482.6 Probabilistic Context Free Grammars (PCFGs) 502.6.1 Formal De�nitions . 502.6.2 Conditions for Consistency . 512.6.3 Search for the Highest Probability Tree 542.6.4 Parameter Estimation . 552.7 History-Based Models . 572.7.1 Conditional History-Based Models 582.8 Additional Topics in Statistical Models . 602.8.1 Unsupervised Learning through the EM Algorithm 602.9 Estimation . 602.9.1 The Sparse Data Problem . 612.9.2 Two Sources of Estimation Error . 612.9.3 Linear Combinations of ML Estimates 632.9.4 Calculating Back-O� Weights . 643 Some Alternative Parameterizations for Statistical Parsing 683.1 A De�nition of Parse-Tree Parameterization 69viii

3.1.1 A Note about Events in this Chapter 713.1.2 Parameterization Proposals: a Summary 723.2 Parameterization Proposal 1: A Simple PCFG 733.2.1 Lack of Sensitivity to Lexical Dependencies 753.2.2 Structural Preferences . 773.3 Dependency Parameterizations . 773.3.1 Parameterization Proposal 2: Dependencies 773.3.2 The Function from Trees to Sets of Dependencies 793.3.3 The Motivation for Dependencies as a Representation 823.3.4 Parameterization Proposal 3: Dependencies + Direction 833.3.5 Parameterization Proposal 4: Dependencies + Direction + Relations 833.3.6 Parameterization Proposal 5: Dependencies + Direction + Relations+ Subcategorization . 893.3.7 Parameterization Proposal 6: Dependencies + Direction + Relations+ Subcategorization + Distance . 933.3.8 Parameterization Proposal 7: Dependencies + Direction + Relations+ Subcategorization + Distance + Parts-of-Speech 1013.4 Summary . 1024 Previous Work 1034.1 Introduction . 1034.2 A Brief History of Probabilistic Parsing for Natural Language 1034.3 Five Categories of Previous Work . 1094.4 Probabilistic Models without Lexical Sensitivity 1104.4.1 Results for PCFGs on the Penn WSJ Treebank 1104.4.2 Partially Supervised Training of PCFGs 1114.4.3 Methods with Increased Structural Sensitivity 1124.4.4 PCFG Parsing Algorithms for Di�erent Evaluation Criteria 1154.4.5 The E�ect of Annotation Style on PCFG Accuracy 1154.4.6 Representation of PCFG Rules as Markov Processes 1164.5 Rule-Based Learning Methods . 116ix

4.6 Ranking Parse Trees through Scores Associated with Semantic Tuples . . . 1184.7 Probabilistic Versions of Lexicalized Grammar Formalisms 1194.7.1 Stochastic Tree Adjoining Grammars 1194.7.2 Link Grammars . 1214.7.3 Lexicalized PCFGs . 1234.7.4 Head Automata . 1234.7.5 Stochastic Attribute-Value Grammars 1244.8 Previous Work on Parsing the Penn WSJ Treebank 1254.8.1 Formalisms Including Dependency Probabilities 1254.8.2 History-Based Models . 1265 Prepositional Phrase Attachment through a Backed-O� Model 1305.1 Introduction . 1305.2 Background . 1315.2.1 Training and Test Data . 1315.2.2 Outline of the Problem . 1315.2.3 Lower and Upper Bounds on Performance 1325.3 Estimation based on Training Data Counts 1335.3.1 Notation . 1335.3.2 Maximum-Likelihood (ML) Estimation 1335.3.3 Previous Work . 1345.4 The Backed-O� Estimate . 1355.4.1 Description of the Algorithm . 1375.5 Results . 1385.5.1 Results with Morphological Analysis 1385.5.2 Comparison with Other Work . 1395.6 A Closer Look at Backing-O� . 1405.6.1 Low Counts are Important . 1405.6.2 Tuples with Prepositions are Better 1405.7 Conclusions . 1415.8 Further Discussion . 141x

5.8.1 Results with Limited Context . 1415.8.2 Results for Hindle and Rooth's Method 1426 A Statistical Parser Based on Bigram Lexical Dependencies 1446.1 Introduction . 1446.2 The Statistical Model . 1456.2.1 The Mapping from Trees to Sets of Dependencies 1476.2.2 Calculating Dependency Probabilities 1496.2.3 The Distance Measure . 1506.2.4 Sparse Data . 1536.2.5 The BaseNP Model . 1556.2.6 Summary of the Model . 1566.2.7 Some Further Improvements to the Model 1566.3 The Parsing Algorithm . 1586.4 Results . 1586.4.1 Performance Issues . 1596.5 Further Discussion . 1606.5.1 Representational Issues . 1606.5.2 Mathematical Issues . 1616.5.3 Summary . 1617 Three Generative, Lexicalized Models for Statistical Parsing 1627.1 Introduction . 1627.1.1 Probabilistic Context-Free Grammars 1647.1.2 Lexicalized PCFGs . 1657.2 Model 1 . 1687.2.1 The Basic Model . 1687.2.2 History-Based Models . 1697.2.3 Adding Distance to the Model . 1717.3 Model 2: The complement/adjunct distinction and subcategorization 1727.4 Model 3: Traces and Wh-Movement . 175xi

7.5 Special Cases . 1787.5.1 Non-recursive NPs . 1787.5.2 Coordination . 1807.5.3 Punctuation . 1817.5.4 Sentences with empty (PRO) subjects 1837.5.5 The Punctuation Rule . 1837.6 Practical Issues . 1857.6.1 Parameter Estimation . 1857.6.2 Dealing with Unknown Words . 1867.6.3 Part of Speech Tagging . 1867.7 The Parsing Algorithm . 1867.7.1 An Analysis of Parsing Complexity 1867.8 Results . 1907.8.1 A Closer look at the Results . 1918 Discussion 2008.1 More about the Distance Measure . 2008.1.1 The Impact of the Distance Measure on Accuracy 2008.1.2 Frequencies in Training Data . 2028.1.3 The Adjacency Condition and Right-Branching Structures 2028.1.4 The Verb Condition and Right-Branching Structures 2058.1.5 Structural vs. Semantic Preferences 2078.2 The Importance of the Choice of Tree Representation 2088.2.1 Representation A�ects Structural, not Lexical, Preferences 2108.2.2 The Importance of Di�erentiating Non-recursive vs. Recursive NPs . 2118.2.3 Summary . 2128.3 The Need to Break Down Rules . 2138.3.1 The Penn Treebank Annotation Style Leads to Many Rules 2148.3.2 Quantifying the Coverage Problem 2158.3.3 The Impact of Coverage on Accuracy 2168.3.4 Breaking Down Rules Improves Estimation 217xii

8.4 Comparison to Related Work on Parsing the Penn WSJ Treebank 2208.4.1 [Charniak 97] . 2208.4.2 [Jelinek et al. 94, Magerman 95, Ratnaparkhi 96] 2228.4.3 [Eisner 96, Eisner 96b] . 2278.4.4 [Goodman 97, Goodman 98] . 2289 Future Work 2309.1 Improving Parsing Accuracy . 2309.2 Recovering Additional Information . 2319.3 Parsing Languages other than English . 23310 Conclusions 235A A Description of The Head Rules 238B The Parsing Algorithm for Model 1 of Chapter 7 241B.1 The edge data-type . 241B.2 Subroutines that Create New Edges . 242B.3 Subroutines that Complete Entire Spans of the Chart 245C The Parsing Algorithm for Model 2 of Chapter 7 253D An Analysis of Parsing Complexity for the Models of Chapter 7 259D.1 A First Analysis of D1 and D2 . 260D.2 A Second Analysis of D1 and D2 . 261D.3 A Third Analysis of D1 and D2 . 261E E�ciency Considerations when Parsing 263E.1 Beam Search . 263E.1.1 The Figure of Merit . 263E.1.2 The Beam . 264E.2 Temporary Caching of Probabilities . 264
xiii

List of Tables
6.1 Percentage of dependencies vs. distance between the head words involved. . 1526.2 Percentage of dependencies vs. number of verbs between the head wordsinvolved. 1526.3 Results on Section 23 of the WSJ Treebank. 1576.4 The contribution of various components of the model. 1596.5 The trade-o� between speed and accuracy as the beam-size is varied. 1607.1 The conditioning variables for each level of back-o�. 1857.2 Results on Section 23 of the WSJ Treebank. 1907.3 Recall and precision for di�erent constituent types, for section 0 of thetreebank with model 2. 1927.4 Accuracy of the 25 most frequent dependency types in section 0 of thetreebank, as recovered by model 2. 1967.5 Accuracy of the 26-50'th most frequent dependency types in section 0 of thetreebank, as recovered by model 2. 1977.6 Accuracy for various types/sub-types of dependency (part 1). 1987.7 Accuracy for various types/sub-types of dependency (part 2). 1998.1 Results on Section 0 of the WSJ Treebank. 2018.2 Distribution of non-terminals generated as post-modi�ers to an NP (see treeto the left), at various distances from the head. 2038.3 Distribution of non-terminals generated as post-modi�ers to a verb withina VP (see tree to the left), at various distances from the head. 204xiv

8.4 Some alternative structures for the same surface sequence of chunks (NPB PPPP in the �rst case, NPB PP SBAR in the second case), where the adjacencycondition distinguishes between the two structures. 2068.5 Some alternative structures for the same surface sequence of chunks, wherethe verb condition in the distance measure distinguishes between the twostructures. 2068.6 Statistics for rules taken from sections 2-21 of the treebank, where comple-ment markings were not included on non-terminals. 2168.7 Statistics for rules taken from sections 2-21 of the treebank, where comple-ment markings were included on non-terminals. 2178.8 Results on Section 0 of the WSJ Treebank. 2178.9 (a) Distribution over rules with \told" as the head (from sections 2-21 ofthe treebank); (b) Distribution over subcategorization frames with \told"as the head. 219A.1 The head-rules used by the parser. 240B.1 Variables in the edge data-type . 242B.2 Variables in the context data-type . 242C.1 Variables in the context data-type . 258

xv

List of Figures
1.1 A Parse Tree . 31.2 (a) A parse tree. Head-words for each non-terminal are shown in paren-theses (for example, told is the head of the constituent S(told)). The -Ctag indicates complements as opposed to adjuncts: him is a complement(object), yesterday is an adjunct (temporal modi�er). (b) The domain of lo-cality of told in the tree. Only these parts of the tree are directly dependenton told. 181.3 Sub-derivations for words other than told in the sentence. 211.4 Generation of the hNP-C NP SBAR-Ci sequence to the right of the VBD. . . . 242.1 A PCFG . 532.2 A context-free tree, and its associated probability. 532.3 Pseudo-code for the CKY algorithm for PCFGs. 562.4 A stochastic program that generates trees. 592.5 A stochastic program that generates sequences. 592.6 A stochastic program that generates sequence pairs. 603.1 A case of PP attachment ambiguity. 703.2 A simple PCFG . 743.3 A case of coordination ambiguity. 763.4 Two possible structures for the same sequence of POS tags. 783.5 Two possible structures for the same sequence of POS tags. 78

xvi

3.6 (a) a lexicalized tree. (b) a list of dependencies that the tree contains. a') alexicalized tree with the PP attaching to the noun, and b') the dependenciesthat it contains. 803.7 (a) a lexicalized tree: each non-terminal has an associated headword (shownin parentheses after the non-terminal). (b) a list of rules in the tree, withthe head for each rule underlined. The de�nition of the head of each ruleleads to the recovery of headwords: each non-terminal receives its headwordfrom its head child. 813.8 The case of coordination ambiguity revisited, using a dependency represen-tation. 823.9 Two tree fragments and their associated dependencies ((b) and (b') showthe one dependency that di�ers between the two trees. 843.10 (a) a lexicalized tree. (b) a list of dependencies that the tree contains, withtheir direction and associated relations. 863.11 Two lexicalized trees, (a) and (a'), and the dependencies they contain, (b)and (b'). 883.12 Two trees that contain a dependency hcigarette! filteri. 903.13 (a) A lexicalized tree with the complement-adjunct distinction made. Com-plement non-terminals are marked with a -C su�x. (b) A list of the subcat-egorization frames associated with the tree (rules with a POS tag on theirleft hand side contribute no subcategorization frames, and are excluded fromthe table). 913.14 Two trees that should have low probability due to unlikely subcategorizationframes. 923.15 Three trees that contain a dependency hby ! acquisitioni. 953.16 Two competing trees which di�er by a single dependency, hin ! electionivs. hin! candidatei. 963.17 Two competing tree fragments which di�er by a single dependency, hby !shoti vs. hby ! believedi. 97
xvii

3.18 A tree, and the distance measure assigned by the �rst and second distancemeasures: String1, Distance1 are the features assigned by the �rst measure;String2, Distance2 are assigned by the second measure. 1006.1 An overview of the representation used by the model. 1466.2 Parse tree for the reduced sentence in Example 1. 1476.3 Each constituent with n children (in this case n = 3) contributes n � 1dependencies. 1486.4 Diagram showing how two constituents join to form a new constituent. . . . 1587.1 A non-lexicalized parse tree, and a list of the rules it contains. 1657.2 A lexicalized parse tree, and a list of the rules it contains. 1667.3 A partially completed tree derived depth-�rst. 1707.4 The next child, R3(r3), is generated with probability 1727.5 A tree with the \-C" su�x used to identify complements. 1727.6 Two examples where the assumption that modi�ers are generated indepen-dently of each other leads to errors. 1737.7 A +gap feature can be added to non-terminals to describe wh-movement. . 1767.8 Three examples of structures with baseNPs 1787.9 (a) the generic way of annotating coordination in the treebank. (b) and (c)show speci�c examples (with baseNPs added as described in section 7.5.1).Note that the �rst item of the conjunct is taken as the head of the phrase. . 1807.10 A parse tree before and after the punctuation transformations 1827.11 (a) the treebank annotates sentences with empty subjects with an empty-NONE- element under subject position; (b) in training (and for evalua-tion), this null element is removed; (c) in models 2 and 3 sentences withoutsubjects are changed to have a non-terminal SG. 1847.12 Four operations where a new constituent, OUT, is formed from either twoexisting edges, E1 and E2, or a single edge, E. 1887.13 A sketch of the parsing algorithm. 1897.14 A tree and its associated dependencies. 195xviii

7.15 Dependency accuracy on Section 0 of the treebank with Model 2. 1968.1 Two examples of bad parses produced by model 1 with no distance or sub-categorization conditions (Model1(No,No) in table 8. 2018.2 Alternative annotation styles for a sentence S with a verb head V, left mod-i�ers X1. 2098.3 Alternative annotation styles for a noun phrase with a noun head N, leftmodi�ers X1. 2098.4 BB = binary branching structures; FLAT = Penn treebank style annotations.2118.5 (a) The way the Penn treebank annotates NPs. (a') Our modi�cation to theannotation, to di�erentiate recursive (NP) vs. non-recursive (NPB) nounphrases. (b) a structure that is never seen in training data, but will receivemuch too high probability from a model trained on trees of style (a). 2128.6 Examples of other phrases in the Penn treebank where non-recursive andrecursive phrases are not di�erentiated. 2128.7 (a) and (b) are two candidate structures for the same sequence of words.(c) shows the �rst decision (labeled \?") where the two structures di�er.The arc above the NP can go either left (for verb attachment of the PP) orright (for noun attachment of the PP). 2248.8 (a) and (b) are two candidate structures for the same sequence of words.(c) shows the �rst decision (labeled \?") where the two structures di�er.The arc above the NP can go either left (for high attachment (a) of thecoordinated phrase) or right (for low attachment (b) of the coordinatedphrase). 2258.9 (a) and (b) are two candidate structures for the same sequence of words. (c)shows the �rst decision (labeled \?") where the two structures di�er. Thearc above the NP can go either left (for high attachment (a) of the appositivephrase) or right (for noun attachment (b) of the appositive phrase). 226B.1 An example constituent, and the values for its edge representation 243B.2 An example leaf-node constituent, and the values for its edge representation. 243xix

B.3 Two functions associated with the edge data-type. 244B.4 join 2 edges follow(edge e1,edge e2) joins two edges e1 and e2 to forma new edge e3. 246B.5 join 2 edges precede(edge e1,edge e2) joins two edges e1 and e2 toform a new edge e3. 247B.6 add singles(edge e) adds edges with a unary rule re-writing to edge e. . . 248B.7 add stops(edge e) forms a new edge by adding stop probabilities to edge e.249B.8 add singles stops(int start, int end) adds all stop probabilities, andedges which are created by unary rules, for the chart entries spanning wordsstart-end. 250B.9 initialize() initializes the chart. 251B.10 complete(int start,int end) completes all edges in the chart spanningwords start to end. 252B.11 parse() parses a sentence, returning the edge pointing to the top of thehighest probability tree. 252C.1 add singles(edge e) adds edges with a unary rule re-writing to edge e. . . 254C.2 join 2 edges follow(edge e1,edge e2) joins two edges e1 and e2 to forma new edge e3. 255C.3 join 2 edges precede(edge e1,edge e2) joins two edges e1 and e2 toform a new edge e3. 256C.4 add stops(edge e) forms a new edge by adding stop probabilities to edge e.257C.5 initialize() initializes the chart. 258

xx

Chapter 1
Introduction
Parsing is a fundamental problem in language processing for both machines and humans.Most natural language applications (such as Information Extraction, Machine Transla-tion, or Speech Recognition) would almost certainly bene�t from high-accuracy parsing.From a scienti�c standpoint, there is the question of how people interpret language: whatknowledge is used, and exactly how this knowledge is applied in practice.In its simplest form, the parsing problem involves the de�nition of an algorithm thatmaps any input sentence to its associated syntactic tree structure. This thesis takes amachine-learning approach to the problem. The sentence ! tree function1 is induced froma training set, a set of example sentence{tree pairs. A test set of sentence{tree pairs isused to evaluate the model's accuracy.In common with several other approaches, we adopt a statistical method. The learningproblem then becomes a task of estimating parameter values from training data. Thisthesis considers two critical questions regarding the parameterization of the problem:1. What linguistic objects (e.g., context-free rules, parse moves) should the model'sparameters be associated with? I.e., How should trees be broken down into smallerfragments?2. How can this choice be instantiated in a sound probabilistic model?1We assume a de�nition of the parsing problem where each sentence must be mapped to a singletree structure, even if this requires disambiguation using knowledge sources in addition to the grammar.This contrasts with another common de�nition of the parsing problem, where the task is to recover allsyntactically well-formed trees for a sentence, without any disambiguation.1

Our goals are two-fold. First, we aim to advance the state of the art, by reporting im-proved parsing accuracy over previous results. Second, we aim to increase understandingof the parsing problem, through a detailed analysis of our parsing models, and a detailedcomparison to models proposed elsewhere in the literature.1.1 An Overview of this ChapterSection 1.2 gives practical motivation for parsing, describing the information representedby parse trees, with some example applications as further illustration. Section 1.3 thendescribes a major di�culty, ambiguity. There are several pathological factors when pars-ing in a broad domain: the grammar required for broad coverage is large; sentences aretypically long; and many common types of ambiguity lead to an exponentially growing(with respect to the sentence length) number of analyses. The end result is that ambiguitybecomes an astonishingly severe problem. Section 1.4 sketches previous work, in rule-basedand statistical approaches to parsing.Section 1.5 is the major part of this introduction, outlining the approach in this the-sis. We de�ne the choice of parameterization as the choice of how to break down parsetrees, two questions then arising: (1) what linguistic objects (e.g., context-free rules, parsemoves etc.) should the model's parameters be associated with?; (2) How can this choicebe instantiated in a sound probabilistic model? We introduce two criteria for a parame-terization: discriminative power (that the parameters should represent the data well) andcompactness (that the parameters should represent the data concisely).An example from the belief networks literature is then discussed: it has several impor-tant lessons for parsing. The causality of physical problems is an important motivationfor the modeling choices in belief networks; reasoning about the causality of the problemis essential for a compact parameterization. We argue that the analogue of causality inthe parsing case is locality. In particular, the locality of a lexical head's inuence in aparse tree should be used to motivate modeling choices in statistical parsing models. The�nal model in this work has parameters reecting a head's local domain of inuence inthe tree (i.e., the model has parameters that encode the X-bar schema, subcategorization,2

SNPNPNNPIBM , NPNPJJlong-time NNrival PPINof NPNNPMicrosoft
, VPVBDacquired NPNNPLotus PPINon NPNNWednesdayFigure 1.1: A Parse Treeordering of complements, placement of adjuncts, lexical dependencies, preferences for closeattachment, and wh-movement; all preferences being expressed by parameters conditionedon head-words).1.2 The Practical Motivation for ParsingThe tree in �gure 1.1 represents several levels of information. The non-terminal directlyabove each word in the sentence is the part-of-speech for that word: for example, the treeindicates that \Lotus" is an NNP (proper noun), \acquired" is a VBD (past-tense verb),\long-time" is a JJ (adjective). The tree describes the hierarchical grouping of words intophrases: \IBM" is an NP (noun phrase), \IBM, long-time rival of Microsoft" is also an NP;\acquired Lotus on Wednesday" is a VP (verb phrase); and so on.Finally, the tree represents grammatical relations between phrases or words. In a rulehS ! NP VPi the NP is the subject of the verb within the VP (by this rule, \IBM , long-timerival of Microsoft" is the subject of \acquired"). Similarly, hVP ! VB NPi represents anobject-verb relationship (\Lotus" is the object of \acquired") and hVP ! VB ... PPirepresents prepositional-phrase modi�cation of a verb (\on Wednesday" modi�es \ac-quired"). These syntactic roles allow us to directly read predicate-argument relationsfrom the tree: that IBM, by virtue of being the subject, is doing the acquiring (ratherthan Microsoft); that Lotus, by virtue of being the object, is the acquiree; and so on.3

A number of potential applications | Information Extraction (IE), Information Re-trieval (IR), Machine Translation (MT), and Speech Recognition | serve to illustrate howthis information could be useful. In an Information Extraction task, an NLP system �llsa database with facts extracted from some group of documents. Given several years ordecades of newswire text, a user might make the query \retrieve all buyer{buyee pairswhere buyer is an acquiring company, and buyee is the company being bought". A parsertogether with a lexicon of verbs of buying/selling2 could achieve much of this task.High precision Information Retrieval is a related task. A query such as \retrieve allarticles where Microsoft bought something" can be implemented, given a set of parsedarticles, as a retrieval of all documents where Microsoft is the subject of verbs such as buy,acquire or purchase3.Machine translation (MT) is another application. One problem in MT is alignment:the description of how the word order in one language maps to the word order in anotherlanguage. English and Japanese have quite di�erent word orders, as in the followingsentences:English: IBM bought LotusJapanese: IBM Lotus boughtEnglish: Sources said that IBM bought Lotus yesterdayJapanese: Sources yesterday IBM Lotus bought that saidOn the surface, the correspondence between the two longer sentences looks quite com-plex. With parse structure, the mapping can be described by a simple recursive de�nition,each rule in the English grammar having a corresponding rule in Japanese. For example,the rule hVP ! VB NPi in English maps to the rule hVP ! NP VBi in Japanese (reect-ing the fact that the object in English follows the verb, while in Japanese this order isreversed).2The lexicon would need to specify for each lexical item its mapping from syntactic to semantic roles,containing entries such as fverb = acquire/buy/purchase) subject = Buyer, object = Buyee g, fverb =sell) PP headed by to = Buyer, object = Buyee g.3Note that this implementation would not retrieve a document including the sentence in �gure 1.1; asearch based on simple co-occurrence or proximity of Microsoft and buy/acquire/purchase would retrieve afalse-positive in this case. 4

Speech recognition is our �nal example. Current speech recognizers generally use a\trigram" language model to give a prior probability distribution over strings in a lan-guage. The prior probability of a sentence is calculated as a product of terms, each termcorresponding to a window of three consecutive words. In the following example of ismis-recognized as that:Actual Utterance: He is a resident of the U.S. and of the U.K.Recognizer output: He is a resident of the U.S. and that the U.K.In spite of being ungrammatical, the second sentence will receive high prior probabilityunder a trigram model, as all triples of words that it contains are quite plausible. Thisexplains the recognition error. The later models in this thesis (chapter 7) are not onlyparsing models, but also assign probabilities to strings in a language. In contrast totrigram models, they will give low probability to ungrammatical strings like the example,and will also capture statistical dependencies between words that fall outside the three-word window (for example, the subject{verb relation IBM{acquired in �gure 1.1). (Model2 of chapter 7 of this thesis assigns 78 times higher probability to the correct string inthe above example. In contrast, a bigram model trained on the same data assigns over 10times greater probability to the incorrect string, primarily because the bigram hand thatiis around 15 times as frequent as hand ofi.)1.3 A Major Problem: AmbiguityAmbiguity is a major problem in parsing, and a primary motivation for statistical methods.A few causes of syntactic ambiguity (there are many others) are as follows:� Part-of-speech (POS) ambiguity. For example, the word saw can be either a verb ora noun.� Prepositional-Phrase attachment ambiguity. The sentenceThe woman saw the man with the telescopehas at least two syntactic trees: one where the PP with the telescope modi�es man,the other where it modi�es saw. 5

� Coordination. In the phrasea program to promote safety in trucks and vansvans could be coordinated with trucks, safety or program.The coordination example deserves further attention. There is clearly only one plausibleinterpretation: vans and trucks are coordinated. But there are several other structuresthat are syntactically well-formed: vans could be coordinated with safety or program; thepreposition in could modify safety, promote or program. This gives at least 6 parse treesfor the string4. All but one analysis is highly implausible from a semantic standpoint, butall 6 analyses will be recovered by a parser that is armed with syntactic information alone.[Church and Patil 82] noted that PP attachment ambiguity leads to an exponentialblow-up in the number of analyses for a sentence. A sequence hVB NP PP*i with n PPs hasCn+1 analyses, where Cn+1 is the (n+ 1)'th Catalan number.5 Other types of ambiguityshow similar exponential behaviour. In newswire text, sentences are typically quite long:the average sentence length in Wall Street Journal (WSJ) is around 23 words, with 26%of sentences being over 30 words in length, and 7% being over 40 words. Moreover, agrammar with a very large number of rules is required for coverage of a broad domain.The combination of a large grammar, long sentences, and exponential factors leads toambiguity being an astonishingly severe problem in broad domains such as Wall StreetJournal.4And there are almost certainly more analyses. a program to promote is an NP (as in a program topromote is all we need). safety in trucks and vans has two analyses as an NP. A wide-coverage grammarwould need a rule NP ! NP NP to cover appositive cases without a comma, as in Suddenly, George Bushthe pro-choice advocate became George Bush the abortionist (an example from the Penn WSJ treebank).Thus there are two structures of the form [NP [NP a program to promote] [NP safety in trucks and vans]],and still more analyses such as [NP [NP [NP a program to promote] [NP safety]] [PP in trucks and vans]].5The nth Catalan number Cn is 1n+1 � 2nn �.
6

1.4 Previous Approaches1.4.1 Rule-Based ApproachesA standard approach to the parsing problem (see [Allen 87] for an overview) is as follows.A grammar is hand-crafted, often in some kind of uni�cation formalism, often with alarge amount of lexically speci�c information in the form of subcategorization information.Ambiguity is resolved through selectional restrictions (e.g., a lexicon might (1) specify thateat must take an object with the feature +food, and (2) specify which nouns in the lexiconhave the +food feature). While perhaps feasible in a limited domain such as database querytasks (as in LUNAR [Woods 70] or SRI's system for the Air Travel Information System(ATIS) domain [Dowding et al. 93]), selectional restrictions run into several problems whenscaled to wide-coverage tasks. First, the vocabulary size becomes so large that the sheervolume of information required becomes daunting6. Second, selectional restrictions havelong been known in linguistics to have theoretical problems (e.g., see [McCawley 68]).While these problems may not come to light in a restricted domain, they are encounteredfrequently in a broad domain. At the very least, this implies that selectional restrictionsshould be encoded as soft preferences rather than hard constraints.Additional problems are the large size of a broad-coverage grammar, and the fact thatstructural preferences7 also come into play during disambiguation. Structural preferencesinteract in subtle ways with syntactic and semantic information, and are also best encodedas soft preferences.It is di�cult to �nd direct evidence of how successful these methods were on broad-coverage domains, as most systems were built and tested before treebanks became availableto support evaluation. (Although see [Black et al. 93] section 1.2 for some relevant discus-sion.) We can, however, cite one source of indirect evidence. The Message Understanding6We counted 24,444 distinct words in 40,000 sentences of WSJ text (a conservative estimate: we onlycounted words starting with lower-case letters, thereby excluding numbers and proper nouns). The problemis further compounded by the need for di�erent entries for each word-sense of a word, increasing the volumeof information required, and leading to di�cult distinctions about what exactly constitutes a separate sensefor a word.7For example, close-attachment. The sentence John was believed to have been shot by Bill has twosemantically plausible readings: Bill could have done either the shooting or the believing. The strongpreference for the \shooting" reading is almost certainly due to a preference for attachment to the mostrecent verb. 7

Conferences (MUCs) evaluated NLP systems for information extraction from newswirearticles. By the time of MUC-6 [MUC-6, 1995], none of the 5 best-performing systems(from BBN, Lockheed-Martin, NYU, SRA and SRI) used full parsing. At most, they useda partial parser, as in BBN's system; more often they used �nite-state pattern-matchingtechniques as exempli�ed in [Appelt et al. 93]. Many of these sites originally attemptedthe MUC tasks with a full parser: see [Appelt et al. 93] and [Grishman 95] for descriptionsof how two of the sites moved away from full parsing to �nite-state methods.1.4.2 Statistical MethodsIn response to these di�culties, researchers began to investigate machine-learning ap-proaches to the problem, primarily through statistical methods (with some notable excep-tions, such as the rule-based learning methods of [Brill 93] or [Hermjakob and Mooney 97]).A \treebank" | a set of example sentence/parse-tree pairs | is annotated by hand andused to train a parsing model. Some part of the treebank is reserved as test data, beingused to evaluate the model's accuracy.Early work investigated the use of Probabilistic Context Free Grammars (PCFGs), butwith rather disappointing results: as we will see later, a simple PCFG's failing is its lackof sensitivity to lexical information and structural preferences. Research then moved inseveral directions: towards models that had increased structural sensitivity; to partiallysupervised training algorithms; to probabilistic versions of lexicalized grammars; and to\history-based" models.[Magerman 95] described the SPATTER parser (an extension of the work describedin [Jelinek et al. 94]) applied to the Penn WSJ treebank [Marcus et al. 93]. This workrepresented a maturation of statistical parsing techniques, in several respects:� It represented a major advance in the scale of the tasks undertaken by statisticalparsers. All sentences up to 40 words in length were parsed, on a domain (WSJ)that is much less restricted than previously tested domains such as ATIS or the IBMcomputer manuals data.
8

� The parser was trained completely automatically from the treebank, with no require-ment for a hand-crafted grammar.� The results represented a major improvement over the accuracy for PCFGs: 84.5/84.0%precision/recall on section 23 of the Penn WSJ treebank. ([Charniak 97] later re-ported that a non-lexicalized PCFG scores around 72% averaged precision/recall onthis task.)� The model had parameters that conditioned heavily on lexical information, presum-ably accounting for much of its improvement over PCFG-based methods.The SPATTER parser will serve as a benchmark for the work in this thesis. At its timeof publication, it gave the best accuracy results reported on the Penn WSJ treebank |representing a substantial improvement over previous work. It embodies a very di�erentapproach from the one taken in this thesis; the contrast between the two methods raisesseveral interesting issues.1.5 This ThesisThis thesis considers alternative parameterizations for statistical parsing. By a parameter-ization we mean something quite explicit. Statistical parsing models assign a probabilityScore(T; S) to each Tree-Sentence (T; S) pair in a language8. The most likely tree for aninput sentence S is then de�ned asTbest(S) = argmaxT Score(T; S) (1.1)Under this view the parsing problem is separated into two components: (1) the model isa function that de�nes a probability Score(T; S) for each (T; S) pair; (2) the parser is analgorithm that implements the search for Tbest for any input sentence S.For the model to have a tractable number of parameters, a (T; S) pair must be brokendown into a set of \events" hEvent1:::Eventni. Score(T; S) is then calculated as a product8Score(T; S) could be either a joint probability P (T; S) or a conditional P (T jS); we use the term Scoreto indicate neutrality between these possibilities. 9

of terms, each Event having a corresponding probability:Score(T; S) = Yi=1:::nScore(Eventi) (1.2)The choice of parameterization is the choice of how to break down the tree; in otherwords, what types of events to associate parameters with. There are many possible waysof breaking down trees. In a PCFG, parameters are associated with rules in the tree. Inthe SPATTER parser, parameters are associated with moves made by a parsing algorithm,each Event being a hparse-decision, contexti pair (context is a set of features encodinginformation in the local area of the parse decision).The choice of parameterization is central to the success of a parsing model. Two criteriaare particularly important:Discriminative Power The parameters should include the contextual information re-quired for disambiguation decisions. If a parse tree is implausible because of a par-ticular part of its structure, this should be reected in the parameters associatedwith that parse tree.PCFGs (in their simplest form) are an example of a model that fails in this respect.As we will see later, they are too insensitive to lexical information and structuralpreferences to provide a model with adequate discriminative power.Compactness Given that it has adequate discriminative power, the model should have asfew parameters as possible. The number of parameters in a model roughly determinesthe amount of training data required to train the model. Put another way, thecompactness of a model will determine how close it comes to �lling its full potentialgiven the (almost certainly) limited amount of training data, and the consequentproblem of under-training.As illustration, take a model that associates probabilities with entire trees | eachtree in a language is represented as a single Event, the full tree itself. This modelhas tremendous discriminative power, being able to model arbitrary properties of thetree. But it fails badly by the compactness criterion. It is unlikely that we wouldever have enough training data to train a model of this type. Section 1.5.1 will givefurther illustration of the idea of compactness.10

In short, a good parameterization should represent the data well, and it should representthe data concisely.9This thesis addresses two questions regarding the parameterization of statistical parsingmodels:1. What linguistic objects (e.g., context-free rules, parse moves etc.) should the model'sparameters be associated with? I.e., How should trees be broken down into smallerfragments?2. How can this choice be instantiated in a sound probabilistic model?Before going into the details of these questions, we introduce an example from the BeliefNetworks literature that has some important lessons for the parsing problem.1.5.1 An Example: Belief Networks and Causality[Russell and Norvig 95] describe the following belief networks problem, which they cite asbeing originally due to Judea Pearl. A person has a house with a burglar alarm, and is atwork. She has two neighbors, John and Mary, who are fairly reliable at calling her at workshould the alarm go o�. There are two possible triggers for the alarm: either a burglaryor an earthquake. The task is to build a model that supports queries such as \Given thatMary has called, what is the probability that there was a burglary", or \Given that thereis an earthquake, what is the probability that both John and Mary will call".We can use 5 binary-valued random variables to model the problem: A indicateswhether or not the alarm has gone o�; E and B indicate whether there was an earth-quake or burglary respectively; J and M indicate whether John or Mary respectivelyhave called. To support all possible inferences, we require a model of the joint probabil-ity P (A;B;E; J;M). Marginal probabilities such as P (BjM) or P (J;M jE) can then becalculated.9It is important to realise that we are not merely talking about the familiar trade-o� between underand over-training. Di�erent modeling choices can lead to parameterizations with the same discriminativepower, but quite di�erent compactness properties. Some models fail to capture important generalisations,unnecessarily fragmenting training data events, thereby being much less compact than they could be.Consequently, some models will take more training data to achieve the same performance as a more compactmodel; or equivalently, they will perform worse given the same amount of training data.11

In the worst case, this distribution has 32 possible con�gurations and would require 31parameters. However, we can build a more compact model using the following procedure:1. Choose an ordering for the 5 variables | we will choose the order hB, E, A, J , Mi.Re-write the joint probability using the chain rule with this ordering:P (A;B;E; J;M) = P (B)P (EjB)P (AjE;B)P (J jA;E;B)P (M jA;E;B; J) (1.3)2. For each of the 5 terms in equation 1.3, where possible make independence assump-tions and thus reduce the number of parameters in the model. We make the followingindependence assumptions: P (EjB) = P (E) (1.4)P (J jA;E;B) = P (J jA) (1.5)P (M jA;E;B; J) = P (M jA) (1.6)The independence assumptions are justi�ed through our knowledge of causality in theworld. For example, it is reasonable to assume that there is no causal link betweenearthquakes and burglaries, and therefore that P (EjB) = P (E).These steps give a �nal solution to the model:P (A;B;E; J;M) = P (B)P (E)P (AjE;B)P (J jA)P (M jA) (1.7)Providing that the independence assumptions are correct, the model ful�lls the �rst crite-rion of �tting the data well. It also ful�lls the second criterion, being quite compact: themodel has 10 parameters as opposed to 31 for the unreduced model10.In general, the design of a belief net model is a three step process:1. Choose the variables involved in the problem. In the previous example, we chose thevariables A, B, E, J and M .2. Choose an ordering for the variables (in the example, hB, E, A, J , Mi) and rewritethe joint probability using the chain rule.10This di�erence may not seem dramatic, but that is because there are only 5 variables in the example.Providing that su�cient independence assumptions can be made, there will generally be an exponentialreduction in the number of parameters in a belief net with n nodes, from 2n � 1 to O(n) parameters.12

3. Make independence assumptions for each of the terms in the chain of probabilities.An important point is that a good choice of variable ordering (step 2) is critical to agood parameterization of the problem. To see this imagine we chose a di�erent order, hM ,J , E, B, Ai. In this case the chain rule gives:P (A;B;E; J;M) = P (M)P (J jM)P (EjJ;M)P (BjJ;M;E)P (AjJ;M;E;B) (1.8)With equation 1.8, it turns out to be impossible to simplify any of the terms throughreasonable independence assumptions11. The result is that each of the parameters is notreduced, and the model requires 31 parameters. The model will represent the same dis-tribution as the model with 10 parameters (i.e., it has equal discriminative power), but itis much less compact. Note also that the parameters in the model are now quite counter-intuitive: it is di�cult to judge what terms such as P (AjJ;M;E;B) or P (J jM) correspondto in the world.Two lessons emerge from this. For a compact parameterization of a problem:1. The choice of variable ordering is crucial. With a good ordering, independenceassumptions fall out naturally. With a bad ordering, it may be impossible to makeindependence assumptions.2. A general guideline is that the choice of ordering should reect the causality of theproblem. B and E can both cause an alarm, and should therefore precede A in theordering; A can cause John or Mary to call, and should therefore precede J and Min the ordering. The ordering hB, E, A, J , Mi satis�es these constraints (as wouldsome other orderings such as hE, B, A, M , Ji).These lessons have strong parallels in the parsing case.1.5.2 Modeling Parse StructuresMost statistical parsing models | including PCFGs, SPATTER, and the models in thisthesis | fall within the framework of history-based models (originally applied to parsing11As an example, P (J jM) = P (J) is not a good independence assumption, as knowing that Mary hascalled increases the chances that the alarm has gone o�, thereby increasing the chance that John has called.Similar arguments apply to the other terms. 13

by [Black et al. 92b]12). The design of a history-based model involves three steps:1. Representation. Choose how to represent parse trees. For example, choose theset of part-of-speech tags and non-terminal labels in the tree; choose whether or notto have lexical head-words attached to non-terminals; choose whether to representwords directly, or as their morphological stems, or as bit-strings derived throughclustering techniques.2. Decomposition. This step involves the de�nition of a one-to-one mapping betweenparse trees T and decision sequences hd1:::dni. The sequence hd1:::dni can be thoughtof as the sequence of moves that builds T in some canonical order. The model de�neseither a joint probability P (T; S) over all possible tree-sentence (T; S) pairs, or aconditional probability P (T jS) over all candidate trees for a particular sentence.Given a mapping between trees and decision sequences, the probability of a tree canbe written either as P (T jS) = Yi=1:::nP (dijd1:::di�1; S) (1.9)or P (T; S) = Yi=1:::nP (dijd1:::di�1) (1.10)In conditional models, a tree is usually associated with the sequence of decisionsmade by a particular parser in recovering the tree. In joint models, the decisions areusually the steps in some top-down derivation of the tree, for example the sequenceof productions used in a left-most derivation of a context-free grammar.3. Independence Assumptions. This step involves the de�nition of a function, �,which groups decision sequences into equivalence classes, thereby reducing the num-ber of parameters to manageable proportions. The �nal model is then one of theforms P (T jS) = Yi=1:::nP (dij�(d1:::di�1; S)) (1.11)12Although the term \history-based" has perhaps recently become strongly associated with conditionalmodels that de�ne P (T jS), i.e., [Jelinek et al. 94, Magerman 95, Ratnaparkhi 97], they can also be used tocreate joint models de�ning P (T; S). In fact, the paper that originally used this term | [Black et al. 92b]| described a joint model. 14

P (T; S) = Yi=1:::nP (dij�(d1:::di�1)) (1.12)The choice of � could either be made by hand, or automatically using a machine-learning technique such as decision trees (the SPATTER parser uses a conditionalmodel in step (2), together with decision trees for automatic search for independenceassumptions).These three steps are highly analogous to the three steps in the design of belief networks.The choice of representation in parsing corresponds to the choice of variables in beliefnetworks (A, B, E, J , and M in the alarm example); the choice of decomposition inparsing corresponds to the choice of variable ordering in belief networks; the choice ofindependence assumptions is required in both model types.We argue that the second step | the choice of decomposition | is critical for asuccessful parameterization of the parsing problem. This shouldn't be a surprise, giventhat its analogue in the belief networks case (the choice of variable ordering) was seen tohave a critical e�ect in that example. With a good choice for step 2, it is easy to makeindependence assumptions that lead to a good parameterization of the problem. A badchoice for step 2 leads to linguistically implausible parameters: i.e., parameters that failby either or both of the criteria of discriminative power and compactness.The SPATTER model can now be evaluated in terms of the three steps. From thecomments in the preface of [Magerman 95], it seems the reasoning behind the model wasas follows. Linguistic expertise would be used in step 1 | a linguistic \expert" would pickall parse-tree features that might be useful for disambiguation. Decision trees would thenbe used for step 3, identifying the features that were actually useful for disambiguation.On the surface this seems a very plausible approach; but we argue that its weakness is alack of appreciation for the importance of step 2. SPATTER chose to represent a parse-treeas the sequence of decisions made in a bottom-up parse of the tree. The parameters in themodel are then associated with hparse-move, contexti pairs. When we analyse the modelin more detail later in this thesis, we will see that in some cases parameters miss importantdisambiguating information, and in other cases they unnecessarily fragment training data.The parameters are de�cient in terms of both discriminative power and compactness.15

Our emphasis of the importance of step 2 leaves us with an important question. Inthe belief networks example, causality was used to motivate the choice of variable orderingand independence assumptions. In the parsing problem there is no physical process, andtherefore no clear notion of causality. So what should motivate the choice of decompositionin parsing?1.5.3 A Motivation for the Choice of Decomposition: Causality and Lo-calityIn the belief networks example, causality was used to motivate the choice of variableordering and independence assumptions. But what is the analogue of causality in theparsing case?The key is that reasoning about causality in the physical world is closely related toreasoning about locality. The domain of locality of an event is the region of space-timethat it can a�ect. By de�ning the domain of locality for an event we can reason aboutthe causal inuences that it can and can't exert. In the belief nets example, in makingthe independence assumption P (EjB) = P (E) we are reasoning about the locality of thee�ects of a burglary: that a burglary's inuence is limited, and that it certainly doesn'textend to causing earthquakes. Similarly, in deciding that P (J jM;A;B;E) = P (J jA), weare reasoning about the domain of locality of events M;A;B;E: that the events M;B;Eare limited in their domain of locality, and do not directly inuence the chance of Johncalling (for example, we are assuming that Mary does not run into John in the street, tellhim that she's already called, and thereby dissuade him from calling).Once we have equated causality with locality, the step to linguistics and parsing isa small one. Much of the work in linguistics focuses on conditions on structural local-ity. In particular, highly lexicalized formalisms such as LFG [Kaplan and Bresnan 82],TAG [Joshi 87], CCG [Steedman 96], HPSG [Pollard and Sag 94] and Minimalism/GB[Chomsky 95] stress the locality of the inuence of lexical heads in a parse tree. Eachword in a sentence a�ects a limited domain within the tree. TAG is a clear example | alexical head has an associated elementary tree that directly represents any constraints as-sociated with that head ([Frank 92] discusses these constraints extensively). Lexical entries16

in LFG, CCG and HPSG are also rich representations of the constraints associated with ahead word. Chomsky's discussion of X-bar theory within Minimalism ([Chomsky 95] page172) contains the following passage:An X-bar structure is composed of projections of heads selected from the lexi-con. Basic relations, then, will involve the head as one term. Furthermore, thebasic relations are typically \local".Now take the example tree in �gure 1.2(a). In our �nal models, the probability forthis tree will be calculated as a product of terms, each term being a probability that isconditioned on one of the lexical items in the sentence. Thus each word in the sentencewill have an associated set of probabilities. Take the parameters associated with told as anexample. We will see in the next section that these parameters reect the local inuence oftold in the parse tree. Figure 1.2(b) shows a sub-tree associated with told; we will take thisto be the domain of locality for told. told will be responsible for the spine of this sub-tree, S! VP ! VBD; for its subject, its object, an NP adjunct and the SBAR complement; and forthe head-words of these constituents, IBM, him, yesterday, and that. To ip the analogy,we can think of told as having caused, or generated, all and only these parts of the treein 1.2(a).Our aim, then, should be to choose an order of decomposition that allows a param-eterization that reects the local inuence of lexical heads. This leads to an immediateconstraint on the decomposition of the tree: a lexical head must be generated before allstructure that is dependent upon it. For example, told must be generated before the treestructure and other lexical items in the tree of �gure 1.2(b). This constraint leads us toa head-centered derivation of the tree. Given this choice of decomposition, independenceassumptions reecting the domain of locality of each lexical head fall out naturally.1.5.4 A Sketch of the Parameter TypesWe now describe the di�erent types of parameters in the �nal models of this thesis. (Chap-ter 7 gives an exact de�nition of the parameters; this section gives more of a sketch, omit-ting some details for the sake of conciseness. Chapter 3 gives detailed motivation for each17

(a) S(told)NP-C(IBM)NNPIBM VP(told)VBDtold NP-C(him)PRPhim NP(yesterday)NNyesterday SBAR-C(that)INthat S-C(bought)NP-C(they)PRPthey VP(bought)VBDbought NP-C(Lotus)NNPLotus(b) S(told)NP-C(IBM) VP(told)VBDtold NP-C(him) NP(yesterday) SBAR-C(that)Figure 1.2: (a) A parse tree. Head-words for each non-terminal are shown in parentheses(for example, told is the head of the constituent S(told)). The -C tag indicates com-plements as opposed to adjuncts: him is a complement (object), yesterday is an adjunct(temporal modi�er). (b) The domain of locality of told in the tree. Only these parts ofthe tree are directly dependent on told.
18

of these parameters in terms of their discriminative power.) For illustration, we will sketchthe parameters associated with told in the tree of �gure 1.2(a).The model uses a history-based approach; a parse-tree is represented as the sequenceof decisions in a canonical top-down, head-centered derivation of the tree. Each decisionhas an associated probability. The �rst decision in the derivation is a special move thatchooses the top node of the tree. In the example, S(told) is generated:INPUT: START OUTPUT: S(told)This decision has probability P (S(told) j START).The next part of the derivation | a sub-sequence of decisions | will contribute theprobabilities conditioned on told. The input to this sub-derivation is the S(told) non-terminal that has just been generated. The output of the sub-derivation is a sub-tree withS(told) at its root:INPUT: S(told) OUTPUT: S(told)NP-C(IBM) VP(told)VBDtold NP-C(him) NP(yesterday) SBAR-C(that)The output is built incrementally in a series of stages. Each stage contributes a di�erentparameter type, namely probabilities corresponding to: (1) a choice of the X-bar spine ofthe sub-tree; (2) a choice of subcategorization frames; (3) a choice of the relative orderof the complements, and the placement of adjuncts; (4) a choice of head words for thecomplements and adjuncts. Next, we will describe the stages of the derivation, and explainthe probabilities that result from each stage.Note that once the sub-derivation has generated the sub-tree associated with told, the19

non-terminals NP-C(IBM), NP-C(him), NP(yesterday) and SBAR-C(that) will recursivelygenerate their own sub-trees, thereby contributing probabilities conditioned on IBM, him,yesterday and that respectively. Figure 1.3 shows the sub-derivations associated with otherwords in the sentence. We will now describe how the sub-derivation associated with toldis broken down into a sequence of decisions.Head Projection ParametersINPUT: S(told) OUTPUT: S(told)VP(told)VBDtoldThere are two decisions in this example involving the generation of the X-bar spine ofthe tree. The probability of each decision is given by a parameter speci�c to the headwordtold. P (VPjS,told) is the probability of an S node with told as its head-word taking a VPnode as its head. P (VBDjVP,told) is the probability of a VP node with told as its head-wordtaking a VBD node as its head. The spine is then complete because VBD (unlike VP and S)is a part-of-speech tag.Once their values are learned, these parameters encode the X-bar schema | that averb projects upwards to a VP which in turn projects to an S, or that a noun projects upto an NP, and so on.Subcategorization ParametersINPUT: S(told)VP(told)VBDtold
OUTPUT: S(told)fNP-CgVP(told)fgfgVBDfNP-C,SBAR-Cgtold20

NP-C(IBM)) NP-C(IBM)NNP(IBM)IBMNP-C(him)) NP-C(him)PRP(him)himNP(yesterday)) NP(yesterday)NNP(yesterday)yesterdaySBAR-C(that)) SBAR-C(that)IN(that)that S-C(bought)S-C(bought)) S-C(bought)NP-C(they) VP(bought)VBD(bought)bought NP-C(Lotus)NP-C(they)) NP-C(they)PRP(they)theyNP-C(Lotus)) NP-C(Lotus)NNP(Lotus)LotusFigure 1.3: Sub-derivations for words other than told in the sentence. Each sub-derivationwill contribute a set of probabilities conditioned on the lexical item that is the input tothe sub-derivation. 21

In the next stage, subcategorization decisions are made. Left and right subcategoriza-tion frames are chosen to be added at each level of the tree. Thus there are four decisions tobe made at this stage for the example. Again, each decision has an associated probability:� P (fNP-Cgjparent=S,child=VP,told,LEFT) is the probability that told takes a singleNP complement to its left, at the level where the parent non-terminal is S and thehead-child non-terminal is VP (i.e., it is the probability of told taking a single subject).� P (fgjparent=S,child=VP,told,RIGHT) is the probability that told takes no com-plements to its right at the S/VP level.� P (fgjparent=VP,child=VBD,told,LEFT) is the probability that told takes no com-plements to its left at the VP/VBD level.� P (fNP-C,SBAR-Cgjparent=VP,child=VBD,told,RIGHT) is the probability that toldtakes both an NP and an SBAR complement to its right at the VP/VBD level. (Note thatthe subcategorization frame is an unordered multiset, so at this stage the relativeorder of the two complements is unspeci�ed.)These parameters allow the model to learn a probability distribution over possible subcate-gorization frames for each entry in the lexicon: for example, the probability that any givenverb will take a single subject (presumably a probability equal to 1); the probability of toldtaking NP and SBAR complements; or the probability of give taking two NP complements.Placement of Complements and AdjunctsINPUT: S(told)fNP-CgVP(told)fgfgVBDfNP-C,SBAR-Cgtold
OUTPUT: S(told)NP-C VP(told)VBDtold NP-C NP SBAR-CHaving chosen the subcategorization frames, decisions are made regarding the relativeorder of the di�erent complements, and about whether the head takes any adjuncts. In22

the example, four sequences of modi�er non-terminals are generated: the sequence hNP-Cito the left of the VP; a null sequence to the right of the VP; a null sequence to the left of theVBD; and the sequence hNP-C NP SBAR-Ci to the right of the VBD. Each of these sequencesis generated in a sequence of steps, each step having an associated probability.As an example, �gure 1.4 shows how the hNP-C NP SBAR-Ci sequence is generated.The sequence is generated from inside to outside (i.e., the NP-C is generated �rst, theSBAR-C is generated last). At each point either a non-terminal or the STOP symbol, whichterminates the sequence, is chosen with some probability. The probability is conditionedon the parent and child non-terminals (VP and VBD in �gure 1.4), the head-word (told)and the direction relative to the head (RIGHT). The probability is also conditioned on thesubcategorization frame, which keeps track of which subcategorization requirements havenot yet been ful�lled. Initially this frame is fNP-C,SBAR-Cg; by the end of the sequenceall requirements are ful�lled and the frame is empty.There are additional parameters associated with the three other sequences:� P (NP-CjS,VP,fNP-Cg,told,LEFT). The probability of generating a (subject) NP-Cto the left of the head at the S/VP level, given that this requirement hasn't yet beenful�lled (the fNP-Cg conditioning variable indicates that the subject is still required).� P (STOPjS,VP,fg,told,LEFT). The probability of terminating the sequence to theleft of the head at the S/VP level, given that there are no requirements left in thesubcategorization frame. (Note that adjuncts could also be generated at this point,extending the sequence.)� P (STOPjVP,VBD,fg,told,LEFT). The probability of terminating the sequence to theleft of the head at the VP/VBD level, given that there are no requirements left in thesubcategorization frame. (Note that adjuncts could also be generated at this point.)� P (STOPjVP,VBD,fg,told,RIGHT). The probability of terminating the sequence tothe right of the head at the VP/VBD level, given that there are no requirements leftin the subcategorization frame. (Note that adjuncts could also be generated at thispoint.) 23

VPVBDfNP-C,SBAR-Cgtold+ P (NP-CjVP, VBD, fNP-C,SBAR-Cg, told, RIGHT)VPVBDfSBAR-Cgtold NP-C+ P (NPjVP, VBD, fSBAR-Cg, told, RIGHT)VPVBDfSBAR-Cgtold NP-C NP+ P (SBAR-CjVP, VBD, fSBAR-Cg, told, RIGHT)VPVBDfgtold NP-C NP SBAR-C+ P (STOPjVP, VBD, fg, told, RIGHT)VPVBDfgtold NP-C NP SBAR-C STOPFigure 1.4: Generation of the hNP-C NP SBAR-Ci sequence to the right of the VBD.24

Thus these parameters encode the relative ordering of the complements (for example,that the NP-C object is closer to told than the SBAR-C complement); and they also encodethe decision to take adjuncts, such as the NP between the NP-C and SBAR-C complements.Dependency ParametersINPUT: S(told)NP-C VP(told)VBDtold NP-C NP SBAR-COUTPUT: S(told)NP-C(IBM) VP(told)VBDtold NP-C(him) NP(yesterday) SBAR-C(that)Finally, a head-word is chosen for each modi�er. P (IBMjtold,S,VP,NP-C) is theprobability of seeing IBM as the head-word of the NP-C in subject position (the triplehS,VP,NP-Ci signi�es the subject-verb relationship involved between the two words). Thereare similar parameters for the probability of seeing him as the head-word of the object,yesterday as the head-word of the NP adjunct, and that as the head-word of the SBAR-Ccomplement.[Hindle and Rooth 91] showed that dependency parameters could be a powerful sourceof disambiguating evidence for PP attachment ambiguities; this is one motive for generaliz-ing this result to other relationships in the tree. Dependency parameters can be consideredto be a probabilistic counterpart of selectional restrictions.Surface Distance ParametersThe parameters can be modi�ed to allow the model to learn that the dependent words fora particular head (e.g., fIBM, him, yesterday, thatg for told) are likely to be placed close25

to the head in the surface string. This preference13 is a direct reection of a head-word'sdomain of locality in the surface ordering.From a parsing point of view, these preferences mean that the shot by Bill analysisshould get much higher probability than the believed by Bill analysis in the followingexample:John was believed to have been shot by BillIn a language production sense, these preferences reect facts such as the following:John was believed by Bill to have been shotis much more likely to be uttered thanJohn was believed to have been shot by Bill(given that the believed by Bill interpretation is intended in both cases).For reasons of brevity we do not describe here how these preferences are representedin the parameterization of the parsing problem, merely noting that they are important.Precise details are given in the models of chapters 6 and 7.1.5.5 ResultsThus far the motivation for our approach has been quite abstract. Our eventual goal isto build a parser of high accuracy. Empirical results should then be the central test of amodel, and they also have the advantage of objectivity.The results in chapter 7 show that the parser recovers constituents in section 23 ofthe Penn WSJ treebank with 88.3/88.0% precision/recall. At the time of writing, thesewere the best published results on this task. They represent a 25% relative error reductionover the results for SPATTER when trained and tested on the same data. The modelachieves these results using quite simple (interpolated) estimation techniques, leading toa substantial reduction in training time over the SPATTER model. An implication isthat the approach in this thesis is quite orthogonal to that of SPATTER, and a promising13We mean a statistical preference, rather than a hard grammatical constraint. Analysis in chapters 6and 7 of this thesis shows that dependent words are very likely to be placed close to the head they modify,at least in WSJ English. 26

area of future research would be to combine the strengths of the two methods, througha motivated choice of parse-tree decomposition (as in this thesis) together with morepowerful estimation techniques (such as decision trees or maximum-entropy models, asused in [Ratnaparkhi 97]). We would argue that a further advantage of our models is thatthe parameters are linguistically intuitive, and therefore that it is easier to understand whythe models work: this is important for future work in improving parse accuracy, and for theunderstanding of how the models �t with other areas of research such as psycholinguisticsor linguistics.1.5.6 A Summary of the ArgumentWe now briey summarize the arguments of this section:� Two criteria dictate the success of a parameterization of the parsing problem: dis-criminative power and compactness.� We take a belief networks example. In belief networks there are three stages inthe design of a model: (1) a choice of variables (or representation); (2) a choice ofordering of the variables, with a consequent expression of the chain rule; (3) a choiceof independence assumptions, where terms in the chain rule are simpli�ed.� In the belief networks example, the second step (the choice of variable ordering) iscrucial. With a good ordering, reasonable independence assumptions and a compactparameterization follow naturally. With a bad ordering, it may be impossible tomake good independence assumptions.� A general guideline is that the choice of variable ordering should reect the causalityof the problem; the resulting parameters also reect the causality of the system beingmodeled.� History-based models are a generalization of most statistical parsing models, andtheir design can also be considered to be a three stage process: (1) a choice ofparse tree representation; (2) a choice of parse tree decomposition; (3) independenceassumptions. These three stages are highly analogous to the belief networks problem.27

� We argue that Step 2 in the design of a history-based model is critical for a goodparameterization of the parsing problem. This leaves an open question: if causalityis used to motivate step 2 in the belief networks problem, what motivates step 2 inthe parsing problem?� Reasoning about causality in the physical world is equivalent to reasoning about thelocality of the e�ects of an event. Thus causality is directly related to locality. Manylinguistic theories emphasize structural locality: in particular, lexicalized formalismsemphasize the locality of a head's inuence in a parse tree. The locality of a lexicalhead's inuence should be used to motivate the choice of decomposition in the parsingproblem.� The result is a head-centered decomposition of the parse tree. Independence assump-tions then follow naturally, with the parameters reecting a head's local domain ofinuence in the tree (i.e., the model has parameters that encode the X-bar schema,subcategorization, ordering of complements, placement of adjuncts, lexical depen-dencies, and preferences for close attachment; all preferences being expressed byparameters conditioned on head-words).1.6 OverviewChapter 2 gives mathematical results that will be used throughout the thesis. It con-centrates on two topics. First, the chapter discusses methods for de�ning probabilitiesover structured events such as sentences, sentence/tagged-sequence pairs, or parse trees.Second, it discusses estimation of parameter values from training data counts.Chapter 3 considers a series of alternative parameterizations for the parsing problem,in terms of their discriminative power. We begin with arguments for why PCFGs makepoor models for statistical parsing: their failing is a lack of sensitivity to lexical informationand structural preferences. We then give examples motivating the use of dependencyparameters, features encoding the grammatical relations between words, subcategorizationparameters, parameters encoding the preference for close-attachment, and the use of part-of-speech tags as word-class information. 28

Chapter 4 considers previous work on statistical parsing.Chapter 5 considers a statistical method for the resolution of a speci�c (and relativelydi�cult) case of syntactic ambiguity, PP-attachment ambiguity. The method illustratesthe power of dependency parameters for disambiguation: a method that considers thehead-words involved in PP-attachment decisions resolves ambiguous cases with over 84%accuracy. (The major part of this chapter is joint work with James Brooks, having beenoriginally described in [Collins and Brooks 95].)Chapter 6 describes a �rst attempt at building a full statistical parser that embodiesmany of the parameter types described in Chapter 3. It can be considered a direct attemptto generalize the PP-attachment model of Chapter 5 to the case of full parsing. Results arepromising: the model recovers constituents with 85.7/85.3% precision and recall. Thereare, however, some mathematical problems with the model, that almost certainly impactperformance, and also lead to problems with extending the model to include additionalparameter types or to recover additional information. These problems lead us to theparsing models of the next chapter. (Much of the work in this chapter was originallydescribed in [Collins 96].)Chapter 7 describes three models for statistical parsing: moving from a more mathe-matically motivated model with (almost) the same parameter types as the parser of chapter6 (model 1); to a model that makes the argument/adjunct distinction and has subcate-gorization parameters (model 2); to a model that includes a treatment of wh-movement(model 3). Models 2 and 3 recover constituents with 88.3%/88.0% precision/recall. Thechapter takes a closer look at the strengths and weaknesses of the parser by consideringits accuracy on various di�erent types of dependencies. (Much of the work in this chapterwas originally described in [Collins 97].)Chapter 8 discusses the parser of chapter 7 in more detail. It takes a closer look atthe close-attachment preferences; it considers the implicit assumptions about tree repre-sentation that the models make; and it gives a closer comparison of the models to otherwork on parsing the Penn WSJ treebank.Chapter 9 gives some thoughts on future work, while Chapter 10 gives conclusions.
29

1.6.1 Reader's GuideChapter 7 describes the �nal parsing models of this work, Chapter 8 gives supportingdiscussion. These chapters should be quite self-contained; readers who are already familiarwith previous work on statistical parsing may wish to skip straight to these chapters, andlater refer to the earlier chapters for more detail.Chapters 2 to 6 give background material supporting the �nal models. Speci�cally:� Chapter 2 is intended for readers who have some background in probability/statisticsand theory of automata, but who may not be so familiar with stochastic automataand their application to machine-learning problems. (Most of the work should, forexample, be very familiar to readers from a speech recognition background, withthe possible exceptions of the sections on probabilistic context-free grammars andhistory-based models.)� Much of Chapter 3 should be familiar to readers who are well grounded in syn-tax/linguistics. Note, however, that the goals of statistical parsing (�nding the singlemost likely parse for a sentence) lead to a slightly di�erent emphasis in some cases.For example, many of the examples that are used to motivate di�erent choices of rep-resentation involve syntactic ambiguity: these examples lead to a need to deal withsome phenomena (e.g., close-attachment preferences) that are usually considered tobe outside of the grammar.� Chapter 4 aims to give a comprehensive literature review.� Chapter 5 should be a good introduction to machine-learning approaches to ambi-guity resolution in natural language. It also gives several useful experimental resultsconcerning the use of dependency parameters. Chapter 6 gives further developmentof many of the intuitions behind the use of dependency parameters.
30

Chapter 2
Statistical Models
2.1 IntroductionThis chapter gives mathematical background that is used throughout this thesis. Readerswho are familiar with statistical approaches to machine learning may wish to move straightto the later sections, for example section 2.6 (Probabilistic Context Free Grammars) andsection 2.7 (history-based models).The �rst two sections contain introductory material:� Section 2.2 gives some basic de�nitions from probability theory and mathematicalstatistics, and describes how supervised machine learning problems can be treatedwithin a probabilistic framework.� Section 2.3 gives a general discussion of the application of probabilistic methods tonatural language problems. It �rst gives a general strategy for modeling structuredevents. It next gives a general solution of the maximum-likelihood parameter esti-mates for a class of models that is general enough to include almost all of the modelsdescribed in this chapter. It �nally gives two conditions for a model to be \well-formed". These conditions will be used to motivate many of the modeling choicesproposed later in the chapter.We then describe some speci�c techniques for modeling structured events:31

� Sections 2.4, 2.5, 2.6 and 2.7 describe a number of model types, in increasing or-der of generality: Markov models for the de�nition of probabilities over sequences;Hidden Markov Models for probabilities over sequence/state-sequence pairs; Proba-bilistic Context-Free Grammars for probabilities over sentence-tree pairs; and �nally\history-based" models as a generalization of the previous model types. In each casewe prove that the model is \well-formed" under the de�nition in section 2.3.3, andwe derive the maximum-likelihood estimates, using the result in section 2.3.2.� Section 2.9 describes a variety of estimation methods that are re�nements of maximum-likelihood estimators. E�ective models for natural language tasks often have a verylarge number of parameters, leading to problems with extreme sparseness of thecounts that are the basis of the parameter estimates. This section describes estima-tion methods that deal robustly with sparse data problems.2.2 Probability TheoryWe assume some standard de�nitions from probability theory (see, for example, [BD 77]for a comprehensive review). If the set � is a discrete event space, and P is a probabilitydistribution over this space, then: (1) 0 � P (A) � 1 for all A 2 �; (2) PA2� P (A) = 1.In most examples the probability measure will be parameterized: i.e., P will also be afunction of some vector of parameters �. We write the probability of event A given someparameter setting � as P (A j �). The parameter space
 is then the space f� j P (A j �)is a probability measure over �g.As an example, take the case of tossing a coin that can appear as either heads (H) ortails (T), where the probability of it landing as heads is p. In this case:� The event space � is the set fH, Tg.� The parameter vector � has a single component, p.� The probability measure P (A j �) is de�ned as p if A = H, 1� p if A = T.� The parameter space
 is the set [0; 1] (p must take some real value between 0 and1 for P (A j �) to be a probability measure).32

2.2.1 Maximum Likelihood EstimationNow assume we have a sample, a sequence of n events X = hX1;X2:::Xni, drawn from �.For example, we might toss the coin 5 times and see X = hH,T,T,H,Ti. Given this sample,how do we calculate an estimate of �, which we will call �̂?A very general method is to use maximum likelihood estimation ([BD 77] chapter 3introduces ML estimation; chapter 4 describes many of its properties). Assuming that theevents are independent of each other, the likelihood function, L, is de�ned asL(X j �) = Yi=1:::nP (Xi j �) (2.1)The maximum likelihood estimate �̂ML is the value of � (in the parameter space
) thatmaximizes this likelihood function:�̂ML = argmax�2
 L(X j �) (2.2)In the coin example, the likelihood of the sample X = hH,T,T,H,Ti isL(hH,T,T,H,Ti j �) = p(1� p)(1� p)p(1� p) = p2(1� p)3 (2.3)and the maximum likelihood estimate of p in this case isp̂ML = arg maxp2[0;1] p2(1� p)3 = 25 (2.4)In general, for a sample of size n with h heads, it can be shown that p̂ML = hn .2.2.2 NotationBefore describing how probability theory can be used in a machine-learning context, weintroduce some notation. In this chapter, P is generally used to denote a probability distri-bution, for example P (yjx) denotes the conditional probability of y given x, P (y; x) denotesthe joint probability of y and x. If the event spaces for x and y are X and Y respectively,the implication is that 8x 2 X Py2Y P (yjx) = 1, and that Px2X ; y2Y P (y; x) = 1.We will also use Score(x; y) to denote a probability associated with a pair (x; y). Theterm Score(x; y) can denote any one of the distributions P (x; y), P (yjx) or P (xjy) | itis a neutral term, which will be useful when the exact nature of a model's parameters33

is underspeci�ed. If Score includes conditional probability notation, all variables to theright of \j" must be conditioned upon. For example, Score(x; yj�) could be any one ofP (x; yj�), P (yjx;�), or P (xjy;�).2.2.3 Probabilistic Approaches for Supervised Machine Learning Prob-lemsThe supervised machine-learning problems considered in this thesis take the following form.We assume the task is to learn a function f : X ! Y, where X is a set of possible inputs, Yis a set of possible outputs. Training data is a set of n input-output pairs, hx1; y1i:::hxn; yniwhere xi 2 X , yi 2 Y, and yi = f(xi).As an example, take the part-of-speech (POS) tagging problem (e.g., see [Church 88]):� De�ne V to be a vocabulary, a set of possible words in a language. A sentence in thelanguage is a sequence hw1; w2:::wmi where m � 0 and wi 2 V. The input space Xis then the set of all possible sentences in the language.� De�ne T to be a set of possible part-of-speech tags. A tag sequence is a sequenceht1; t2:::tmi where m � 0 and ti 2 T . The output space Y is then the set of allpossible tag sequences.� Training data is n examples drawn from X � Y, i.e. n sentence/tag-sequence pairs.� The learning task is then to induce a function from word sequences to tag sequences,f : X ! Y.In probabilistic approaches the problem is transformed from directly learning a functionf : X ! Y, to learning a probability function Score : X �Y ! [0; 1]. Score(x; y) is eithera conditional probability P (yjx) or a joint probability P (x; y). Having de�ned Score, f(x)can be de�ned as the most likely member of Y under this probability distribution:f(x) = argmaxy2Y Score(x; y) (2.5)Thus every candidate output for the input x will have an associated score; the candidatesequences can be ranked in order of probability, moreover the candidate with the highest34

score can be chosen as the single most likely output (assuming that there is only onecandidate with this highest score).In a parameterized model a parameter vector � is an additional argument to the Scorefunction; the Score function is now written as Score(x; yj�). This function, the modelstructure, is �xed, with all possible variation being described by the parameter space
,the space of possible values for �. In this framework the learning problem becomes aproblem of setting the parameter estimates, �̂ 2
,1 from the set of training examples.In summary, within this framework the modeling task divides into 3 problems:1. De�ning the model structure, a function Score(x; yj�) with an associated parameterspace
.2. De�ning a parameter estimation method, i.e. a function from training sampleshx1; y1i:::hxn; yni to parameter estimates, �̂. This function is usually strongly re-lated to Score(x; yj�): for example, maximum likelihood estimation speci�es that�̂ = argmax�2
Qi=1:::n Score(xi; yij�).3. De�ning a search method: an algorithm that for any input x will �nd the most likelyoutput, ybest = argmaxy2Y Score(x; yj�̂).2.2.4 A Note on the De�nition of the Event SpaceFor simplicity we have assumed that the input and output spaces X and Y can be de�nedseparately. The result is that X � Y will include some members (x; y) that are ill-formedbecause x and y do not \match". For example, in the POS tagging case, some membersof X � Y will be word/tag sequences with di�erent lengths. In general, Score will notbe de�ned for these cases: from here on we will simply assume that for ill-formed inputs,Score(x; y) = 0.1In general if q is a parameter, we will write q̂ to denote an estimate of that parameter's value.
35

2.3 De�ning Probabilities over Structured Events: SomeGeneral ResultsIn the previous section we saw that a probabilistic approach to the machine learningproblem can be reduced to 3 sub-problems: (1) de�ning the model structure; (2) de�ningan estimation method; and (3) designing a search algorithm. This section gives somevery general methods and results for steps (1) and (2) in natural language problems. Thefollowing sections then describe speci�c approaches for probabilistic modeling of sequences,tagged sequences, and parse trees.A major di�culty in probabilistic modeling of the NLP problems addressed in thischapter is the complexity of the event space. The event space in the coin-tossing examplewas relatively simple: it was a �nite set, having only two members; and each event in theset was atomic. In NLP problems both the input space X and the output space Y canbe of high dimensionality, with the members of these sets being complex structures (e.g.word or tag sequences, or tree structures). As illustration, take the following 3 examples:Sentences Suppose there is a vocabulary �, a set of possible words in a language. Eachevent in a sample is a sentence drawn from the vocabulary �, i.e. a sequence ofwords hw1; w2:::wni such that n � 0 and wi 2 �. The event space � is then the set�� (where �� is as de�ned in formal language theory, see [Hopcroft and Ullman 79]page 2).This is the language modeling problem for speech recognition (e.g., see [Jelinek 90]).Tagged Sentences Suppose that there is a set of possible words in a language, V, anda set of possible tags, T . Each event is a (sentence, tag-sequence) pair, i.e. a pair(hw1; w2:::wni; ht1; t2:::tni) such that n � 0, wi 2 V, and ti 2 T .Parsed Sentences Suppose that a context-free grammar G de�nes a set of well-formed(sentence, tree) pairs in some language. The event space is then this set of (sentence,tree) pairs.The complexity of the event space in these cases leads to a requirement for quitecomplicated parameterizations. The coin-tossing example involved a single parameter, p,36

with a simple function from events to probabilities (P (Hjp) = p, P (T jp) = 1 � p). Inthe three previous examples we must de�ne a probability measure over an in�nite set ofevents. We must de�ne this distribution using a �nite number of parameters, moreoveronly as many parameters as can be reliably estimated from the training sample.In the following sections we �rst describe a general strategy for modeling structuredevents: the idea of associating probabilities with sub-structures within individual events |for example associating probabilities with tag sub-sequences in the POS tagging problem,or with rules in the parsing problem. Next we give a general solution for the maximum-likelihood estimates for a class of models that includes practically all of the models proposedin this chapter. Finally, we give two conditions for a model to be \well-formed": (1) thata model Score(x; yj�) must either de�ne a conditional or joint probability distribution;(2) that the maximum-likelihood estimates for the model should be derivable in closedform, or by some iterative solution (EM estimation and Maximum Entropy models bothuse iterative re-estimation techniques).2.3.1 De�ning the Model Structure: Associating Probabilities with Sub-StructuresThis section addresses the problem of de�ning model structure, i.e. de�ning the functionScore(x; yj�). As a straw man we �rst consider the simplest possible model. We choose aconditional probability model, so that Score(x; yj�) = P (yjx;�). The parameter vector� lists a probability for each member of the set X � Y, thus � is a vector with jX j � jYjelements. The parameters of the model are estimated from training data using maximum-likelihood estimation, which gives parameter estimates �̂ such thatScore(x; yj�̂) = P (yjx; �̂) = Count(x; y)Count(x) (2.6)(Count(x; y) is the number of times hx; yi is seen in the training sample, and Count(x) =Py2Y Count(x; y) is the number of times x is seen in the training sample). With thismodel, �nding the most likely output ybest for an input x amounts to a table look-up,simply choosing the output that has been seen with x the most frequently in trainingdata, i.e. de�ning f(x) = argmaxy2Y Count(x; y).37

Unfortunately this model will fail for all but the most trivial problems, due to the vastnumber (jX j � jYj) of parameters. At the very least, the model presupposes that everyinput x seen in test data will have been seen at least once in training data: for inputsnot seen in training data Count(x; y) = Count(x) = 0, and P (yjx; �̂) is unde�ned. Inproblems such as POS tagging or parsing, the proportion of sentences in test data thathave also been seen in the training sample is typically extremely low, and the method willfail badly.A model with far fewer parameters can be de�ned by associating parameters withsub-structures within the training and test events, rather than with entire events sampledfrom the set X � Y. The score for an entire structure is then calculated as a product ofprobabilities: one probability for each sub-structure within the entire structure. In theparsing problem, where the output y is a context-free tree, a natural step is to associatea probability with each rule in the grammar, rather than with each possible tree. In POStagging, the commonly used HMM model (see [Church 88]) has two types of parameters:�rst, probabilities associated with tag subsequences (single tags, or pairs or triples of tags);second, probabilities associated with word-tag pairs. A trigram HMM would calculate thescore for a sentence/tag-sequence pair as something similar to2Score(hw1:::wni; ht1:::tni) = Yi=1:::nScore(ti; ti�1; ti�2) Yi=1:::nScore(wi; ti) (2.7)This choice of representation reects two linguistic assumptions: �rst, that some sequencesof tags are much more frequent than others | i.e. that the parameters Score(ti; ti�1; ti�2)carry useful information; second, that individual words have strong preferences for sometags over others | i.e., that Score(wi; ti) also carries useful information.Having chosen how to break down the structure, the next step is to precisely specify theparameters. In the POS tagging case there are a number of possibilities: Score(w; t) couldbe a joint probability P (w; t), or one of the conditional probabilities P (wjt) or P (tjw).Score(ti; ti�1; ti�2) could be anything from a joint probability P (ti; ti�1; ti�2) to one of theconditionals P (tijti�1; ti�2), P (ti�1jti; ti�2), or P (ti�2jti; ti�1).2t0 and t�1 are de�ned as some special START tokens, padding the start of the sentence. We will seesoon that an additional term, P (STOP jtn�1; tn) is also required for the model to be well-formed.38

When choosing between these di�erent possibilities, the constraints described in sec-tion 2.3.3 (that the model should sum to one, and that the ML estimates should either bederivable in closed form, or by some iterative solution) eliminate many of the alternatives.A standard model is as follows:� Score(x; yj�) is a joint distribution, withScore(hw1:::wni; ht1:::tnij�) = P (STOPjtn; tn�1) Yi=1:::nP (tijti�1; ti�2) Yi=1:::nP (wijti)(2.8)Note there is an additional tag (the STOP symbol) and an associated probabilityof generating it (we will see later that this extra term is required for Score to be awell-formed distribution).Providing that the parameter values de�ne conditional probability distributions, this modelde�nes a joint distribution that sums to one. More formally,I�1. 8t2; t3 2 T Pt12T [STOP P (t1jt2; t3) = 12. 8t 2 T Pw2V P (wjt) = 1Then Px2X ;y2Y Score(x; yj�) = 1These results follow from a derivation of the equivalence of this model to a particularHidden Markov Model (HMM). (See section 2.5.)The next question is how the parameters should be estimated. We will see in sec-tion 2.3.2 that maximum-likelihood estimation givesP (t1jt2; t3) = Count(t1; t2; t3)Count(t2; t3) (2.9)P (wjt) = Count(w; t)Count(t) (2.10)(Where Count(x) is the number of times x is seen in the training sample.)2.3.2 Maximum-Likelihood Estimation in Structured ModelsHaving discussed the design of model structure, we now move on to parameter estimation.Practically all the models described in this chapter have a special form that leads to a39

simple solution for the maximum-likelihood parameter estimates. These models satisfytwo criteria:1. Say� = fp1; p2; :::png is the combination ofmmultinomial distributions
1;
2; ::
m.Each
i is a subset of the integers f1; 2; :::; ng such that the
s form a partition off1; 2; 3::ng. fpiji 2
jg are the parameters of the jth multinomial, so thatXi2
j pi = 1 (2.11)Let
i be the multinomial that contains pi.2. The likelihood of the data can be writtenL(Xj�) = Yi2
1 pC(i;X)i Yi2
2 pC(i;X)i ::: Yi2
m pC(i;X)i (2.12)where C(i;X) is the count of the event which corresponds to pi in a sample X.If these conditions are satis�ed, maximizing 2.12 subject to the constraints in 2.11 givesmaximum-likelihood estimates for each pi asp̂iML = C(i;X)Pj2
i Count(j;X) (2.13)Proof of 2.13We �rst de�ne the log-likelihood function, L0:L0(Xj�) = logL(Xj�) = log nYi=1 pC(i;X)i = nXi=1C(i;X) log pi (2.14)Maximizing 2.14 is equivalent to maximizing 2.12, and turns out to be more convenient.The maximization of 2.14 subject to the constraints in 2.11 can be transformed into an un-constrained maximization problem using Lagrange multipliers. We associate m Lagrangemultipliers �1:::�m with the m constraints in 2.11. The unconstrained problem is then tomaximize nXi=1C(i;X) log pi � Xj=1:::m�j Xk2
j pk (2.15)
40

Setting the partial derivatives of 2.15 with respect to each pi equal to zero gives n simul-taneous equations: C(i;X)pi � �j = 0 (2.16)where �j is the Lagrange multiplier associated with the multinomial
i that contains pi.Equivalently, pi = C(i;X)�j (2.17)Finally, �j can be eliminated by restating the constraints in 2.11:Xk2
i pk = 1) Xk2
i C(k;X)�j = 1) �j = Xk2
iC(k;X) (2.18)From 2.17 and 2.18 pi = C(i;X)Pj2
i C(j;X) (2.19)ExampleAs an example, the HMM POS tagging model is of this special model form:1. The parameter vector � consists of two types of parameters: P (t1jt2; t3) where t1 2T [STOP and t2; t3 2 T [START ; and P (wjt) where t 2 T and w 2 W. Thus �can be separated into m = (jT j+ 1)2 + jT j subsets: (jT j+ 1)2 corresponding to themultinomials P (�jt2; t3) and jT j corresponding to the multinomials P (�jt).2. Say the training sample is n word-sequence/tag-sequence pairs, where the jth se-quence is of length lj and is written hwj1:::wj(lj)i; htj1:::tj(lj)i. The likelihood of thejth sequence isP (STOPjtjl ; tjl�1) Yi=1:::jl P (tjijtj(i�1); tj(i�2)) Yi=1:::jl P (wjijtji) (2.20)The likelihood of the training sample isYj=1:::n0@P (STOPjtjl ; tjl�1) Yi=1:::jl P (tjijtj(i�1); tj(i�2)) Yi=1:::jl P (wjijtji)1A41

= Yt12T [STOP; t2;t32T [START P (t1jt2; t3)Count(t1;t2;t3) Yt2T ; w2V P (wjt)Count(w;t) (2.21)Count(t1; t2; t3) is the number of times the parameter P (t1jt2; t3) is seen in the �rstproduct, i.e. the number of times the sequence ht1; t2; t3i is seen in training data.Count(w; t) is the number of times the pair P (wjt) is seen in the �rst product, i.e.the number of times hw; ti is seen in training data.The general result in 2.13 can now be applied to give the familiar maximum-likelihoodsolutions for the parameter values:P̂ML(t1jt2; t3) = Count(t1; t2; t3)Pt12T [STOP Count(t1; t2; t3) = Count(t1; t2; t3)Count(t2; t3) (2.22)P̂ML(wjt) = Count(w; t)Pw2V Count(w; t) = Count(w; t)Count(t) (2.23)2.3.3 Two Conditions for Model StructuresIn the POS tagging example we suggested the following model (equation 2.8, repeatedhere):Score(hw1:::wni; ht1:::tni) = P (STOPjtn; tn�1) Yi=1:::nP (tijti�1; ti�2) Yi=1:::nP (wijti) (2.24)In de�ning the parameters, and thereby the model structure, we hinted that 2.24 was oneof the few possibilities. But why, for example, couldn't we instead choose a model such asthe following?Score(hw1:::wni; ht1:::tni) = P (STOPjtn; tn�1) Yi=1:::nP (tijti�1; ti�2) Yi=1:::nP (tijwi) (2.25)In a sense, the parameter type P (tijwi) is more intuitive than P (wijti). In fact, one of theearliest papers on Markov taggers [Church 88] used 2.25 rather than 2.24.As one criterion for the choice between competing models, we specify two conditionsfor a model structure to be \well-formed": 42

1. The model structure Score(x; yj�) for all values � 2
 should be either a conditionalprobability P (yjx) (satisfying the constraint 8x 2 X Py2Y Score(y; x) = 1) or a jointprobability P (x; y) (satisfying the constraint Px2X ;y2Y Score(x; y) = 1).2. The maximum-likelihood estimates for the model should be derivable in closed form,or by some iterative solution (EM estimation and Maximum Entropy models bothuse iterative re-estimation techniques). Often this means that the model is of theform described in section 2.3.2, with the maximum likelihood estimate of P (ajb) thenbeing Count(a;b)Count(b) .This second point is important because MLE's will be central to the estimationmethods that we use. Even if we don't directly use MLE's, instead using one of themore robust methods described in section 2.9, the parameter estimates will generallybe derived as a re�nement of maximum-likelihood estimates.Condition 1 alone is trivial to satisfy. Say, for example, we would like to de�ne a jointdistribution, and that we have a function Score(x; yj�) that is unfortunately not a distri-bution, i.e. Px2X ;y2Y Score(y; xj�) 6= 1. It is straightforward to de�ne a function Score0that is a distribution: if we de�ne a normalization factor Z(�) =Px2X ;y2Y Score(y; xj�)then Score0(x; yj�) = Score(x;yj�)Z(�) is a distribution3.The problem with normalizing distributions in this way comes from condition 2. Themaximum-likelihood estimate for a training sample hx1; y1i:::hxn; yni is de�ned as�̂ML = argmax�2
 Yi=1:::nScore0(xi; yij�) = argmax�2
 Yi=1:::n Score(xi; yij�)Z(�) (2.26)Z(�) must be taken into account when maximizing this product, and may greatly compli-cate the process, often blocking a closed-form solution for the ML estimates. The additionof Z(�) means that the model is not of the type de�ned in section 2.3.2, and that thefamiliar relative frequency estimate P (ajb) = Count(a;b)Count(b) will most likely not be a maximum-likelihood estimate.We can now return to the choice between 2.24 and 2.25 as models for POS tagging.Model form 2.24 sums to 1 as it stands, is of the form described in section 2.3.2, and3When searching for the most likely output ybest for some input x under the distribution Score0, Z(�)will not complicate the process as it is a constant that can be ignored when ranking alternatives, and thusit does not need to be explicitly calculated. 43

therefore has ML estimates of the form P (ajb) = Count(a;b)Count(b) . Model form 2.25 does notsum to 1 without a normalizing factor: with the normalizing factor the ML estimates arevery di�cult to derive (and probably don't even exist in closed form). The method in[Church 88] | the use of model form 2.25 with estimates derived from relative frequencyestimates | cannot be justi�ed as maximum-likelihood estimation. These theoreticalde�ciencies have been shown to give decreased performance of the model on real tasks:[Charniak et al. 93] reports accuracies of 96% vs. 95% for models 2.24 and 2.25 respectivelyon a POS tagging task.2.3.4 SummaryIn summary:� The �rst task when designing a model is to choose how to break the members of theinput-output space X � Y into smaller sub-events. For example, in the case of POStagging, we chose to associate parameters with tag trigrams and word-tag pairs.� The second task is to exactly specify the parameters in the model. In the POStagging case, the parameters were P (tijti�1; ti�2) and P (wjt). When making thischoice there are two guiding constraints: (1) that the overall model should de�neeither a joint or conditional probability distribution over the space X �Y 4; (2) thatthe maximum-likelihood estimates should be derivable in closed form, or by someiterative solution.De�ning models that satisfy these criteria for complex event spaces is di�cult, andis the major concern of this chapter. We will describe a number of techniques, inincreasing order of generality, that can be applied to this type of problem: Markovmodels for probabilities over sequences; Hidden Markov Models for probabilities oversequence/state-sequence pairs (as in POS tagging); Probabilistic Context-Free Gram-mars for probabilities over sentence-tree pairs; and �nally \history-based" models asa generalization of the previous model types.4i.e. that the Score associated with each member of X � Y gives either a joint distribution satisfyingP x2Xy2Y Score(x; y) = 1, or a conditional distribution satisfying 8x 2 XPy2Y Score(x; y) = 1.44

� The third task is that of estimation: given a training example and a model struc-ture, how to calculate parameter values. For each of the model types described inthis chapter we derive the maximum-likelihood estimate of the parameters. Sec-tion 2.9 describes more sophisticated estimation methods that smooth higher-ordermaximum-likelihood estimates with lower-order estimates.2.4 De�ning Sentence Probabilities Using Markov ProcessesThis section describes Markov models as a method for de�ning probabilities over sequencesof symbols. These models are used in the parser of chapter 7, so we will discuss them quiteextensively here. They are also the basis of Hidden Markov Models, described in the nextsection. Consider the following situation:� V is a vocabulary, a set of words in a language.� A sentence drawn from this vocabulary is a sequenceW = hw1; w2:::wni where n � 0,and wi 2 V.� We name the (in�nite) set of all possible sentences � (this is the event space).We would like to de�ne a distribution P over the event space �. A simple way to de�nethis probability distribution is to assume that the sentences of the language are generatedby a Markov process. Our �rst step is to add a special STOP symbol to the vocabulary,and to de�ne wn+1 in any sentence W as this STOP symbol (section 2.4.1 explains whythis is necessary). The probability of any sentence can then be written using the chainrule of probabilities:P (W) = P (hw1:::wn+1i) = Yi=1:::n+1P (wi j w1:::wi�1) (2.27)The next step is to make an mth order Markov assumption: that the probability of asymbol depends only on the previous m symbols (w0 and w�1 are taken to be some specialSTART symbol): P (wi j w1:::wi�1) = P (wi j wi�m:::wi�1) (2.28)P (W) = Yi=1:::n+1P (wi j wi�m:::wi�1) (2.29)45

For example, in the standard trigram model used in speech recognition [Jelinek 90], a 2ndorder Markov assumption is used:P (wi j w1:::wi�1) = P (wi j wi�2:::wi�1) (2.30)P (W) = Yi=1:::n+1P (wi j wi�2:::wi�1) (2.31)An mth order Markov model requires jVjm+1 parameters. Providing that the parametersof the Markov process give well de�ned distributions, this model de�nes a probabilitydistribution over the possible sentences in the language. More formally: 8x; y 2 V Xw2V[STOP P (w j x; y) = 1!() XW2� P (W) = 1 (2.32)(This is a slight simpli�cation. There are actually further constraints on the parametervalues for the model to sum to 1. Some parameter settings can lead to probability massbeing lost to in�nite length sequences. For example, a self-looping probability P (aja) = 1in a �rst order Markov chain will mean that there is some probability of never generatingthe STOP symbol. See for example [Thomason 86] pages 126{128 for conditions thatexclude parameter values that lead to these problems.)2.4.1 The Importance of the STOP SymbolAt �rst glance the addition of the STOP symbol seems rather unnatural. This section givesjusti�cation for its inclusion. The suspicion that the STOP symbol might be extraneousis compounded by many, perhaps a majority, of the references in language modeling forspeech recognition omitting it5. The usual derivation in these descriptions of languagemodeling goes as follows. First, rewrite the probability of a word sequence using the chainrule of probabilities: P (w1; w2; w3:::wn) = Yi=1:::nP (wijw1:::wi�1) (2.33)Second, make Markov independence assumptions:Yi=1:::nP (wijw1:::wi�1) = Yi=1:::nP (wijwi�1:::wi�m) (2.34)5Maybe with good reason: either to considerably simplify the description at the cost of a small decreasein accuracy; or because they assume that the speech stream will not be decoded sentence by sentence, butinstead as a continuous stream of potentially in�nite length.46

So what is the problem with this derivation?The key point is that n, the sentence length, is variable. Equation 2.33 would be correctif the event space under consideration was the space of n-dimensional vectors Vn: but theevent space is instead the set of all strings in the language, V�. Writing the probabilityunder consideration as P (w1; w2; w3:::wn) implies that Vn is the event space. To avoid thisconfusion we will write the probability of a sequence hw1; w2; :::wni as P (hw1; w2; :::wni):the angled braces imply that hw1; w2; :::wni is a sequence of variable length rather than ann-dimensional vector.This criticism may seem pedantic, particularly in the case of speech recognition, wheren is often large and the STOP probabilities may not be too signi�cant. (In fact, if speechis not decoded sentence by sentence but is instead decoded as one steady stream then nmay become very large and the STOP probabilities will become irrelevant: the languagemodel becomes a Markov process that has zero probability of halting.) However, in ouruse of Markov processes in chapter 7 the sequences under consideration are typically oflength 0, 1 or 2, and the STOP probabilities are certainly important.It is easy to give an example that illustrates the failings of equation 2.34:� Assume V = fa; bg, and therefore that � is f�, a, b, aa, bb, ab, bb ...g.� Assume that we will model the probability over � with a 0'th order Markov process,with parameters P (a) = P (b) = 0:5.We can now calculate the probability of several strings using the formula in equation 2.34:P (hai) = 0:5, P (hbi) = 0:5, P (haai) = 0:52 = 0:25, P (hbbi) = 0:25 and so on. We alreadysee from these 4 probabilities that the sum over the event space will be greater than 1:P (hai) + P (hbi) + P (haai) + P (hbbi) = 1:5! An additional problem is that the probabilityof the empty string, P (hi), where n = 0, is unde�ned.Now assume that we add the stop symbol, with the parameters of the Markov processmodi�ed to include this: e.g., P (a) = P (b) = 0:25; P (STOP) = 0:5. In this case we haveP (hSTOP i) = 0:5, P (haSTOP i) = 0:25 � 0:5 = 0:125, P (hbSTOP i) = 0:25 � 0:5 = 0:125,P (haaSTOP i) = 0:252 � 0:5 = 0:03125, P (hbbSTOP i) = 0:03125 and so on. Thus farthe sum of probabilities does not exceed 1, and the distribution is looking much better47

behaved. We can prove that the sum over all sequences is 1 by noting that the probabilityof any sequence of length n is 0:25n � 0:5, and that there are 2n sequences of length n,giving: XW2� P (W) = 1Xn=0 2n � 0:25n � 0:5= 1Xn=0 0:5n � 0:5= 1Xn=0 0:5n+1= 1Xn=1 0:5n= 1 (2.35)In a 0'th order Markov process the distribution over lengths of strings is related directlyto P (STOP) | the probability of a string having length n is the probability of generatingn non-STOP symbols followed by the STOP symbol:P (length = n) = (1� P (STOP))n � P (STOP) (2.36)With higher order Markov processes, where the probability is conditioned on previouslygenerated symbols, the conditional probability P (STOP j wi�m:::wi�1) encodes the prefer-ence for certain symbols or sequences of symbols to end or not to end a sentence. For exam-ple, if we were building a bigram (1st order Markov) model of English we would expect theword the to end a sentence very rarely, and the corresponding parameter P (STOP j the)to be very low. Without the STOP symbol these kind of facts will not be encoded inthe parameters. So we see that the STOP symbol not only ensures that the probabilitydistributions are well de�ned, but that it can also have a useful interpretation.2.5 De�ning Tagged-Sentence Probabilities Using HiddenMarkov ProcessesThis section considers the de�nition of probability distributions over pairs of sequences.In general: 48

� The input space X is a set of sequences hw1:::wni where each wi is drawn from a setof \words" V (we refer to these sequences as word sequences, or sentences).� The output space Y is a set of sequences ht1:::tni where each ti is drawn from a setof \tags" T (we refer to these as tag sequences).� In order to de�ne the mapping f : X ! Y we de�ne a distribution Score : X �Y ![0; 1]. Hidden Markov Models (HMMs), the topic of this section, can be used tode�ne a joint probability P (x; yj�) over X � Y.As a �rst step in de�ning P (x; yj�), we break the probability into two terms:P (hw1; w2:::wni; ht1; t2:::tni) = P (ht1; t2:::tni)� P (hw1; w2:::wni j ht1; t2:::tni) (2.37)(This step is exact, being a direct consequence of the de�nition of conditional probabil-ity.) The two terms are then modeled separately. The probability distribution over tagsequences is de�ned using an mth order Markov model:P (ht1; t2:::tni) = P (STOP j tn�m+1:::tn) Yi=1:::nP (tijti�m:::ti�1) (2.38)From the results in the previous section 2.38 de�nes a well-formed distribution over tagsequences providing that 8t1:::tm 2 T Pt2T [fSTOPg P (tjt1:::tm) = 1.The second term is simpli�ed by �rst using the chain rule, then by making the inde-pendence assumption that each word depends only on its corresponding tag:P (hw1; w2:::wni j ht1; t2:::tni) = Yi=1:::nP (wi j hw1; w2:::wi�1i; ht1; t2:::tni)= Yi=1:::nP (wi j ti) (2.39)Substituting 2.38 and 2.39 in 2.37 gives the equation for an mth order HMM:P (hw1; w2:::wni; ht1; t2:::tni) = P (STOP j tn�m+1:::tn) Yi=1:::nP (tijti�m:::ti�1) Yi=1:::nP (wi j ti)(2.40)The property that this de�nition sums to 1 over the space X �Y comes directly from thefact that 2.38 and 2.39 sum to 1 over their respective event spaces (i.e., 2.38 sums to 1over Y, 2.39 sums to 1 over X). The trigram tagger in 2.8 is a 2nd order HMM, so we have49

�nally proved that it is a model that sums to 1 over its event space. Section 2.3.2 showedthat the maximum-likelihood parameter estimates areP̂ML(tjt1:::tm) = Count(t; t1:::tm)Count(t1:::tm)P̂ML(wjt) = Count(w; t)Count(t) (2.41)An e�cient algorithm for search for the highest probability tag sequence for a particularsentence | the Viterbi algorithm | exists for HMMs (e.g., see [Charniak 93]).2.6 Probabilistic Context Free Grammars (PCFGs)We now describe the use of Probabilistic Context Free Grammars (PCFGs) for modelingdistributions over sentence/parse-tree pairs. The theory behind PCFGs will be importantfor the parsing models in chapter 7, so this section describes them in some detail: �rstgiving basic de�nitions, next de�ning search algorithms, and �nally deriving expressionsfor maximum-likelihood parameter estimates.Probabilistic learning for parsing can be de�ned as follows:� The input space X is a set of sequences hw1:::wni where each wi is drawn from a setof \words" V (we refer to these sequences as word sequences, or sentences).� The output space Y is a set of parse trees generated by some context-free grammar.Each parse tree spans a member of V� (i.e., each tree in Y has a member of X as itssequence of terminal symbols).� In order to de�ne the mapping f : X ! Y we will de�ne a distribution Score :X � Y ! [0; 1]. PCFGs can be used to de�ne a joint probability P (x; yj�) over thespace of possible sentence/parse-tree pairs.2.6.1 Formal De�nitionsA context-free grammar (e.g., see [Hopcroft and Ullman 79]) is usually de�ned as a 4-tupleG = (N, �, P , S) where� N is a �nite set of non-terminal symbols.50

� � is a �nite set of terminal symbols.� P is a �nite set of productions or rewriting rules. The rules in P take the form �! �where � 2 N and � 2 fN [�g�.� S 2 N is the starting symbol.A probabilistic context-free grammar (PCFG) additionally has a probability associatedwith each rule in the grammar. We will write the probability associated with rule �! �as P(�! �j�). It is interpreted as the conditional probability of choosing the rule �! �,given that � is the non-terminal being rewritten in a derivation. IfD is a function assigninga probability to each member of P , a PCFG is a 5-tuple G = (N, �, P , S, D).Given a PCFG, the probability for any context-free tree in the language is the productof probabilities for the rules that it contains. That is, if T is a context-free derivation thatinvolves n rules of the form �i ! �i,P (T) = Yi=1:::nP(�i ! �ij�i) (2.42)A PCFG also de�nes a probability distribution over strings. If T (S) is the set of treeswhose surface string is S, then P (S) = XT2T (S)P (T) (2.43)Perhaps more importantly, given that we are attempting to de�ne parsing models, a PCFGalso de�nes the most likely tree for each string S, Tbest(S):Tbest(S) = arg maxT2T (S)P (T) (2.44)2.6.2 Conditions for ConsistencyIf T is the set of all possible trees in the context-free language underlying the PCFG, andS is the set of strings in the context-free language, then a PCFG should de�ne probabilitydistributions over the sets of possible trees and strings. That is,8T 2 T P(T) � 0 (2.45)51

XT2T P(T) = 1 (2.46)8S 2 S P(S) � 0 (2.47)XS2S P(S) = 1 (2.48)Note that conditions 2.46 and 2.48 are equivalent ([Booth and Thompson 73] give condi-tions for 2.48 to be true, which we will take to also imply that 2.46 is true):XS2S P(S) = XS2S XT2T (S)P(T) = XT2T P(T) (2.49)Conditions 2.45 and 2.47 follow from all rule probabilities P(�! �j�) being � 0.[Booth and Thompson 73] prove that two conditions are required for what they call con-sistency (i.e., condition 2.48, and by implication 2.46):1. For all non-terminals � 2 N , X(�!�)2P P(�! �j�) = 1 (2.50)Thus consistency is the motivation for the probability associated with � ! � beingP(� ! �j�), rather than another possibility such as a joint P(� ! �), or the otherconditional P(�! �j�).[Booth and Thompson 73] called PCFGs ful�lling this condition proper.2. [Booth and Thompson 73] section V gives further conditions on the parameter valuesfor consistency. This rules out problematic PCFGs such as a grammar that has aself-looping rule NP ! NP with probability 1. In this case the self-loop means thatsome probability mass is lost to derivations that never terminate. Surprisingly, evengrammars without self-loops can lose some probability mass to derivations that neverterminate: for example, a PCFG with two rules S ! S S (probability = 0.6) and S! a (probability = 0.4) has this problem.Figure 2.1 gives an example PCFG, which is proper (and consistent). Figure 2.2 gives anexample tree with its associated probabilities.52

N = fTOP, S, NP, VP, VB, NNPg� = fgave, saw, U.S., IBM, yesterdaygS = TOPRules P Probabilities DTOP) S 1.0S) NP VP 0.8S) NP NP VP 0.2VP) VB NP 0.6VP) VB NP NP 0.4NP) N 1.0VB) gave 0.6VB) bought 0.4N) Lotus 0.8N) IBM 0.1N) yesterday 0.1 Figure 2.1: A PCFGTOPSNPNyesterday NPNIBM VPVBbought NPNLotusProbability = P (TOP! SjTOP) �P (N! yesterdayjN)�P (S! NP NP VPjS) �P (N! IBM jN)�P (VP! VB NPjVP) �P (V! boughtjV)�P (NP! NjNP) �P (N! LotusjN)�P (NP! NjNP)�P (NP! NjNP)Figure 2.2: A context-free tree, and its associated probability.53

2.6.3 Search for the Highest Probability TreeThe search problem is to �nd the most likely tree, Tbest(S), for an input string S, whereTbest(S) = arg maxT2T (S)P (T) (2.51)One of the simplest methods is an extension of the CKY algorithm [Hopcroft and Ullman 79]| originally developed for context-free grammars | to PCFGs. The CKY algorithm as-sumes that the input grammar is in Chomsky Normal Form (CNF). In a CNF grammarevery rule takes one of two forms:� A ! B C, where A, B, C are in N .� A ! a, where A is in N , a is in �.For now we will assume that the PCFGs under consideration are in CNF.The CKY algorithm for PCFGs is a dynamic programming algorithm that runs inO(n3jN j3) time where n is the number of words in the input sentence, jN j is the numberof non-terminals in the grammar. We assume the following data structures:� Input: n words w1:::wn� We assume that the jN j non-terminals in the grammar have indices 1; 2; :::jN j. With-out loss of generality we take the �rst non-terminal to be the starting symbol.� The central data structure is a dynamic programming array: �[i; j; k] holds themaximum probability for a constituent with label k spanning words i:::j.� The goal of the search is then to �nd �[1; n; 1] (the maximum probability for anytree spanning the whole sentence, rooted in the starting symbol). Back-pointers inthe dynamic programming array can be used to store the path leading to this goal(the highest probability tree).The basis of the CKY algorithm is a recursive de�nition of the dynamic programmingarray:� Base case: 54

for i = 1:::n; k = 1:::jN j,if k ! wi is a rule in the grammar �[i; i; k] = P (k ! wijk)else �[i; i; k] = 0� Recursive case:�[i; j; k] = maxf�[i;m; k1] � �[m+ 1; j; k2] � P (k ! k1 k2jk)gwhere the maximum is taken over m such that i � m � j � 1 and k1; k2 such thatk ! k1 k2 is in the grammarFigure 2.3 gives pseudo code for an implementation of the algorithm. The only sub-tle point in the implementation is that when building a constituent of length l, all sub-constituents of length less than l must have already been built. The variable s (for span)in the pseudo-code ensures that constituents of length 2, 3, 4 ... n are built in that order.2.6.4 Parameter EstimationThe next question is how to estimate the rule probabilities P(� ! �j�), given a trainingcorpus. Assume that the training corpus consists of n trees, T1:::Tn. Assume that each Ticontains ri context-free rules, �ij ! �ij for 1 � j � ri. The likelihood of the corpus canbe written as L(corpus) = Yi=1:::nP(Ti)= Yi=1:::n Yj=1:::riP(�ij ! �ij j�ij)= Y(�!�)2P P(�! �j�)Count(�!�) (2.52)(Count(�! �) is the number of times the rule �! � is seen in the �rst product: I.e., thenumber of times the rule is seen in training data.) This likelihood function shows that themodel is of the general form described in section 2.3.2. If �(�) is the set f� j (�! �) 2 Pgthen it follows that the maximum-likelihood parameter estimates areP(�! �j�) = Count(�! �)P2�(�) Count(�!) = Count(�! �)Count(�) (2.53)55

#initialisationfor all i,j,kp[i,j,k] = 0#base casefor i = 1 ... nfor k = 1 ... Gif k -> wi is in grammarp[i,i,k] = P(k -> wi)#recursive casefor s = 2 ... nfor i = 1 ... n-s+1j = i+s-1for m = i ... j-1for k = 1 ... Gfor k1 = 1 ... Gfor k2 = 1 ... Gprob = p[i,m,k1] * p[m+1,j,k2] * P(k -> k1 k2)if (prob > p[i,j,k])p[i,j,k] = probB[i,j,k] = {m,k1,k2}Figure 2.3: Pseudo-code for the CKY algorithm for PCFGs. p is the dynamic programmingarray. B is an array of back-pointers allowing recovery of the highest probability tree.
56

2.7 History-Based Models[Black et al. 92b] introduced what they called \history-based" models to natural lan-guage processing; later work such as [Jelinek et al. 94, Magerman 95, Ratnaparkhi 96,Ratnaparkhi 97] used this for parsing and tagging problems. The idea is to de�ne a one-to-one mapping that maps each member of X � Y to a sequence of decisions hd1; d2:::dni.The joint probability of a member (x; y) of X � Y is then written using the chain rule ofprobabilities as P (x; y) = P (hd1; d2:::dni) = Yi=1:::nP (dijd1:::di�1) (2.54)The conditioning context for each di, hd1; d2:::di�1i, is referred to as the \history", and isequivalent to some partially built structure.The mapping between events in X � Y and decision sequences is achieved by de�n-ing a stochastic program that generates events in X � Y. A stochastic program is analgorithm which at certain points makes a random choice between alternative decisions,according to some probability distribution [Koller, McAllester and Pfe�er 97]. The traceof the program can be represented as the sequence of decisions that is made; the prob-ability of this decision sequence is the product of probabilities of the di�erent decisions.If the program's probability of halting is 1,6 then the program de�nes a distribution overdecision sequences, and | given that there is one-to-one mapping from members of X �Yto decision sequences | it de�nes a distribution over X � Y.As it stands, associating a parameter P (dijd1:::di�1) with each possible pre�x hd1; d2:::diiwould lead to a vast number of parameters. [Black et al. 92b] describe the use of a function� to group histories into equivalence classes, givingP (x; y) = P (hd1; d2:::dni) = Yi=1:::nP (dij�(d1:::di�1)) (2.55)As an example, �gure 2.4 gives pseudo-code for a stochastic program that generatestree-sentence pairs. In this case the stochastic program generates left-most derivations ofparse trees: a tree is represented as a sequence of decisions where each decision is therule used to expand the left-most non-terminal at the current point in the derivation.6Note that this property can often be quite di�cult to prove.57

For example, [S [NP [N I]] [VP [VB saw] [NP [N her]]]] would be represented asfS! NP VP; NP! N; N! I; VP! VB NP; VB! saw; NP! N; N! herg.If �(d1:::di�1)) = �, where � is the left-most non-terminal in the partial tree de�nedby hd1:::di�1i, then the stochastic program is equivalent to a PCFG, in that it generatestrees with the distribution de�ned by a PCFG with parameters P (� ! �j�). On theother hand, � could be extended to include arbitrary additional context in the partial treede�ned by d1:::di�1 (for example, the parent of � in the tree, the symbol directly to theleft of � in the tree, and so on). [Black et al. 92b] describe a method that uses decisiontrees to search for values of � that include additional context. So we see that while thishistory-based model includes PCFGs, it is also powerful enough to extend them in manyways.For completeness, �gures 2.5 and 2.6 give pseudocode for stochastic programs that gen-erate sequences and sequence pairs, and states conditions for their equivalence to Markovand Hidden Markov Models respectively.2.7.1 Conditional History-Based ModelsHistory-based models can also be used to de�ne conditional distributions P (yjx) for y 2 Yand x 2 X . [Ratnaparkhi 97, Magerman 95, Jelinek et al. 94] describe conditional modelsfor parsing; [Ratnaparkhi 96] describes such a model for POS tagging. In conditionalmodels the pair x; y is again represented as a sequence of decisions, but the input x is aconditioning variable:P (yjx) = P (hd1; d2:::dnijx) = Yi=1:::nP (dij�(d1:::di�1; x)) (2.56)For example, in [Ratnaparkhi 96], d1:::dn are the n POS tags for a sentence of length n,and �(d1:::di�1; x) picks out the previous two tags, di�1 and di�2, as well as the wordswi�2:::wi+2. Chapter 4 describes the use of conditional history-based models for parsing[Magerman 95, Ratnaparkhi 97, Jelinek et al. 94] in some detail.
58

#d_i is the i'th decision made by the program -- each decision is the choice#to use some rewrite rule from the grammar#s_i is the i'th sentential form derived in a left-recursive derivation of#the tree. s_0 is START (START is the starting symbol in the grammar);#s_i can be derived from s_0 and d_1 ... d_ns0 = START;i = 0;while(si contains at least one non-terminal)f � = left-most non-terminal in si;di = choose a rewrite rule �! � from the distribution P (�! �j�(d1:::di�1));si+1 = si with � replaced by �;i++;greturn;Figure 2.4: A stochastic program that generates trees. If �(d1:::di�1) = � then this isequivalent to a PCFG.#d_i is the i'th decision made by the program -- each decision is the choice#to generate either a symbol from the vocabulary V, or the STOP symboli = 1;while(TRUE)f di = a word drawn from the distribution P (wordj�(d1:::di�1));if(di == STOP) return;i++;gFigure 2.5: A stochastic program that generates sequences. If �(d1:::di�1) = di�m:::di�1then this program is equivalent to an mth order Markov model.59

#d_i is the i'th decision made by the program -- each decision for odd#values of i is to either choose a tag from the set of tags T or the STOP#symbol; for even values of i it is to choose a word from the vocabularyi = 1;while(TRUE)f di = a tag drawn from the distribution P (tagj�1(d1:::di�1));if(di == STOP) return;di+1 = a word drawn from the distribution P (wordj�2(d1:::di));i+=2;gFigure 2.6: A stochastic program that generates sequence pairs. If �1(d1:::di�1) =di�2m+1; di�2m+3:::di�1 and �2(d1:::di) = di then this program is equivalent to an mthorder Hidden Markov model.2.8 Additional Topics in Statistical Models2.8.1 Unsupervised Learning through the EM AlgorithmModel structures that de�ne joint probability distributions P (x; yj�) can be trained in anunsupervised fashion using the expectation-maximization (EM) algorithm[Dempster, Laird and Rubin 77]. In unsupervised training the training data is a sequenceof events X = x1:::xn drawn from X . [Baker 79] describes an e�cient algorithm for EMtraining of PCFGs; [Baum 71] describes the forward-backward algorithm for HMMs.2.9 EstimationWe now consider estimation of multinomial parameters when data is sparse, through\smoothing" of maximum-likelihood (ML) estimates. This section is not intended to be acomprehensive review of smoothing techniques: there is a large amount of relevant litera-ture on this subject (for example, see [Jelinek 90] and [Chen and Goodman 96]). Instead,the section �rst gives some general motivation for the need for smoothing; second, gives60

details of the speci�c techniques used later in this thesis.2.9.1 The Sparse Data ProblemPractically all of the models in this chapter require estimation of multinomial parameters.In general, then, we assume that there is some set of parameters P (Y jX1;X2; :::Xn) forwhich we require estimates. Y is a random variable that can take any value from a set ofpossibilities Y. X1;X2:::Xn are the conditioning variables, and are members of the setsX1;X2; :::Xn respectively. For conciseness we use X to denote the context X1;X2:::Xn;X is a member of the set X = X1 � X2 � ::: � Xn. In the models in this chapter, themaximum-likelihood (ML) estimate of P has taken the form:P̂ML(Y jX) = Count(Y;X)Count(X) (2.57)There are usually some severe problems with this estimate. In high-dimensional parameterspaces Count(X) may be very low, or even 0, leaving 2.57 inaccurate or even unde�ned.This is the sparse data problem. For example, take the problem of estimating probabilitiesin a 2nd order Markov model where the size of the vocabulary V is 20,000 words. In thiscase there are 20; 0003 = 8 � 1012 parameter values to be estimated, so we might expect toneed a corpus of at least 8 � 1012 words to estimate the parameters with any accuracy. Toexpect to have a corpus of this size is unrealistic.A general strategy for dealing with this problem is to use ML estimates computed forlower order distributions. Lower order parameters are multinomials that are conditionedon sub-contexts ofX, rather than the entire context of conditioning variables. For example,if n = 3 then there are 7 lower order distributions: P (Y jX1), P (Y jX2), P (Y jX1;X2), P (Y)and so on. The utility of lower order estimates can be motivated if we consider the natureof estimation error more carefully.2.9.2 Two Sources of Estimation ErrorThe analysis in this section is for binomial distributions, the special case where jYj = 2;however, the same principles apply to the estimation of multinomial parameters wherejYj > 2. 61

Say p̂n is an estimate of p, based on a sample size of size n. We de�ne the expectederror of an estimate p̂n as follows:Err (p̂n) = Ep h(p̂n � p)2i (2.58)The Ep operator refers to expected value with respect to the underlying probability p. (p̂nis a random variable whose distribution depends on p: to see this note that p de�nes adistribution over the set of possible samples of size n, and that each of these samples mapsto a di�erent value for p̂n. Hence we can calculate the expected value w.r.t. p of functionsof p̂n.)For the purposes of this section we assume that the goal of an estimation method isto minimize the above de�nition of Err (this is a common criteria for estimation in themathematical statistics literature, as in [BD 77] chapter 4). There may be arguments forthe use of other measures of estimation error (such as Kullback-Liebler distance), but themajor intuition of this section | that there is a trade-o� between bias and variance as twosources of error | will most likely apply to those cases also, even if the formal de�nitionsand analysis di�er.We now note that Err(p̂) is the sum of two components. We de�ne �pn as Ep[p̂n]. Thenthere are two sources of error: Err1 (p̂n) = (�pn � p)2 (2.59)Err2 (p̂n) = Ep h(p̂n � �pn)2i (2.60)It can be shown ([BD 77] pg. 117) thatErr (p̂n) = Err1 (p̂n) +Err2 (p̂n) (2.61)�pn�p is the bias of the estimate; Err1 is this value squared. Err2 is a measure of samplingerror: with small sample sizes, the estimate p̂n will with some probability vary from itsaverage value �pn. As n increases Err2 will decrease: and Err2 goes to 0 as the samplesize n goes to 1.
62

A Compromise Between the Two Sources of ErrorWith these results in mind, we now return to the analysis of estimates of P (Y jX) basedon sub-contexts of X. One result [BD 77] is that the ML estimate P̂ML(Y jX) has a valueof 0 for Err1. Unfortunately though, the sample size for this estimate may be very small,so the Err2 component of its error may be very large. In contrast, imagine that we de�neP̂ (Y jX) = P̂ML(Y), an ML estimate of Y based on the empty sub-context of X. Thisestimate will almost certainly have Err1 > 0, but its Err2 component will be much lowerthan that for P̂ML(Y jX), as the sample size on which it is based is much larger.Between these two extremes are estimates based on non-empty sub-contexts of X,which will in general have decreasing Err2 but increasing Err1 as the conditioning subsetgets smaller. We could imagine an estimation strategy where we simply chose a particularsub-context of X, �(X), as the basis of the estimate, so that P̂ (Y jX) = P̂ML(Y j�(X)). Asensible method would be to choose the �(X) that lead to the best compromise betweenErr1 and Err2 problems, thereby minimizing the expected error of the estimate. It turnsout, however, that taking a weighted average of di�erent ML estimates is better thansimply picking a single ML estimate. This is the topic of the next section.2.9.3 Linear Combinations of ML EstimatesSay we are de�ning an estimate of P (Y jX). We de�ne an n-level back-o� strategy � =�1:::�n as follows:� Each �i is a function that maps X to some sub-context of X. We write this sub-context as �i(X). Thus each �i can be represented as a subset of the set of integersf1; 2; :::ng, and can take 2n possible values.� The ith level estimate P̂i(Y jX) is de�ned as P̂ML(Y j�i(X)) = Count(Y;�i(X))Count(�i(X)) .We stipulate a couple of constraints on possible forms for �:1. �1(X) is su�ciently small for P̂1(Y jX) to be de�ned in all cases;i.e., 8X 2 X Count(�1(X)) > 0. (Often this means that �1(X) is the empty set.)2. If i < j then �i(X) � �j(X). 63

P̂i for 1 � i � n now de�nes a sequence of estimates, withErr1 for each estimate decreasingwith increasing i, and Err2 increasing with increasing i. So as we move through theestimates P̂1:::P̂n there is a trade-o� between Err1 and Err2.A linear combination of these estimates can be de�ned using a weight �i associatedwith each back-o� level. We de�ne the ith level smoothed estimate ~Pi recursively:~P1 = P̂1~Pi = �iP̂i + (1� �i) ~Pi�1 for 1 < i � n (2.62)The �nal estimate will be ~Pn, which incorporates all estimates P̂1:::P̂n that are well de�ned.Each �i must take a value between 0 and 1 for each ~Pi to de�ne a distribution over Y. Thevalue of �i can be interpreted as an indication of how much we trust P̂i rather than the(i� 1)th level smoothed estimate: a value of 1 means that we trust it completely, a valueof 0 means we don't trust it at all. The next question is how �i should be calculated.2.9.4 Calculating Back-O� WeightsOnce the back-o� strategy � = �1:::�n has been de�ned, the remaining question is howto pick each of the weights �i. At the very least, �i should be 0 if Count(�i(X)) = 0, inwhich case Pi is unde�ned (otherwise the �nal estimate ~Pn will be unde�ned). Beyond thisconstraint there are a couple of methods that we will discuss: optimizing the likelihood ofheld-out data, and direct calculation of the value of �i from various characteristics of thesample.A theme that is common to both of these techniques is to make �i dependent onCount(�i(X)), the sample size on which Pi is based. If Count(�i(X)) = 0, then Piis unde�ned and �i must be 0. As Count(�i(X)) increases, we would expect Pi to bebecome more reliable, and to reect this �i should move towards its maximum possiblevalue of 1.Method 1: Optimizing the Likelihood of Held-out Data[Jelinek 90] describes how the values for �i can be calculated with the use of held-out data.The basic idea is to split the training data into two sub-sets: the �rst is used to calculate64

the di�erent maximum-likelihood estimates P̂i; �i then is chosen to optimize the likelihoodof the second set of held-out data. [Jelinek 90] describes methods for optimization of theweights �i.The dependence of �i on Count(�i(X)) is achieved through \bucketing". In the mostextreme case, this means training a di�erent value of �i for each value of Count(�i(X)).More likely, a di�erent �i is trained for each range of counts: for example, a di�erentvalue might be trained for Count(�i(X)) = 0; 1; 2; [3� 5]; [6� 10]; [11� 20]; [21� 30]; [30�50]; [50� 100]; [100 �1]. The boundaries of these ranges are usually chosen so that thereare as many buckets as possible, subject to the constraint that each bucket contains someminimum number of events required to estimate �i robustly.A method that makes more e�cient use of training data is to rotate the held-out data:for example partitioning the training data into 10 equally size subsets, then estimating �ivalues with each of the 10 subsets held-out, calculating the �nal value of �i as the averageof these 10 values.Method 2: Direct Calculation of �iAnother method is to de�ne �i in terms of Count(�i(X)):�i = 0 If Count(�i(X)) = 0�i = Count(�i(X))Count(�i(X))+Ci If Count(�i(X)) > 0 (2.63)Ci is a constant that can be optimized using held-out data. This de�nition satis�es theintuition that �i should go to 1 as Count(�i(X)) goes to 1. The value for Ci dictatesthe rate at which this asymptote is approached: the higher Ci's value, the slower theconvergence towards 1.While this method has some of the properties we would expect, it does seem ratherad-hoc. However, there are a number of methods in the smoothing literature that justifythis relationship between �i and Count(�i(X)), both theoretically [Witten and Bell 91]and empirically [Chen and Goodman 96]. 65

An approach that we will use in the parser in chapter 7 is to calculate Ci as a func-tion of what we call the diversity of �i(X)), D (�i(X)). The method is borrowed from[Bikel et al. 97], and has further motivation in [Witten and Bell 91]. The diversity is de-�ned as D (�i(X)) = jY(�i(X))j (2.64)where Y(�i(X)) = fy j Count(y;�i(X)) > 0g (2.65)The diversity is the number of di�erent outcomes that have been seen with the context�i(X) in the training sample. 2.63 is then modi�ed to be:�i = 0 If Count(�i(X)) = 0�i = Count(�i(X))Count(�i(X))+C�D(�i(X)) If Count(�i(X)) > 0 (2.66)C is a constant that can also be optimized on held-out data. �i is now sensitive to thediversity as well as the count of �i(X). As the diversity increases, �i decreases, and lesstrust is put in the estimate �i. The motivation behind this is that the diversity is a measureof how likely a new outcome is to appear in a test sample: the higher the diversity themore likely a novel event is to occur, and the less P̂i should be trusted (P̂i estimates theprobability of any novel event as 0). Take an example where the sample size is 10: if outof those 10 events in the sample the same outcome was seen every time (i.e. D = 1), thenwe should be reasonably sure that novel events are unlikely to occur in test data, and �ishould be high. In contrast, if a di�erent outcome was seen every time (D = 10), thenwe should be reasonably sure that novel events are likely to be seen in test data, and �ishould be correspondingly lower.Empirical justi�cation for this model comes from [Chen and Goodman 96]: they reportvery good performance for a method that is quite similar to 2.63. They de�ne a functionOneCount OneCount (�i(X)) = jY(�i(X))j (2.67)where Y(�i(X)) = fy j Count(y;�i(X)) = 1g (2.68)66

�i is then de�ned as �i = 0 If Count(�i(X)) = 0�i = Count(�i(X))Count(�i(X))+B+C�OneCount(�i(X)) If Count(�i(X)) > 0 (2.69)So their measure of diversity, OneCount, is quite similar to ours, and will most likely behighly correlated; they also have an additional constant B that can be optimized on aheld-out data set.

67

Chapter 3
Some AlternativeParameterizations for StatisticalParsing
The previous chapter described some mathematical techniques for statistical modeling ofnatural language problems. This chapter gives additional background, considering alter-native parameterizations for parsing. We give a sequence of proposals in increasing orderof sophistication; each re�nement is motivated through examples where the old parame-terization fails, and the new method �xes the perceived de�ciency.We assume that designing a model structure is a two stage process. The �rst step is thechoice of parameterization (the subject of this chapter). The second step in a realization ofthis representational choice in a precise mathematical model (using techniques described inthe previous chapter). Of course, this is an idealization. The desire for a mathematicallysound formulation will sometimes alter the parameterization (often in interesting ways).The model of chapter 6 is a �rst attempt to implement the parameter types of this chapter;chapter 7 gives �nal models with all of the parameter types.

68

3.1 A De�nition of Parse-Tree ParameterizationWe �rst de�ne what we mean by the \parameterization" of a parse tree for probabilisticparsing. In the models in this thesis, the probability of a parse tree is de�ned as theproduct of several terms, each term being associated with an \event" in the parse tree (anevent is some fragment of the parse tree):P(T; S) = Yi=1:::nScore(Eventi) (3.1)For example, in the case of a PCFG, Eventi is the i'th context free rule in the tree.The parameterization of a parse tree is the choice of Event1:::Eventn | in the case of aPCFG, the n context-free rules in the tree. In other words, the choice of parameterization isthe choice of how to break down trees: what linguistic objects to associate the parameterswith.The Score for each event will be an estimate of some conditional probability, andin general will be directly related to the number of times the event has been seen intraining data, Count(Eventi). Typically, Eventi will be split into two parts: Contextiand Predictioni, with Score(Eventi) = P̂ (PredictionijContexti) (P̂ is an estimate of P).In the case of PCFGs, if Eventi is the rule �i ! �i then Contexti = �i, Predictioni = �iand Score(Eventi) = P̂ (�ij�i). [Booth and Thompson 73] showed that this choice ofPredictioni and Contexti for PCFGs leads to a consistent model; in general, the choiceof Predictioni and Contexti will be motivated by the desire for a \well-formed" model,where the idea of a \well-formed" model is de�ned in section 2.3.3.In this chapter, however, we will ignore the precise de�nition of the Score for eachEvent. The crucial point is that the utility of a particular parameterization can be in-vestigated through its ability to discriminate between di�erent trees. This discriminativeability is independent of the exact formula used to calculate the Score. For example, bynoting that the two trees in �gure 3.1 di�er only by rules that make no mention of lexicalinformation, we can see that a simple PCFG ignores lexical information when making PPattachment decisions. This ignorance holds regardless of how the score for the rules in thetree is calculated.The �rst change, a shift from simple PCFGs to dependencies, is the most radical. From69

(a) SNPNNSworkers VPVPVBDdumped NPNNSsacks PPINinto NPDTa NNbin
(b) SNPNNSworkers VPVBDdumped NPNPNNSsacks PPINinto NPDTa NNbinRulesS ! NP VPNP ! NNSVP ! VP PPVP ! VBD NPNP ! NNSPP ! IN NPNP ! DT NNNNS ! workersVBD ! dumpedNNS ! sacksIN ! intoDT ! aNN ! bin

RulesS ! NP VPNP ! NNSNP ! NP PPVP ! VBD NPNP ! NNSPP ! IN NPNP ! DT NNNNS ! workersVBD ! dumpedNNS ! sacksIN ! intoDT ! aNN ! binFigure 3.1: A case of PP attachment ambiguity. (a) Verb attachment, the correct tree.(b) Noun attachment. Note that the trees share exactly the same set of rules, except (a)has a rule VP ! VP PP, (b) has a rule NP ! NP PP.

70

there we add progressively more features, motivating each additional piece of informationthrough example trees where the previous parameterization can be seen to be problematic.For convenience, throughout this chapter we will use the terms \parameterization"and \representation" interchangeably. This di�ers from our de�nition of representation inchapter 1, repeated here:� Representation. Choose how to represent parse trees. For example, choose theset of part-of-speech tags and non-terminal labels in the tree; choose whether or notto have lexical head-words attached to non-terminals; choose whether to representwords directly, or as their morphological stems, or as bit-strings derived throughclustering techniques.By chapter 1's de�nition, the parsers of [Ratnaparkhi 97, Charniak 97, Goodman 97] andthis thesis all use the same representation. By the de�nition of this chapter, they di�erto varying degrees in their choice of parameterization, or representation. The stricterde�nition of representation, as used in this chapter, reects our emphasis on the parametersof the model: that it is not su�cient to simply include features that may be useful fordisambiguation, it is also crucial to consider how they are linked together in the �nalparameters of the model.3.1.1 A Note about Events in this ChapterIn this chapter, for conciseness, we do not consider how the various parameters may in-teract | for example, the choice of subcategorization frame for a head will inuence thedependencies that it takes.Eventually, the models of chapter 7 will give a fully speci�ed model where such inter-actions are captured. The parameterization is formed using a history{based model, whereeach event corresponds to a decision in a top-down derivation of the tree. The condition-ing context for each decision is chosen so that interactions are modeled properly. In somecases this will result in the model conditioning on context that is not included in the eventsof this chapter. The speci�cation of events in this chapter should therefore be taken asthe \core", essential subset of information; the �nal parameters of chapter 7 will includeadditional context in some cases. 71

3.1.2 Parameterization Proposals: a SummaryThe following sections will consider a sequence of proposals, summarized here:A simple PCFG Each \simple" context-free rule in a parse-tree has an associated prob-ability. Section 3.2 de�nes a simple PCFG as containing two types of rules: (1) rulesX ! Y where X is a POS tag and Y is a lexical item; (2) rules X ! Y1 : : : Yn whereeach X and Yi are drawn from a simple set of non-terminals such as VP, NP, or SBAR.Dependencies A dependency is de�ned to be a relation between two words in a sentence(a modifier and a head), written hmodifier ! headi. A tree for a sentence withn words contains n dependencies between pairs of words; each dependency has anassociated probability. Thus this proposal introduces probabilities associated withpairs of words in the sentence.Dependencies + Direction A tree is represented as n dependency relations hmodifier !head; directioni. direction speci�es the relative order of the modifier and head inthe sentence.Dependencies + Direction + Relations A tree is represented as n dependency rela-tions hmodifier ! head; direction; relationi. relation speci�es the grammatical re-lation between the two words. It is formed by a triple of non-terminals taken from thetree. As an example, a dependency might be hIBM ! acquired;LEFT; hNP,S,VPii,signifying a relationship where: IBM is the modi�er; acquired is the head; IBMappears to the left of acquired; and the relationship is hNP,S,VPi (a triple of non-terminals representing a subject-verb relationship).Dependencies + Direction + Relations + Subcategorization A tree is representedby m subcategorization probabilities, in addition to the n dependencies de�ned be-fore. Subcategorization probabilities correspond to events of the form \What is theprobability that give takes two NP complements to its right?", or \What is the prob-ability that give takes a single subject NP to its left?".Dependencies + Direction + Relations + Subcategorization + Distance The de-pendency events are extended to include a distance variable, some measure of the72

distance between the modifier and head. The distance is measured either over thesurface string between the two words, or with some reference to the tree structure.It allows the model to di�erentiate dependencies between \close" vs. \distant" pairsof words; this is important for the model to learn preferences for close-attachment.Dependencies + Direction + Relations + Subcategorization + Distance + Parts-of-Speech All events including lexical items are extended to include the POS tagassociated with that lexical item. Statistics based on lexical items may be sparse;statistics based on POS tags can be used as a fall-back in cases of sparse data.3.2 Parameterization Proposal 1: A Simple PCFGParameterization Proposal 1. (A simple PCFG) A parse tree is represented as n eventsEvent1:::Eventn, where Eventi is the i'th context-free rule in the tree, and the rules are\simple" (the idea of a \simple" rule is de�ned below).Much of the early work on statistical parsing of natural language focused on PCFGsas a formalism. Results, however, were rather disappointing | for example [Charniak 97]reports accuracy of 70.6/74.8% recall/precision1 for a PCFG trained and tested on thePenn Wall Street Journal treebank [Marcus et al. 93]. In comparison, the models in thisthesis reach over 88% precision and recall on the same task.Inducing a PCFG directly from the Penn WSJ treebank, as in the non-lexicalized(rather than the lexicalized) model of [Charniak 97], leads to a grammar with the followingproperties:� Each rule in the grammar is either of the form1. X ! Y1:::Yn, where X and Y1:::Yn are non-terminals, and n � 1.2. X ! x, where X is a non-terminal part of speech, and x is a lexical item.� The non-terminals in the grammar are a very simple, restricted set of labels NP, VP,S, SBAR, PP etc.1Recall and precision are de�ned in section 6.4 of this work; informally, they refer to the accuracy inrecovering constituents in a parse tree. A constituent is de�ned by its non-terminal, and the words it spansin the sentence. 73

N = fTOP, S, NP, VP, VB, NNPg� = fgave, saw, U.S., IBM, yesterdaygS = TOPRules P Probabilities DTOP) S 1.0S) NP VP 0.8S) NP NP VP 0.2VP) VB NP 0.6VP) VB NP NP 0.4NP) N 1.0VB) gave 0.6VB) bought 0.4N) Lotus 0.8N) IBM 0.1N) yesterday 0.1Figure 3.2: A simple PCFG� The part-of-speech tags are also relatively restricted, distinguishing major category(noun, verb, preposition etc.), and some simple sub-categories (singular/plural/propernouns, di�erent verb inections etc.). The part-of-speech tags do not make subcate-gorization distinctions for verbs (for example transitive vs. intransitive).From here on we will refer to a PCFG that satis�es these properties as a \simple"PCFG. The grammar in �gure 2.1, repeated in �gure 3.2, is an example of a simple PCFG.In an attempt to account for the poor parsing accuracy of simple PCFGs, we identifytwo major weaknesses in this parse tree representation:1. Lack of sensitivity to lexical dependencies.2. Lack of sensitivity to structural preferences such as preferences for right-branchingor left-branching structures.
74

3.2.1 Lack of Sensitivity to Lexical DependenciesSome ExamplesA major weakness of simple PCFGs is their lack of sensitivity to lexical information. Toillustrate this, �rst take the example of prepositional phrase attachment ambiguity shownin �gure 3.1. The important point is that the trees for the two analyses di�er by only onerule: in the verb attachment case the tree has a rule VP ! VP PP, in the noun attachmentcase the di�ering rule is NP ! NP PP. Given that a PCFG assigns the probability foran entire tree as a product of rule probabilities, the attachment decision hinges on theprobability for these two rules. If P(VP ! VP PP) > P(NP ! NP PP) then the verb-attachment tree will have higher probability. If P(NP ! NP PP) > P(VP ! VP PP) thenthe noun-attachment tree will have higher probability.By this argument, the decision between the two structures depends only on the tworule probabilities, and has no dependence on the lexical items themselves. In fact, anysentence with the part-of-speech sequence hNNS VBD NNS IN DT NNi will be assigned averb-attachment if P(VP ! VP PP) > P(NP ! NP PP), a noun-attachment otherwise.This is problematic in that the attachment clearly depends on the words involved: as anexample, workers sold sacks of a chemical has the same POS sequence as workers dumpedsacks into a bin, but involves a noun-phrase attachment.Looking at statistics from the Penn treebank we can see how bad this non-lexicalstrategy is. Inspection of the training set of PP attachment ambiguities originally used in[Ratnaparkhi et al. 94] shows that 52% of attachments were to the noun. On this basis,we would expect the purely structural preference made by a PCFG to achieve an accuracybarely above chance. In contrast, methods which look at the 4 head-words involved in thepp-attachment ambiguity (e.g., dumped sacks into bin) can achieve up to 84% accuracy2(see the results in chapter 5). The lack of lexical sensitivity in PCFGs is decreasing accuracyby over 30% in this case.2Even a method that looks at the preposition alone, making the most frequent attachment for eachpreposition, scores around 72% accuracy. In the example into can attach to both nouns and verbs, but isseen attached to verbs 92% of the time in [Ratnaparkhi et al. 94]'s training set.
75

(a) NPNPNPNNSdogs PPINin NPNNShouses CCand NPNNScats
(b) NPNPNNSdogs PPINin NPNPNNShouses CCand NPNNScats

]
RulesNP ! NP CC NPNP ! NP PPNP ! NNSPP ! IN NPNP ! NNSNP ! NNSNNS ! dogsIN ! inNNS ! housesCC ! andNNS ! cats

RulesNP ! NP CC NPNP ! NP PPNP ! NNSPP ! IN NPNP ! NNSNP ! NNSNNS ! dogsIN ! inNNS ! housesCC ! andNNS ! catsFigure 3.3: A case of coordination ambiguity. Both analyses contain exactly the same setof rules, and will therefore receive equal probability.There are many other cases of ambiguity that exhibit a similar sensitivity to lexi-cal information. Examples are coordination, relative clause attachment, and noun-nouncompounds. ([Lauer 95] describes a method that uses dependency information for disam-biguation within noun-noun compounds.) Figure 3.3 shows an example of coordination.This case is even more extreme: the two possible analyses contain the same set of rules,and therefore receive equal probability under a simple PCFG. Again, lexical dependenciesseem crucial: dogs and cats are far more likely to be coordinated than houses and cats.A General ResultThe only lexical sensitivity that the simple PCFG has is to part-of-speech frequencies fordi�erent words, through the parameters P(tag! word j tag)3.To see this, suppose we make the simplifying assumption that each word in the vocab-ulary has only one possible part of speech tag, i.e. one tag where P(tag ! word j tag) > 0.3For example, the word saw is seen 84 times in the Penn treebank: 4 times tagged as NN, 80 times taggedas VBD. NN is seen 163935 times in total, VBD is seen 37493 times. So the parameters P(saw j VBD) andP(saw j NN) will be vastly di�erent: P(saw jVBD)P(saw j NN) = 8037493 � 1639354 = 87:4.76

We de�ne the function tag(word) to be the one possible tag for a particular word. Given asentence hw1:::wni, all trees for this sentence which have probability greater than zero mustthen have the POS sequence tag(w1):::tag(wn). Furthermore, all of these trees will havethe same product of probabilities involving lexical items: Qi=1:::nP(wi j tag(wi)). Whencomparing di�erent possible trees for an input sentence w1:::wn, the lexical probabilitieswill be irrelevant and the ranking will be done solely on the basis of the rules in the tree.In conclusion, if any two sentences have the same tag sequence, they will have to receivethe same highest-probability analysis.3.2.2 Structural PreferencesA second weakness of simple PCFGs is their lack of sensitivity to structural informa-tion. Statistics in the Penn WSJ treebank show that there is a de�nite preference forright-branching structures, in that adverbials tend to attach to the most recent possibleattachment site. Figures 3.4 and 3.5 show examples involving PP attachment to nouns andverbs respectively. In both cases the right-branching structure is seen around two-thirdsof the time, but the competing structures contain identical rules so the simple PCFG failsto capture this preference. [Briscoe and Carroll 93] used similar examples to motivate themove from a simple PCFG to a probabilistic LR parser.3.3 Dependency ParameterizationsThe second representation proposal, a shift to dependencies, is a radical move from thesimple PCFG. It is largely motivated by a desire for increased sensitivity to lexical infor-mation.3.3.1 Parameterization Proposal 2: DependenciesParameterization Proposal 2. (Dependencies) A parse tree is represented as n eventsEvent1:::Eventn, where Eventi is the dependency wi ! hi. wi is the i'th word in thesentence, hi can be any other word in the sentence or the START symbol.Note that a sentence with n words leads to a parse tree with n dependencies. In a77

(a) NPNPNN PPIN NPNPNN PPIN NPNN
(b) NPNPNPNN PPIN NPNN PPIN NPNNRulesNP ! NP PPNP ! NNPP ! IN NPNP ! NP PPNP ! NNPP ! IN NPNP ! NN

RulesNP ! NP PPNP ! NNPP ! IN NPNP ! NP PPNP ! NNPP ! IN NPNP ! NNFigure 3.4: Two possible structures for the same sequence of POS tags. (a) is a rightbranching structure: the second prepositional phrase attaches to the closest noun. In (b)the second prepositional phrase attaches to the furthest noun. In Penn Wall Street Journaltext structure (a) appears 68% of the time, (b) appears 32% of the time. However, bothstructures contain exactly the same set of rules, so the simple PCFG fails to distinguishbetween them.
(a) VPV NPNP VPV NP PP (b) VPV NPNP VPV NP PPRulesVP ! V NPNP ! NP VPVP ! V NP PP RulesVP ! V NPNP ! NP VPVP ! V NP PPFigure 3.5: Two possible structures for the same sequence of POS tags. (a) is a rightbranching structure: the second prepositional phrase attaches to the closest verb. In (b)the second prepositional phrase attaches to the furthest verb. In Penn Wall Street Journaltext structure (a) appears 67% of the time, (b) appears 33% of the time. However, bothstructures contain exactly the same set of rules, so the simple PCFG fails to distinguishbetween them.

78

dependency wi ! hi we will describe wi as the modi�er, hi as the head. As an example,�gure 3.6 gives two trees with their associated dependencies.3.3.2 The Function from Trees to Sets of DependenciesThis section de�nes the function from a tree to its associated dependencies. There aretwo stages involved: �rst, the lexicalization of trees (i.e., the addition of a word to eachnon-terminal label in the tree); second, the derivation of (n � 1) dependencies from eachrule with n children.Step 1: Lexicalization of Parse Trees[Black et al. 92b, Jelinek et al. 94, Magerman 95] introduced lexicalization of non-terminalsas a way of improving parsing accuracy. Each non-terminal in the tree is modi�ed to alsoinclude a head-word, one of the words in the sentence. Headwords are assigned through afunction that identi�es the \head" of each rule in the grammar. The head is one of thechild non-terminals in the rule. More precisely, the function head(X ! Y1:::Yn) returns avalue 1 � h � n, where h is the index of the head (i.e. Yhead(X!Y1:::Yn) is the head of thephrase). (Appendix A de�nes the function used in this thesis.)For example, in the rule S! NP VP the VP would, by linguistic arguments, be the headof the phrase. In this case head(S! NP VP) = 2.The headword for each non-terminal can then be de�ned recursively:base case If a non-terminal X is on the left-hand-side of a rule X ! x, where: 1) X isa non-terminal part of speech; and 2) x is a lexical item; then headword(X) = x.recursive case If (1) a non-terminal X is on the left-hand-side of a rule X ! Y1:::Yn,where Y1:::Yn are non-terminals; and (2) h = head(X ! Y1:::Yn); then headword(X) =headword(Yh).For example, take the rule S! NP VP in �gure 3.7. The VP is the head of the phrase, andheadword(S) = headword(VP) = dumped.
79

(a) S(dumped)NP(workers)NNS(workers)workers VP(dumped)VBD(dumped)dumped NP(sacks)NNS(sacks)sacks PP(into)IN(into)into NP(bin)DT(a)a NN(bin)bin
(b) Dependenciesworkers ! dumpeddumped ! STARTsacks ! dumpedinto ! dumpeda ! binbin ! into

a') S(dumped)NP(workers)NNS(workers)workers VP(dumped)VBD(dumped)dumped NP(sacks)NP(sacks)NNS(sacks)sacks PP(into)IN(into)into NP(bin)DT(a)a NN(bin)bin
b') Dependenciesworkers ! dumpeddumped ! STARTsacks ! dumpedinto ! sacksa ! binbin ! into

Figure 3.6: (a) a lexicalized tree. (b) a list of dependencies that the tree contains. a')a lexicalized tree with the PP attaching to the noun, and b') the dependencies that itcontains.
80

(a) S(dumped)NP(workers)NNS(workers)workers VP(dumped)VBD(dumped)dumped NP(sacks)NNS(sacks)sacks PP(into)IN(into)into NP(bin)DT(a)a NN(bin)bin
(b) RulesS ! NP VPNP ! NNSVP ! VBD NP PPNP ! NNSPP ! IN NPNP ! DT NN

Figure 3.7: (a) a lexicalized tree: each non-terminal has an associated headword (shown inparentheses after the non-terminal). (b) a list of rules in the tree, with the head for eachrule underlined. The de�nition of the head of each rule leads to the recovery of headwords:each non-terminal receives its headword from its head child.Step 2: Derivation of Dependencies from Lexicalized TreesHaving de�ned the headword for each non-terminal in the tree, the next step is to identifya set of dependencies between words in the sentence. A dependency is a relationshipbetween two word-tokens4 in a sentence, a modi�er and its head, which we will write asmodifier ! head. The dependencies for a given tree are derived in two ways:� Take each rule X ! Y1:::Yn such that: 1) Y1:::Yn are non-terminals; 2) n � 2;3) h = head(X ! Y1:::Yn). Each rule contributes (n � 1) dependencies, namelyheadword(Yi)! headword(Yh) for 1 � i � n; i 6= h.� If X is the root non-terminal in the tree, and x is its headword, then x! START isa dependency.For example, in the top tree in �gure 3.6, the rule VP ! VBD NP PP contributes twodependencies. In this case n = 3, h = 1, and the dependencies are hheadword(Y2) !4From here on we use the term word to mean word-token, at least when there is no danger of confusion.81

(a) NPNPNPNNSdogs PPINin NPNNShouses CCand NPNNScats
(b) NPNPNNSdogs PPINin NPNPNNShouses CCand NPNNScats

]
Dependenciesin ! dogshouses ! inand ! dogscats ! dogs Dependenciesin ! dogshouses ! inand ! housescats ! housesFigure 3.8: The case of coordination ambiguity revisited, using a dependency representa-tion.headword(Y1)i = hsacks ! dumpedi and hheadword(Y3) ! headword(Y1)i = hinto !dumpedi. Figure 3.6 lists the entire set of dependencies in the tree.3.3.3 The Motivation for Dependencies as a RepresentationRepresenting trees as sets of dependencies rather than as a set of simple PCFG rules leadsto very direct use of lexical information. This is the major strength of the dependencyrepresentation.This point is best illustrated by a couple of examples. First, take the two trees in�gure 3.6. The two trees di�er by only one dependency: the decision between them willdepend on the values of Score(into ! dumped) and Score(into ! sacks). Whereas inthe simple PCFG the decision between the two structures hinged on rule probabilities thatpaid no attention to lexical items, the decision now depends on the three lexical itemsdumped, sacks, and into.Figure 3.8 shows the dependency structures for the coordination example, originallyshown in �gure 3.3. The two trees di�er by a couple of dependencies, but most importantlyone has a dependency cats ! dogs, whereas the other has a dependency cats ! houses.(See Appendix A for a description of the head-rules used in this work, and how they dealwith coordination. The �rst coordinated phrase is taken as the head of the entire phrase,with the second conjunct standing in a special coordination relationship to this head.)82

3.3.4 Parameterization Proposal 3: Dependencies + DirectionParameterization Proposal 3. (Dependencies + Direction) A parse tree is representedas n events Event1:::Eventn, where Eventi is the tuple hwi ! hi; directionii. wi ! hi isthe i'th dependency, as before. directioni is L (for left) if wi precedes hi in the sentence,R (for right) if wi follows hi.The need for a feature describing the relative order of the modifier and head is notsurprising: especially in English, which has strong word order. Most dependencies aremuch more likely to occur in one direction than the other: a subject modi�er is almostalways seen to the left of the head it modi�es, an NP complement to a preposition is alwaysseen to the right of the preposition. The addition of the direction variable allows themodel to take these facts into account.Figure 3.9 gives an extreme example of the utility of the direction feature. Withoutthe direction feature parse 3.9(a) and parse 3.9(b) both contain plausible dependencies,and would receive roughly equal probability. With the direction feature the model willgive much higher probability to parse 3.9(a), as hof ! CEO;Ri should get much higherprobability than hof ! shares; Li (prepositional phrases will virtually always be seen aspost-modi�ers to NPs in training data).3.3.5 Parameterization Proposal 4: Dependencies + Direction + Rela-tionsParameterization Proposal 4. (Dependencies + Direction + Relations) A parse tree isrepresented as n events Event1:::Eventn, where Eventi is a hwi ! hi; directioni; relationiituple. wi ! hi is the i'th dependency. directioni indicates the relative order of wi andhi, as before. relationi is the grammatical relation associated with the dependency: it is atriple of non-terminals, hmodifieri; parenti; headii.Thus far we have ignored the non-terminals in the context-free tree when de�ning thedependency representation. This section introduces non-terminal information through arelation associated with each dependency. A relation is a triple of non-terminals de�nedin the following way: 83

(a) VP(gave)VBDgave NP(CEO)NP(CEO)DTthe NNCEO PP(of)INof NP(IBM)NNPIBM
NP(shares)CD1,000,000 NNSshares

(b) Dependency Directionof ! CEO R

(a') VP(gave)VBDgave NP(CEO)DTthe NNCEO NP(shares)PP(of)INof NP(IBM)NNPIBM NP(shares)CD1,000,000 NNSshares
(b') Dependency Directionof ! shares L

Figure 3.9: Two tree fragments and their associated dependencies ((b) and (b') showthe one dependency that di�ers between the two trees.) (a) should have relatively highprobability; (a') should be very unlikely, as PPs can virtually never pre-modify NPs inEnglish. Without the direction associated with each dependency, the two trees bothcontain plausible dependencies and the model assigns roughly equal probability to each.
84

� For each dependency headword(Yi)! headword(Yh) derived from rule X ! Y1:::Yn,the associated relation is hYi;X; Yhi:� If X is the root non-terminal in the tree, and x is its headword, then the dependencyx! START has relation hX, START, STARTi.Figure 3.10 shows an example lexicalized tree with its associated dependencies and theirrelations. As an example of how a rule de�nes the relation for each dependency, take therule VP! VBD NP PP in �gure 3.10. It contributes two dependencies: hheadword(Y2)!headword(Y1)i = hsacks ! dumpedi and hheadword(Y3) ! headword(Y1)i = hinto !dumpedi. The associated relations are hY2;X; Y1i = hNP,VP,VBDi and hY3;X; Y1i =hPP,VP,VBDi respectively.Motivation for RelationsThe inclusion of non-terminals is important for two reasons. First, if we are interested inrecovering parse trees with the non-terminals, it is essential to include the non-terminals inthe dependency representations. Otherwise, any lexicalized tree with the same headwordstructure, but arbitrary node labels, would have the same dependency structure and wouldtherefore receive the same probability. Dependencies alone fail to discriminate betweentrees with di�erent node labelings. With the relation triples, the mapping between alexicalized tree and its associated set of dependencies is almost one-to-one, and di�erentprobabilities are assigned to di�erent tree labelings.There is a second reason for including the relation triples. Even if we were not concernedwith recovering the tree non-terminals | recovering dependency structures alone wasconsidered su�cient | the non-terminals would still be crucial in that they improve parsingaccuracy. Whereas before a constituent was represented by its headword alone, it is nowe�ectively represented by a h headword, non-terminal i pair. The addition of the non-terminal provides two pieces of additional information:1. The major part-of-speech category for the word (noun, verb, preposition etc.). Thisis almost completely derivable from the non-terminal label (an NP almost alwaystakes a noun as its head, a PP almost always takes a prepositional head, a VP or85

(a) S(dumped)NP(workers)NNS(workers)workers VP(dumped)VBD(dumped)dumped NP(sacks)NNS(sacks)sacks PP(into)IN(into)into NP(bin)DT(a)a NN(bin)bin
(b) Dependencies Directions Relationsworkers ! dumped L h NP, S, VP idumped ! START | h S, START, START isacks ! dumped R h NP, VP, VBD iinto ! dumped R h PP, VP, VBD ia ! bin L h DT, NP, NN ibin ! into R h NP, PP, IN iFigure 3.10: (a) a lexicalized tree. (b) a list of dependencies that the tree contains, withtheir direction and associated relations.

86

S almost always takes a verb as a head and so on). The importance of this POSinformation is due to the combination of two factors:� POS tag ambiguity. A particular word may be ambiguous between several partsof speech. This means that a word can potentially be the head of quite di�erenttypes of phrase.For example, saw can be verbal, as the head of a sentence such as I saw theman; or nominal, as in the saw on the bench.� A head has strong restrictions about the POS type of its modi�er. For example,a verb will take a subject to its left that is almost always an NP, and is neveran S. The non-terminal information allows the head to specify this preference.For example, the verb \cut" may take a constituent headed by \saw" as a(subject) premodi�er as long as it is the head of an NP (i.e., is the head of aphrase such as the saw on the bench), rather than the head of an S (as in I sawthe man).See �gure 3.11 for an example of how these two characteristics may conspire to causedi�culties for a representation that lacks POS information.2. The bar level for the constituent. A word with a particular part of speech may bethe head of several di�erent types of phrases: for example a verb may be the headof a single word constituent, a complete VP, a complete S, or even an SBAR; a nounmay be the head of a phrase that is a bare noun, or may be the head of a completeNP. Beyond the simple POS distinctions, non-terminals make the further distinctionbetween, for example, the noun (NN) man and the NP the man in the park.These distinctions are crucial, in that phrases with di�erent bar levels are seen inquite di�erent syntactic environments. A single noun can be a pre-modi�er to anothernoun in a compound-nominal expression (e.g., as cigarette is in cigarette �lter) but afull noun phrase can certainly not be a pre-modi�er to another noun (e.g., as in the(cigarette with a cigarette) �lter). See �gure 3.12 for further illustration. As anotherexample, a phrase headed by to can appear as a complement to a verb such as force87

(a) S(cut)S(saw)NP(I)NNI VP(saw)VBDsaw NP(man)DTthe NNman
VP(cut)VBDcut NP(wood)NNwood

(b) Dependencies RelationsI ! saw h NP, S, VP isaw ! cut h S, S, VP ithe ! man h DT, NP, NNiman ! saw h NP, VP, VBDicut ! START h S, START, START iwood ! cut h NP, VP, VBD i
(a') S(cut)NP(saw)DTthe NNsaw VP(cut)VBDcut NP(wood)NNwood

(b') Dependencies Relationsthe ! saw h DT, NP, NN isaw ! cut h NP, S, VP icut ! START h S, START, START iwood ! cut h NP, VP, VBD iFigure 3.11: Two lexicalized trees, (a) and (a'), and the dependencies they contain, (b) and(b'). (a) should be a very unlikely parse: the dependency hsaw ! cut; hS,S,VPii shouldget low probability. (a') is a likely parse, and contains a similar dependency hsaw !cut; hNP,S,VPii. Without the non-terminal relations, both trees would contain the samedependency hsaw ! cuti, and the model would be unable to give low probability to (a)while giving high probability to (a').
88

providing it is an S rather than a VP.3.3.6 Parameterization Proposal 5: Dependencies + Direction + Rela-tions + SubcategorizationParameterization Proposal 5. (Dependencies + Direction + Relations + Subcatego-rization) A parse tree is represented as n + m events Event1:::Eventn+m. Events 1:::nare hwi ! hi; directioni; relationii dependency tuples, as in proposal 4. Events n+ 1:::mare subcategorization frames. Each subcategorization frame is a h parent, head-child,head-word, direction, frame i tuple, where parent and head-child are non-terminals,head-word is a word, direction is either L or R, and frame is a multiset of non-terminals.The subcategorization frames associated with a tree are derived as follows:� We assume that the complement-adjunct distinction is made: that is, that a con-stituent can be identi�ed as being a complement or an adjunct by inspection of itsnon-terminal label. (For the remainder of this section we will assume that comple-ment non-terminals are marked with a -C su�x: NP-C would be an NP complement,NP would be an NP adjunct. Adding this distinction e�ectively doubles the numberof non-terminals in the grammar.)� Each rule X ! Y1:::Yn where Y1:::Yn are non-terminals, and Yh is the head non-terminal, contributes two subcategorization frames:1. hX;Yh; headword(X); L; frameli where framel is a multiset containing all com-plement non-terminals in the sequence Y1:::Yh�1.2. hX;Yh; headword(X); R; frameri where framer is a multiset containing allcomplement non-terminals in the sequence Yh+1:::Yn.For example, in the rule S ! NP-C VP where VP is the head, and dumped is the head-word of the phrase, the two subcategorization frames are hS,VP,dumped,L,fNP-Cgiand hS,VP,dumped,R,fgi.Figure 3.13 shows a tree and its associated subcategorization frames.89

(a) NP(�lter)DTthe NP(cigarette)NNcigarette PP(with)INwith NP(cigarette)DTa NNcigarette
NN�lter

(b) Dependency Relationthe ! �lter DT, NP, NNcigarette ! �lter NP, NP, NNwith ! cigarette PP, NP, NPa ! cigarette DT, NP, NNcigarette ! with NP, PP, IN
(a') NP(cigarette)NP(cigarette)DTthe NNcigarette PP(with)INwith NP(�lter)DTa NNcigarette NN�lter

(b') Dependency Relationthe ! cigarette DT, NP, NNwith ! cigarette PP, NP, NPa ! �lter DT, NP, NNcigarette ! �lter NN, NP, NN�lter ! with NP, PP, INFigure 3.12: Two trees that contain a dependency hcigarette ! filteri. Tree (a)should get low probability, as an NP cannot premodify a noun. In contrast, tree (a')should get relatively high probability. Without non-terminal relations the model failsto distinguish the dependencies hcigarette ! filter; hNP, NP, NNih (low probability) andhcigarette ! filter; hNN, NP, NNih (high probability), and cannot give low probability to(a) while giving high probability to (a').
90

(a) S(dumped)NP-C(workers)NNS(workers)workers VP(dumped)VBD(dumped)dumped NP-C(sacks)NNS(sacks)sacks PP(into)IN(into)into NP-C(bin)DT(a)a NN(bin)bin
(b) Rule Associated Subcategorization FramesS ! NP-C VP hS,VP,dumped,L,fNP-Cgi h S,VP,dumped,R,fg iVP ! VBD NP-C PP h VP,VBD,dumped,L,fg i h VP,VBD,dumped,R,fNP-Cg iPP ! IN NP-C h PP,IN,into,L,fgi h PP,IN,into,R,fNP-CgiNP-C ! NNS h NP-C,NNS,workers,L,fgi h NP-C,NNS,workers,R,fgiNP-C ! NNS h NP-C,NNS,sacks,L,fgi h NP-C,NNS,sacks,R,fgiNP-C ! DT NN h NP-C,NN,bin,L,fgi h NP-C,NN,bin,R,fgiFigure 3.13: (a) A lexicalized tree with the complement-adjunct distinction made. Com-plement non-terminals are marked with a -C su�x. (b) A list of the subcategorizationframes associated with the tree (rules with a POS tag on their left hand side contributeno subcategorization frames, and are excluded from the table).

91

(a) PP(among)INamong NP-C(group)NP(group)DTa NNgroup PP(of)INof
NP-C(workers)NNSworkers

(a') S(was)NP-C(Dreyfus)NNPDreyfus NP-C(fund)DTthe JJbest NNfund VP(was)VBDwas ADJP(low)JJlowFigure 3.14: Two trees that should have low probability due to unlikely subcategorizationframes. In each case the dependencies in the tree should all have high probability, and arepresentation based on dependencies alone will fail to give the trees low probability.The Motivation for SubcategorizationThe need for subcategorization probabilities is not surprising, given that subcategorizationis a major component of almost any syntactic theory. Figure 3.14 gives a couple of exampleswhere subcategorization is needed to penalize bad parses. In both cases the trees havedependencies that are highly plausible, so that a representation based on dependenciesalone will fail to give them low probability. The addition of subcategorization framessolves this problem: the tree in �gure 3.14(a) will now have two very low probability frameshPP,IN,among,R,fNP-C, NP-Cgi and hPP,IN,of,R,fgi (PPs in training data will almostalways be seen with one complement, and very rarely if ever with zero or two complements);the tree in �gure 3.14(a') will have a low probability frame hS,VP,was,L,fNP-C, NP-Cgi(was will probably never be seen with two subjects in training data).92

3.3.7 Parameterization Proposal 6: Dependencies + Direction + Rela-tions + Subcategorization + DistanceParameterization Proposal 6. (Dependencies + Direction + Relations + Subcatego-rization + Distance) A parse tree is represented as n + m events Event1:::Eventn+m.Events 1:::n are hwi ! hi; directioni; relationi; distanceii dependency tuples. wi, hi,directioni, and relationi are as de�ned before. distancei is some function of the dis-tance between wi and hi in the tree. Events n + 1:::m are subcategorization frames, asbefore.This section shows that adding a distance variable to each dependency allows the modelto discriminate between parse trees with and without close attachment (i.e., to learn apreference for right or left branching structures). We �rst give an exact de�nition of thedistance variable, and then give examples that motivate its utility. We also show howthis distance measure can approximate subcategorization preferences, and actually greatlydiminishes the need for subcategorization probabilities.Finally, we give a second de�nition of distance. The �rst de�nition is that used by theparser in chapter 7. The second de�nition is used by the parser in chapter 6, and is a closeapproximation of the �rst distance measure, but with some signi�cant failings that we willdescribe.The First De�nition of distanceTo de�ne the distance associated with each dependency we �rst de�ne a surface stringassociated with each dependency:� For each dependency hheadword(Yi) ! headword(Yh)i derived from rule X !Y1:::Yn, such that i < h, the surface string associated with the dependency isthe string indirectly dominated by non-terminals Yi+1:::Yh�1 (the string is emptyif i = h� 1).� For each dependency headword(Yi)! headword(Yh) derived from rule X ! Y1:::Yn,such that i > h, the surface string associated with the dependency is the stringindirectly dominated by non-terminals Yh+1:::Yi�1 (the string is empty if i = h+1).93

The distance feature is a function of the surface string associated with a dependency. Thedistance is a two bit string, with the following values:Bit 1 1 if the string is empty, 0 if the string is non-empty. This feature indicates whetheror not the modi�er non-terminal is adjacent to the head.Bit 2 1 if the string contains a verb, 0 if it does not contain a verb.From these de�nitions there are three5 possible values for the distance variable: 10,which means that the head and modi�er non-terminals are adjacent; 00, which means theyare non-adjacent, but there is no verb in the intervening string; 01, which means that theintervening string does contain a verb. See �gure 3.15 for example trees containing thesame dependency with varying distance values.Motivation for the Distance MeasureFigures 3.16 and 3.17 give examples where the distance measure is useful. In each case twocompeting trees di�er by a single dependency, and the scores for these two discriminatingdependencies are likely to be similar under the previous representation. The addition ofthe distance variable further di�erentiates the two dependencies, and allows the model toassign higher probability to dependencies involving close attachments.The Distance Measure as an Approximation of SubcategorizationIf we now return to the example in �gure 3.14(a) it becomes clear that the distance measuresolves some of the problems concerning subcategorization. The second NP attaching to thepreposition among gives a dependency hworkers ! among; R; hNP,PP,INi; 00i, whereasthe �rst NP attachment gives hgroup ! among; R; hNP,PP,INi; 10i. The distance variabledi�erentiates between a dependency where the NP is/isn't adjacent to the preposition: theresult is that hworkers ! among; R; hNP,PP,INi; 00i will get very low probability (a PPwill almost never be seen with an NP modi�er at distance 00), and the parse tree will get a5The fourth value, 11, is impossible because this would represent the contradiction that the string isboth empty and contains a verb. 94

(a) NP(acquisition)NP(acquisition)PRPits NNacquisition PP(by)INby NP(IBM)NNPIBM
(b) Feature associated withby ! acquisitionSurface String Distance| 10

(a') NP(acquisition)NP(acquisition)PRPits NNacquisition NP(week)JJlast NNweek PP(by)INby NP(IBM)NNPIBM
(b') Feature associated withby ! acquisitionSurface String Distancelast week 00

(a") NP(acquisition)NP(acquisition)PRPits NNacquisition VPVBNannounced NP(week)JJlast NNweek PP(by)INby NP(IBM)NNPIBM
(b") Feature associated withby ! acquisitionSurface String Distanceannounced last week 01

Figure 3.15: Three trees that contain a dependency hby ! acquisitioni. The surface stringand distance features are shown for each dependency.
95

(a) NP(candidate)NP(candidate)DTa NNcandidate PP(for)INfor NP(election)NP(election)DTthe NNelection PP(in)INin NP(York)NNPNew NNPYork
(b) Dependency Distancein ! election 10

(a') NP(candidate)NP(candidate)DTa NNcandidate PP(for)INfor NP(election)DTthe NNelection PP(in)INin NP(York)NNPNew NNPYork
(b') Dependency Distancein ! candidate 00

Figure 3.16: Two competing trees which di�er by a single dependency, hin! electioni vs.hin ! candidatei. Without the distance variable, each dependency looks quite plausibleand their probabilities are likely to be similar | the decision between the two structureswill be a close one. With the distance variable the model can discriminate between the�rst attachment as close attachment (distance 10) and the second attachment as longerdistance attachment (distance 00). (In fact, the right branching structure in (a) occursabout twice as often in the Penn WSJ treebank as the alternative structure in (a').)
96

(a) VP(believed)VBNbelieved VP(to)TOto VP(have)VBDhave been VP(shot)VBNshot NP(yesterday)NNyesterday PP(by)INby NP(Bill)NNPBill

(b) Dependency Distanceby ! shot 00

(a') VP(believed)
VBNbelieved VP(to)TOto VP(have)VBDhave been VP(shot)VBNshot NP(yesterday)NNyesterday

PP(by)INby NP(Bill)NNPBill
(b') Dependency Distanceby ! believed 01

Figure 3.17: Two competing tree fragments which di�er by a single dependency, hby !shoti vs. hby ! believedi. Without the distance variable, each dependency looks quiteplausible and their probabilities are likely to be similar | the decision between the twostructures will be a close one. With the distance variable the model can discriminatebetween the �rst attachment as an attachment that does not cross a verb (distance 00)and the second attachment as one that does cross a verb (distance 01). (In fact, the rightbranching structure in (a) occurs about 19 times as often in the Penn WSJ treebank asthe alternative structure in (a').)
97

low score. In practice, the addition of distance allows the model to learn that a PP (almostalways) subcategorizes for a single complement.This result is not restricted to PPs alone. It also applies to other heads which takea single obligatory argument: the most common cases being a complementizer taking asentential complement, or a transitive verb taking a single NP complement. Later, experi-mental results show that the distance and subcategorization features overlap a great dealin their utility, and that a model with distance but without subcategorization performsalmost as well as a model that includes both distance and subcategorization.A Second De�nition of distanceThe �rst distance measure, just described, is used in the parser in chapter 7. We nowdescribe a second measure that was used in the earlier parser in chapter 6. It can beconsidered an approximation of the �rst distance measure. The di�erence between thetwo distance measures was forced by the di�erence between the two probability models.Although the two distance measures are approximately the same, the second measurebreaks down as a close-attachment or subcategorization preference in some cases. (Themodel structure in chapter 6 does not allow a natural incorporation of subcategorizationprobabilities, so the breakdown of distance as an approximation of subcategorization isparticularly problematic.)The second distance measure di�ers only in its de�nition of the surface string associatedwith a dependency:� The surface string associated with a dependency wi ! hi is the surface sequence ofwords between wi and hi.The distance measure is then de�ned as a function of the surface string, in the same wayas before:Bit 1 1 if the string is empty, 0 if the string is non-empty. This feature indicates whetheror not the modi�er word is adjacent to the head.Bit 2 1 if the string contains a verb, 0 if it does not contain a verb.98

Whereas the �rst de�nition of distance depended at least partially on the phrase struc-ture of the tree, this second de�nition depends only on the surface position of the headand modifier in the surface string.In some situations the two distance measures will give the same results: in fact, in�gures 3.15, 3.16 and 3.17 this new distance measure will give the same results as the �rstdistance measure for the highlighted dependencies.Consider, however, the tree in �gure 3.14(a). With the �rst distance measure, the twodependencies involving the preposition among were hworkers! among;R; hNP, PP,INi; 00iand hgroup ! among;R; hNP,PP,INi; 10i. In contrast group is not adjacent to amongin the surface string, so the second distance measure gives the dependency hgroup !among;R; hNP,PP,INi; 00i: the distance variable now fails to di�erentiate the two depen-dencies and the approximation of subcategorization has broken down. This kind of problemlead to a re�nement of the distance measure in chapter 6, through a rede�nition of thesurface string:� The surface string associated with a dependency wi ! hi is the surface sequenceof words between wi and hi, excluding words that appear as pre or post modi�erswithin non-recursive NPs.By this de�nition, the premodi�er the is excluded from the string between amongand group, leading to a dependency with the \correct" distance measure: hgroup !among;R; hNP,PP,INi; 10i.The rede�nition of the surface string was not trivial to incorporate in the probabilisticmodel in chapter 6, involving a de�nition of a separate level for non-recursive NP recovery.We can see from the example in �gure 3.18 that the second distance measure is stilldi�erent from the �rst in some cases. In this example the di�erence leads to a failure toapproximate the subcategorization fact that a complementizer takes a single S complement.The remaining di�erences between the two distance measures is no doubt one of the reasonsthat the chapter 7 parser performs better than the chapter 6 parser.
99

(a) SBAR(that)
WDTthat SNP(man)NP(woman)DTthe NNwoman VP(elected)VBNelected NP(yesterday)NNyesterday

VP(liked)VBDliked
SNP(she)PRPshe VP(hated)VBDhated

(b) Dependency String1 Distance1 String2 Distance2liked ! that | 10 the woman elected yesterday 01hated ! that the woman elected yesterday liked 01 the woman elected yesterday liked she 01Figure 3.18: A tree, and the distance measure assigned by the �rst and second distancemeasures: String1, Distance1 are the features assigned by the �rst measure; String2, Dis-tance2 are assigned by the second measure. Notice that the two distance measures givedi�ering results, and importantly the �rst distance measure di�erentiates the S complementadjacent from the head from the second S complement. In contrast the second distancemeasure fails to di�erentiate the two dependencies, and will be forced to give similar prob-abilities to each, thereby failing to learn the subcategorization fact that a complementizergenerally takes a single S complement.

100

3.3.8 Parameterization Proposal 7: Dependencies + Direction + Rela-tions + Subcategorization + Distance + Parts-of-SpeechParameterization Proposal 7. (Dependencies + Direction + Relations + Subcatego-rization + Distance + Parts-of-Speech) A parse tree is represented as n+m eventsEvent1:::Eventn+m. Events 1:::n are hwi=tag(wi)! hi=tag(hi); directioni; relationi;distanceii dependency tuples. wi, hi, directioni, relationi and distancei are as de�nedbefore. tag(wi) and tag(hi) are the part of speech tags in the tree associated with words wiand hi respectively.In the �nal re�nement of the parse tree representation, part of speech tags are added.The relation tuple already includes non-terminals associated with the words in a depen-dency, and therefore distinguishes the major part-of-speech category for the words in thedependency (as argued in section 3.3.5). The addition of parts of speech makes �ner gradeddistinctions: for example distinguishing singular, plural and proper nouns, or distinguish-ing di�erent verb forms.The motivation for including parts of speech is tied to the estimation methods usedfor calculating parameter values. Without sparse data problems, the count of full depen-dency relations Count(hwi=tag(wi) ! hi=tag(hi); directioni; relationi; distanceii) wouldbe reliable enough to be the sole basis for estimation. But all such counts being reliable isextremely unlikely to be the case6.The estimation methods attack the sparse data problem by incorporating counts fromsubsets of this full representation (with probability theory solving the delicate problem ofexactly how to combine these counts). These subset counts correspond to di�ering lev-els of generalization. For example: Count(IBM/NNP ! bought/VBD, L,hNP,S, VPi; 10)would be number of times IBM is seen as the subject of bought; Count(IBM/NNP !VBD, L; hNP,S, VPi; 10) would be the number of times IBM is seen as the subject of anyverb tagged VBD; Count(NNP ! VBD, L,hNP,S, VPi; 10) is the number of times a noun6In the Penn WSJ treebank there are approximately 1,000,000 dependency events on which to basecounts; with a (conservative) estimate of the vocabulary size as 20,000 words there would be 20; 0002 =40; 000; 0000 parameters even before considering the direction, distance and relation features. It's clear thatthe number of parameters vastly exceeds the number of training events, and that the sparse data problemis severe. 101

tagged as NNP is seen as the subject of a verb tagged VBD.The addition of part of speech tags allows the model to learn useful generalizationsabout how whole part-of-speech classes behave. The subset counts will generally dis-card the (sparse) lexical items but retain the (much less sparse) POS tags. For example,Count(htag(wi)! tag(hi); directioni; relationi; distanceii) may be quite reliable, and willencode many useful facts about how di�erent parts-of-speech behave. For example, thatsingular or plural nouns are much more likely to take PP modi�ers than proper nouns, orthat a subject verb dependency must involve POS tags that agree for person and number,and so on.3.4 SummaryThis chapter initially showed that a \simple" PCFG has a couple of major failings: namely,a lack of sensitivity to lexical information and structural preferences. This motivated themove to dependencies as a representation. A tree for a sentence with n words containsn dependencies between pairs of words; associating probabilities with these dependenciesleads to a model which is much more sensitive to lexical information. However, simpledependencies are not enough. We described a series of additions to the parameterization:word-order information, non-terminals encoding grammatical relations, subcategorizationevents, distance preferences, and the use of part-of-speech tags as word-class information.The remaining question is how to build a statistical model, using the techniques describedin chapter 2, which includes all of these parameter types.

102

Chapter 4
Previous Work
4.1 IntroductionThis chapter gives a broad overview of the literature on statistical parsing of naturallanguage. We �rst give a brief history of the �eld, then describe each paper in detail. Notethat chapter 8 of this thesis gives a more detailed comparison to previous work that is ofthe most direct relevance to the work in this thesis.4.2 A Brief History of Probabilistic Parsing for Natural Lan-guageGoals of the �eldWhen considering the work in this chapter, it is useful to bear in mind two distinct goalsdriving the research:� The �rst is the topic of this thesis: i.e., building a parser that recovers linguisticstructures with high accuracy. Thus the goal of this research is to maximize parseaccuracy.� The second is related to speech recognition: i.e., building a language model, a modelthat assigns probabilities to strings in a language. Trigram language models (e.g., see103

[Jelinek 90]) have been very successful in speech recognition, but have clear weak-nesses in modeling the grammaticality of strings, or capturing dependencies betweenpairs of words that are more than two words apart. Language models containinghierarchical or linguistic structure might lead to improved recognition performance.Thus this second goal is to build statistical grammars that give improved speechrecognition performance over trigram models, or that give improved perplexity1 re-sults over trigram models.The �rst goal is of most direct relevance to this thesis, but it is perhaps importantto be aware of the second goal when analysing the underlying motivation for some of thework discussed in this chapter.Both supervised and unsupervised methods have been pursued (supervised traininguses a treebank of example sentence/tree pairs as training data, unsupervised training usesunanalysed text). While unsupervised training is clearly preferable, in that it removes theneed for costly hand-annotation of a treebank, it is also generally acknowledged to be amuch harder problem (at least for the goal of learning linguistically plausible structures).Availability of Treebank DataAn important factor inuencing research in the �eld has been the availability of parsedtreebank corpora. This is needed for training supervised models, and for testing the parsingaccuracy of both supervised and unsupervised models.A major source of publicly available data is the Penn treebank [Marcus et al. 93]. TheATIS and Wall Street Journal (WSJ) sections of the �rst version of the treebank (TBI)became available in mid-to-late 1991. The ATIS and WSJ sections of the second version(TBII) became available in mid-to-late 1994 (this data is used in this thesis). TBII wassuperior to TBI in a couple of important respects: the annotations were checked morecarefully, leading to greater consistency; and the annotation style was much improved,being sounder linguistically and having more information, in terms of semantic labelingsand other indications of predicate-argument structure [Marcus et al. 94].1Perplexity is a measure of how well a language model predicts some previously unseen data, and is atleast perceived to be strongly related to speech recogniser performance; see [Jelinek 90] for details.104

The lack of treebank data in the early years of statistical parsing research lead to a num-ber of di�erent training and evaluation approaches. Researchers at IBM [Black et al. 92a,Black et al. 92b, Jelinek et al. 94] had developed their own treebank corpora, for exam-ple on a computer manuals domain. Some researchers used the �rst version of the Penntreebank [Bod 93, Pereira and Schabes 92, Schabes et al 93]. Others developed their owntraining and test data, often by hand-selecting between multiple parses produced by anexisting parser [Alshawi and Carter 94, Briscoe and Carroll 93, Carroll and Briscoe 95].Several papers were theoretical, developing a probabilistic version of existing grammarssuch as TAGs or link grammars, often additionally deriving algorithms for parsing andunsupervised training [Resnik 92, Schabes 92, Schabes and Waters 93, La�erty et al. 92],but not giving any evaluation of parsing accuracy.Perceived Problems with Probabilistic Context Free GrammarsProbabilistic context free grammars (PCFGs) were a natural starting point for the re-search in statistical parsing of natural language. Their formal properties have been wellunderstood since at least [Booth and Thompson 73]; e�cient parsing algorithms are wellknown; and [Baker 79] describes the inside-outside algorithm, an e�cient approach to EMparameter estimation [Dempster, Laird and Rubin 77], for unsupervised training.Unfortunately, research suggested that PCFGs were poor models of language in severalrespects. In the unsupervised case the inside-outside algorithm was unsuccessful at induc-ing linguistically plausible structures (see, for example, [Pereira and Schabes 92]); neitherdid it lead to models that reduced perplexity for the language modeling task (almost cer-tainly because PCFGs do not have the parameters corresponding to pairs or triples of wordsthat make trigram models so successful). In the supervised training case, PCFGs wereagain perceived to be poor models, although more recent work [Charniak 97, Charniak 96]has shown that PCFGs can achieve at least respectable results on parsing the Penn WSJcorpus, version 2.These perceived failures lead to areas of research that are described in the next threesections: (1) designing models with increased structural sensitivity; (2) the development105

of models containing parameters corresponding to lexical dependencies; and (3) the devel-opment of history-based models.Probabilistic Methods with Increased Structural SensitivitySeveral researchers looked at increasing the context-sensitivity of PCFGs, with encouragingresults: e.g., [Magerman and Marcus 91, Magerman and Weir 92, Briscoe and Carroll 93,Bod 93]. [Brill 93] considered a rule-based learning model, again with more context sensi-tivity than a PCFG. Other researchers such as [Pereira and Schabes 92, Schabes et al 93,Black et al. 92a] considered partially supervised versions of the Inside-Outside algorithm:the idea being that treebanks such as TBI had relatively at, underspeci�ed trees, and thatlearning algorithms should be able to use this information while learning more detailedstructure in an unsupervised manner.All of these models retained PCFG's weakness of a lack of lexical sensitivity; the nexttwo areas of research addressed this problem.Formalisms Including Lexical DependenciesThere were at least two reasons for developing models that included dependency param-eters. First, researchers who were interested in language modeling for speech recognitionrealised that while trigram models might make poor syntactic models2, the probabilitiesassociated with pairs or triples of words were very useful when assigning probabilities tosentences in a language. It followed that for structured models to compete as languagemodels, they would have to include such parameters (see for example [La�erty et al. 92]).Second, and more importantly for the research in this thesis, research had suggestedthat dependency probabilities might be powerful sources of disambiguating information.[Hindle and Rooth 91] had shown their use in prepositional phrase disambiguation; and asearly as 1990 arguments were made for the generalization of this method to full parsing(text taken from [Marcus 90]):Ken Church argued that parameterization on purely structural relations, such2By syntactic models we mean models that distinguish grammatical from ungrammatical sentences, seethe arguments in [Chomsky 57] for why Markov models fail in this respect.106

as used in this and the previous paper would be strikingly less successful thanparameterization on words, parameterizing perhaps (as in Hindle and Rooth'spaper) on pairs of words in certain structural relations.There were two types of work that attempted to generalize the method described in[Hindle and Rooth 91]. First, [Sekine et al 92, Alshawi and Carter 94, Jones and Eisner 92a]used an existing hand-crafted parser that recovered predicate-argument relations. Scoreswere added to the predicate-argument relations to rank di�erent parses. The method in[Sekine et al 92] used unsupervised learning; [Alshawi and Carter 94, Jones and Eisner 92a]used supervised learning. The results were very promising: [Alshawi and Carter 94] report89% exact match accuracy on the ATIS domain using the predicate-argument parametersalone, with 94% accuracy when other features were added.A second line of research was to extend various lexicalized syntactic formalisms to thestatistical case, as in stochastic tree adjoining grammars (STAGS) [Resnik 92, Schabes 92]and link grammars [La�erty et al. 92]. A natural consequence of these formalisms was togive dependency parameters. Both [Schabes 92] and [La�erty et al. 92] derive versions ofthe inside-outside algorithm for unsupervised training. These papers represent importantwork, as they give well-founded probability models including dependency parameters; butthe lack of availability of training and test data means they are limited in their lack ofevaluation, which inevitably leads to a lack of detail in the modeling choices, or to modelingchoices that would most likely hurt parsing performance.History-Based ModelsA third line of research, history-based models, was developed by researchers at IBM[Black et al. 92a, Black et al. 92b, Jelinek et al. 94]. These models were characterized bytwo di�erences from simple PCFGs. First, the parse-tree representation was enriched in acouple of ways: non-terminal labels were extended to include information such as lexicalitems (head words), or semantic categories; and the conditioning context was extended tolook at potentially all previously built structure, rather than just the non-terminal beingexpanded as in PCFGs. Second, more powerful machine-learning methods, in particular107

decision trees, were used for parameter estimation. The basic idea was to expand the condi-tioning features and context to (hopefully) include practically all sources of disambiguatinginformation; then to use decision trees to learn exactly what features or combinations offeatures were actually important for parsing.An important development in this research was a move from the use of a hand-craftedgrammar in [Black et al. 92a, Black et al. 92b], to a model that was trained from a tree-bank alone in [Jelinek et al. 94].Statistical Models for Parsing the Penn WSJ Treebank[Magerman 95] described the SPATTER parser | an extension of the model describedin [Jelinek et al. 94] | applied to the Penn WSJ Treebank (version 2). The model wastrained on 40,000 sentences, and tested on over 2,000 sentences. In many ways this workrepresented a maturation of the work in statistical parsing:� It represented a major advance in the scale of the tasks undertaken by statisticalparsers. All sentences up to 40 words in length were parsed, on a domain (WSJ)that is much less restricted than previous domains such as ATIS or the IBM computermanuals data.� The parser was trained completely automatically from the treebank, with no require-ment for a hand-crafted grammar.� The results represented a major improvement over accuracy for PCFGs: 84.5/84.0%precision/recall on section 23 of the treebank ([Charniak 97] later reported that anon-lexicalized PCFG scores around 72% averaged precision/recall on this task).� The model had parameters that conditioned heavily on lexical information, presum-ably accounting for much of its improvement over PCFG based methods.The work in chapter 6 was originally published in [Collins 96], and was well underwayby mid to late 1995; because of this, the work in [Magerman 95] was a crucial benchmarkfor the work. Since then, several other results have been reported on parsing the Penn WSJtreebank: [Ratnaparkhi 97] describes a history-based parser based on maximum entropy108

models; [Charniak 97, Goodman 97, Eisner 96] all describe methods that rely heavily ondependency probabilities. Thus [Magerman 95, Eisner 96, Ratnaparkhi 97, Charniak 97,Goodman 97] are all highly relevant to the work in this thesis, and are described brieyin section 4.8 of this chapter with a much more detailed comparison in chapter 8.4.3 Five Categories of Previous WorkWe now describe each of the papers in more detail. We divide previous work into �vebroad categories:Probabilistic Methods without Lexical Sensitivity This section �rst describes re-cent work on parsing the Penn WSJ treebank using (non-lexicalized) PCFGs. Itthen goes on to describe re�nements to PCFG models: partially supervised trainingalgorithms, parameterizations that give increased structural sensitivity, and a fewother topics.Rule-Based Learning Methods This section describes work on applying transforma-tional based learning to parsing, and decision tree learning of a deterministic shift-reduce parser.Ranking Parse Trees through Scores Associated with Semantic Tuples The pa-pers in this section use hand-written parsers that recover semantic tuples (tuplesspecifying pairs of head-words in some predicate-argument relationship) togetherwith a syntactic parse. The papers describe methods of assigning scores to semantictuples, thereby de�ning a function for ranking parse trees.Probabilistic Versions of Lexicalized Grammar Formalisms This section describeswork on probabilistic versions of grammar formalisms such as tree adjoining gram-mars, link grammars, lexicalized PCFGs, and head automata. This work is highlyrelevant to this thesis, as these formalisms include parameters corresponding to lex-ical dependencies.Previous Work on Probabilistic Parsing of the Penn WSJ Treebank The work in109

this section is of most direct relevance to this thesis, as it describes statistical mod-els that make strong use of lexical information, and have been evaluated on wide-coverage parsing (the WSJ treebank). This chapter gives a brief overview of thiswork; chapter 8 compares the work in this thesis to these papers in much greaterdetail.4.4 Probabilistic Models without Lexical Sensitivity4.4.1 Results for PCFGs on the Penn WSJ Treebank[Charniak 97, Charniak 96]Although there was much early work on PCFG-based parsing of natural languages, themost directly relevant result to this thesis is given in [Charniak 97]. [Charniak 97] describesa lexicalized PCFG model that we will discuss extensively in section 8.4.1, and also givesresults for a non-lexicalized PCFG as a baseline. On sentences of length � 100 words,the non-lexicalized PCFG scores 70.6% recall, 74.8% precision. This result is directlycomparable to the results in this thesis, as the model was trained and tested on the samedata, and evaluated using the same measures of accuracy.[Charniak 96] also describes results for a PCFG trained and tested on the treebank.The results are less comparable: the training and test data di�er from the sections usedin this thesis, and evaluation is only given on the recovery of unlabeled constituents. Thepaper makes a number of important observations though. First, it shows that adding astructural bias to the grammar for right-branching structures gives a 2.4/2.7% improve-ment in recall/precision (although this change means that the model does not sum to onewithout renormalization, with the consequence that the relative frequency estimates usedare not maximum-likelihood estimates; see section 2.3.3 of this work for more about thisproblem). Second, the paper considers the coverage problem in some depth. Inducing aPCFG directly from the Penn WSJ treebank inevitably leads to a grammar with imperfectcoverage of test data: some test data sentences will require rules that have never been seenin training. [Charniak 96] argues that these problems are not harmful, we return to thispoint in section 8.3. 110

4.4.2 Partially Supervised Training of PCFGs[Chitrao and Grishman 90][Chitrao and Grishman 90] describe a method that uses an existing parser | the PRO-TEUS parser | with EM unsupervised training of its rule probabilities (the model is aPCFG). They also describe a model with increased context-sensitivity, the expansion prob-ability for a non-terminal being conditioned on its parent. The model was trained on 300sentences, and tested on 140 sentences (these sentences were a subset of the 300 trainingsentences; this is not a problem because the method uses unsupervised training). Theyshow a decrease in the number of incorrect parses from 44% without statistics to 26% withthe use of statistics.[Pereira and Schabes 92][Pereira and Schabes 92] describe an extension of the inside-outside algorithm [Baker 79] tothe case where a partially bracketed corpus is used as (partially supervised) training data fora binary-branching PCFG. The bene�ts of this approach over the algorithm in [Baker 79]are two-fold: �rst, the algorithm is more e�cient (in the limit, if the corpus containsfully-bracketed binary branching trees, the algorithm runs in O(n) time, as opposed toO(n3) time for [Baker 79]); second, the grammar induced by the algorithm is partiallyconstrained by the partial bracketings, thus it is likely to learn whatever information is inthese partial bracketings, while learning more detailed structure within the bracketings inan unsupervised manner. Tests are made on the ATIS corpus: 90.36% bracketing accuracy(bracketing accuracy is the percentage of constituents that do not cross a constituent inthe gold-standard parse) is reported for the [Pereira and Schabes 92] algorithm, as opposedto 37.35% accuracy for [Baker 79]. Thus the unsupervised method is shown to be verypoor at inducing linguistic structure automatically, while the partially supervised methodis shown to be constrained enough to give good results. Interestingly, the two inducedgrammars show very similar perplexity measurements on the corpus, in spite of givingradically di�erent parsing accuracies.
111

[Schabes et al 93][Schabes et al 93] describe the application of the method in [Pereira and Schabes 92] tothe WSJ corpus. In this case the corpus is converted to completely binary branching trees,so the learning algorithm is completely constrained for bracketing, though it is free to learnnon-terminal labelings in an unsupervised fashion. On sentences up to 15 words in length,they report bracketing accuracies of around 90%.[Black et al. 92a][Black et al. 92a] describe a statistical parsing model that assumes two resources: 1) atreebank of tree/sentence pairs for the domain under consideration; 2) a hand-craftedgrammar with good coverage of this domain. The goal is to induce a PCFG model ofthe hand-crafted grammar (i.e. to estimate probabilities associated with the rules in thehand-crafted grammar). These parameters are estimated in a partially supervised wayusing the inside-outside algorithm on the treebank data: the trees in the treebank provideconstraints in terms of bracketings and non-terminal labels (the learning algorithm is verysimilar to that in [Pereira and Schabes 92]). The method is shown to recover the correctparse 75% of the time on a computer manuals domain, with restrictions that 1) sentencesin the test set are 7{17 words in length; and 2) sentences are comprised of a restrictedvocabulary of the 3000 most frequently occurring words in the domain.4.4.3 Methods with Increased Structural Sensitivity[Magerman and Marcus 91, Magerman and Weir 92][Magerman and Marcus 91] describe Pearl, a probabilistic parser; [Magerman and Weir 92]look more closely at e�cient search strategies within Pearl, and give further empiricalevaluation. Pearl's major departure from PCFG formalisms is to increase the context-sensitivity of the parameters in the model. In a PCFG each rule A ! � has probabilityP (A! �jA); in Pearl the parameters are extended to condition on the rule C ! �A thatgenerated A, and on the POS trigram a0a1a2 in the sentence such that a1 is the left-mostword in the constituent. (The new parameters are written P (A ! �jC ! �A; a0a1a2).)112

Evaluation showed results of 88% accuracy in recovering the correct parse in the Voyagerdomain. The model did not use lexical information, parsing POS strings as input.[Briscoe and Carroll 93][Briscoe and Carroll 93] describe a probabilistic model of LR parsing, based on the AlveyNatural Language Tools (ANLT) parser. Probabilities are associated with actions in an LRparse table, rather than with context-free rules: the model is more sensitive to structuraldistinctions than simple PCFGs, as the probability of applying a rule is conditioned onthe LR state, not just the non-terminal being expanded. However, it is likely to have thesame insensitivity to lexical information as simple PCFGs. [Briscoe and Carroll 93] notethat simple PCFGs cannot encode structural preferences in examples such as compoundnominal or prepositional phrase ambiguities (for example the analyses [[N N] N] vs. [N [NN]] contain the same rules, and therefore can't be distinguished by a simple PCFG), butthat the LR probabilities can discriminate between these alternative analyses. The methodis evaluated on 55 dictionary de�nitions of length up to 10 words, with a training set of246 de�nitions. 41 (75%) of the de�nitions are parsed correctly. [Carroll and Briscoe 95]describe considerable progress in scaling the system. The system described there recoversat least one analysis for 80% of sentences in a diversi�ed corpus; evaluation of 250 sentencesthat were covered showed labeled constituent recall/precision results of 82.9/83.9%.[Bod 93][Bod 93] describes the application of Data Oriented Parsing (DOP) to the ATIS corpus.The DOP model can be viewed as a variant of Stochastic TAG [Resnik 92, Schabes 92] re-stricted to substitution only. The key distinguishing feature to DOP is how the parametersof this STAG are estimated from a corpus. Given a set of context-free trees in a treebank,there are multiple possible STAG derivations for each tree: the underlying derivation for aparticular tree could involve sub-trees ranging in size from 1-level context-free productions,to an entire tree spanning the whole sentence. Thus the derivation underlying a tree is\hidden", and the parameter values cannot be estimated directly. [Bod 93] describes amethod that �rst extracts all partial trees from a treebank, and then assigns probabilities113

to them in a way that gives a well-formed probability distribution over the space of possiblederivations (the estimation method is perhaps rather ad-hoc | for example not maximiz-ing the likelihood of the training set of example trees | but is probably quite robust; ine�ect the model smooths the probability for large tree fragments with probabilities forsmaller trees). Given a test-data sentence, the probability of a candidate parse tree can becalculated as the sum of probabilities for derivations underlying the tree. Search for thehighest probability tree is computationally expensive, given a requirement for summationover all derivations for each tree; [Bod 93] reports use of a Monte Carlo style algorithm to�nd the highest probability tree.The model is interesting in that it radically extends the structural sensitivity of PCFGsto much larger tree fragments. The work in [Bod 93] does not include lexical information(parsing was done over POS strings), but there is nothing in principle to prevent exten-sion of the model to lexicalized grammars. Unfortunately the computational complexity ofparsing with the model may make it di�cult to scale to more complex corpora than ATIS,or to the lexicalized case. [Bod 93] reports very good results (96% accuracy at recoveringparse trees on the ATIS corpus). However, these results have not been replicated: see[Goodman 96] for a lengthy discussion. [Goodman 96] describes an e�cient, but possiblyapproximate, implementation of DOP. He also reports results on ATIS for DOP, and com-pares to the PCFG method described by [Pereira and Schabes 92]: in these experimentsDOP performs with moderately greater accuracy than a PCFG model. (Approximately66.1% of sentences receive 0 crossing brackets for DOP, as opposed to 63.9% for a PCFG;this score is more lenient than the exact match criterion, so this performance clearly rep-resents a substantial decrease from the 96% �gure in [Bod 93]. In a data set that wascleaned up by Bod, both methods report better results: 86.1% and 79.2% zero crossingbrackets for DOP and PCFG respectively.)[Sekine and Grishman 95][Sekine and Grishman 95] describe a parser that uses rules with a large amount of struc-tural detail. Only two non-terminals | S and NP | are used. Other non-terminals appearas intermediate structure associated with a rule. For example, the method might induce a114

rule S ! NP VBX JJ CC VBX NP with associated structure [S NP [VP [VP VBX [ADJPJJ] CC [VP VBX NP]]]], and an associated probability P (rule,structurejS). A part-of-speech tagging model is also integrated with the rule probabilities. The method is testedon the Penn WSJ treebank, with 33.9% of sentences receiving an analysis with no crossingbrackets.4.4.4 PCFG Parsing Algorithms for Di�erent Evaluation Criteria[Goodman 96b][Goodman 96b] describes di�erent parsing algorithms for PCFGs that maximize the ex-pected accuracy on di�erent parsing metrics. Search for the highest probability parse undera PCFG model maximizes the probability of �nding the correct parse for a sentence, butdoes not necessarily maximize the expected accuracy on other evaluation metrics such ascrossing brackets, or labeled recall of constituents. Evaluation on the ATIS domain, witha PCFG induced directly from a treebank, shows that the di�erent algorithms each givethe best results for the particular evaluation metric they are tuned for.4.4.5 The E�ect of Annotation Style on PCFG Accuracy[Johnson 97][Johnson 97] considers the e�ect of alternative tree representations on PCFG accuracy:in particular, how di�erent representations for PP adjunction e�ect a PCFGs ability todistinguish between di�erent parses. He gives results for a PCFG that are similar tothose in [Charniak 97] (69.6%/73.5% recall/precision in recovering labeled constituents).He also shows that adding the parent of each non-terminal as conditioning information| that is, replacing P (� ! �j�) with P (� ! �j�; Parent(�)) where Parent(�) is thenon-terminal dominating � | leads to an improvement to 79.3%/80.1% recall/precision.This modi�cation was originally described in [Charniak and Carroll 94], which consideredunsupervised training of a PCFG with P (� ! �j�; Parent(�)) parameters, but did notgive results for supervised training.
115

4.4.6 Representation of PCFG Rules as Markov Processes[Sene� 92][Sene� 92] describes TINA, a natural language system for spoken language systems. Thepaper describes the implementation of a probabilistic parser, and its integration into aspeech system. The work is of relevance to the work in this thesis, because the proba-bility of a rule P (X ! Y1 Y2 :::YnjX) is decomposed using a bigram Markov process, asP (Y1jX;START)P (STOP jX;Yn)Qi=2:::n P (YnjX;Yn�1). The models in chapter 7 alsouse Markov processes over non-terminal sequences to parameterize rule probabilities.4.5 Rule-Based Learning Methods[Brill 93][Brill 93] described the application of transformation based learning (TBL) to parsing.TBL has also been applied to POS tagging [Brill 95] and prepositional phrase attachmentdisambiguation [Brill and Resnik 94]. The method learns a set of rules, which are appliedin sequence to give a parse for a sentence. The starting state is to have a completelyright-branching, binary-branching tree for a sentence: each of the transformational rulescan then change a local piece of structure, for example by transforming a bracketing [A[B C]] to [[A B] C]. A transformation can be triggered by a conditioning context, whichis either a single tag, or a pair of tags. The method is sensitive to POS tags only, asthe conditioning features do not include words. Training the model is achieved through agreedy search, at each iteration adding the rule that gives the greatest decrease in errorrate to the list of rules. Results are given on the WSJ and ATIS corpora. On ATIS themethod shows a slight improvement over [Pereira and Schabes 92], in spite of training ononly 150 sentences ([Pereira and Schabes 92] trained on 700). The most comparable resultto the results in this thesis are the percentage of sentences in WSJ of length 2-25 wordswith 0 crossing brackets, 29.2%. This result was with only 250 sentences of training datafrom TBI.
116

[Hermjakob and Mooney 97][Hermjakob and Mooney 97] describe a machine-learning method that induces the rulesrequired by a deterministic shift-reduce parser. The model is history-based, in that aparse tree is represented as the sequence of decisions made by the parser. Recovery of aparse tree is then considered to be a series of classi�cation problems: given the previouslybuilt structure, what should the next move by the shift-reduce parser be? The modeluses a combination of ID3 decision trees (with some modi�cations), and decision lists,as the learning algorithm. Conditioning features include the previously built structure,together with a knowledge base that contains semantic information about the words in thelexicon, as well as subcategorization information. Decoding is deterministic, in that thedecision trees return a single decision at each point of ambiguity, rather than returning adistribution over possibilities which could then be used in a probabilistic search.Results for the method are given on Wall Street Journal text, training from 256 sen-tences. The Penn WSJ treebank is not used as training or test material, instead theauthors construct their own corpus. Labeled Precision/Recall results of 89.8/89.6% accu-racy are given; 1.02 crossings brackets per sentence are observed, with 56.3% of sentenceshaving 0 crossing brackets. When comparing these �gures to work on parsing the PennWSJ treebank, a number of factors should be taken into account: 1) the test and trainingmaterial is from a di�erent set of sentences; 2) the domain is restricted, in that only sen-tences containing words from a vocabulary of the most frequent 3000 words in WSJ areincluded in the training/test data; 3) The annotation style is quite di�erent from that ofthe Penn treebank (looking at �gure 2 of [Hermjakob and Mooney 97], in some cases thetree is \atter" than the treebank, in other cases it is more detailed, and the non-terminallabels are quite di�erent). This di�erence in annotation style may substantially impactevaluation scores. In particular, the labeled precision/recall �gures may be problematic,as the di�erence in annotation styles may lead to a quite di�erent de�nition of what aconstituent is3. Thus the crossing brackets �gures may be the only point of reasonablecomparison.3As an example of an extreme case, if the POS tag or something similar for each word is includedas a constituent, then approximately half the constituents will be recovered with over 98% accuracy; thepresence or absence of POS tags as constituents will e�ect the labeled precision/recall �gures drastically.117

4.6 Ranking Parse Trees through Scores Associated withSemantic Tuples[Sekine et al 92][Sekine et al 92] describe a method that ranks parses by associating scores with [head-word,syntactic relation, argument] tuples. A parse tree is represented as a set of such tu-ples; each tuple has an associated score; the score for each candidate parse tree is calculatedas a product of its tuple scores. The syntactic relation �eld can be either a direct syn-tactic relation, such as subject or object, or the identity of a preposition, such as by orwith. Scores for tuples are calculated in an unsupervised manner: the method assumesan existing parser that will provide all analyses for a particular sentence, and an iterativealgorithm is used to calculate the scores for tuples. While the method is heuristic | thetuple scores do not apparently have a direct probabilistic interpretation, and the modeldoes not de�ne a joint or conditional probability distribution over sentence-tree pairs |the method appears to be similar to the EM algorithm [Dempster, Laird and Rubin 77].Evaluation was done on compound-nominal ambiguities alone, with over 70% accuracyin disambiguating these structures. In conclusion, while the method is heuristic in na-ture, and evaluation is fairly limited, the work is of great interest in a couple of respects.First, it proposes representing a parse tree as a set of [head word, syntactic relation,argument] tuples. Second, it uses an unsupervised training method.[Jones and Eisner 92a, Jones and Eisner 92b][Jones and Eisner 92a, Jones and Eisner 92b] describe a probabilistic parser applied tosoftware testing documents. The probability of two constituents combining to form anew constituent in a bottom-up parse is calculated as the combination of two terms: asyntactic probability conditioned on the two non-terminals being joined; and a semanticprobability conditioned on the two terms in the predicate-argument relation implied bythe combination of the two constituents. Results showed that the parser recovered a parsefor 77% of all test sentences, with the highest ranked parse being correct 90% of the time.118

[Alshawi and Carter 94][Alshawi and Carter 94] describe a supervised technique for ranking parses in the ATISdomain. A parse tree is represented as: 1) a set of tuples that represent grammaticalrelations between words, in a similar way to [Sekine et al 92]; 2) the count of a numberof other features appearing in the parse, for example the number of adjuncts, ellipticalexpressions, balanced conjunctions, and so on. An existing parser is used to generate allpossible analyses for each sentence, and the correct analysis is selected by hand to giveexamples for supervised learning, and to provide a test set. The paper considers a numberof ways of associating a score with each semantic tuple | the best method selects thecorrect parse 89.7% of the time. The second point in the paper is the combination ofthe di�erent forms of evidence (semantic collocations, and counts of other features of theparse) using optimization methods based on hill climbing. Combining all features gives anaccuracy of 94.3%.4.7 Probabilistic Versions of Lexicalized Grammar FormalismsA number of papers describe work on probabilistic versions of lexicalized syntactic for-malisms. This work is important, as a natural result of the formalisms is to have parame-ters associated with lexical dependencies in parse trees. The work in this section is moretheoretical, generally specifying a probability model, sometimes with a derivation of aninside-outside style training algorithm, but generally with no evaluation on a parsing task.4.7.1 Stochastic Tree Adjoining Grammars[Resnik 92][Resnik 92] describes a probabilistic model of Tree Adjoining Grammar (TAG). The modelincludes three types of parameters: PI(�), the probability of tree � being the �rst tree ina derivation; PS(�j�; �), the probability of substituting tree � into tree � at node �; andPA(�j�; �), the probability of adjoining tree � into tree � at node �. Given that a treein TAG contains at least one lexical item, the substitution and adjunction parameters areassociated with pairs of words, their respective trees, and the grammatical relation that119

is involved. Hence the method is sensitive to many of the features (with the exception ofright-branching preferences) that we proposed in chapter 3. A drawback of the methodis that the inclusion of both trees as well as the grammatical relation will probably leadto a very large number of parameters. An easy way to solve this problem might be to:�rst, decompose the generation of the tree � into a number of smaller steps; second, de�nesmoothed estimates by de�ning a back-o� hierarchy in the conditioning context for theparameters.[Schabes 92][Schabes 92] describes a probabilistic model of TAG that is very similar to the model in[Resnik 92]. This paper additionally derives a method for unsupervised learning throughthe EM algorithm [Dempster, Laird and Rubin 77]: EM was originally derived for context-free grammars in [Baker 79], the algorithm in [Schabes 92] is an extension of this algorithmof this to Stochastic TAGs. Empirical results are given for unsupervised learning of thelanguage fanbnjn � 0g. The method is shown to converge quickly and correctly.[Schabes and Waters 93][Schabes and Waters 93] describe what they call \Stochastic Context-Free Grammar". Theformalism is equivalent in power to a context-free grammar, but its representation is thesame as lexicalized TAG, with restrictions on the form of trees to ensure that the formalismis only context-free in power. The resulting formalism retains the parameters of [Resnik 92]and [Schabes 92], while allowing both parsing and EM training to be performed in O(n3)(as opposed to O(n6)) time.Formal Results for Stochastic TAGAdditional papers give further results and algorithms for Stochastic TAGs. [Sarkar 98]extends the conditions for the consistency of PCFGs given in [Booth and Thompson 73]to STAGs. [Nederhof et al 98] describes an algorithm for e�ciently computing pre�x prob-abilities for a STAG: e�cient computation of these probabilities would allow incorporationof an STAG into a strictly incremental speech recogniser. [Nederhof et al 1998b] describe120

the computation of pre�x probabilities in Stochastic Linear Indexed Grammars, a class ofgrammars that includes STAGs.[Joshi and Srinivas 94][Joshi and Srinivas 94] introduced Supertagging as a method of stochastic parsing of TAGs;[Srinivas 97] gives more recent models and results. In supertagging, the recovery of theTAG tree associated with each word in the sentence is achieved through a trigram taggingmodel, as described in [Church 88]. The TAG tree for a word in a sentence can be regardedas a highly re�ned POS tag, with information about subcategorization for verbs, whethera noun is a pre-modi�er or head, and so on. This increased detail of information also leadsto increased ambiguity, words on average having 47 possible elementary trees, with thebaseline method of simply choosing the most likely tree for each word giving 77% accuracyon the WSJ corpus (for simple POS tagging, this baseline is over 90%). A trigram taggerrecovered supertags with 92% accuracy when trained from 1,000,000 words of the WSJcorpus (result from [Srinivas 97]). As a second step to parsing, a Lightweight DependencyAnalyser (LDA) is used to link the elementary trees discovered by the supertagger to forma partial (or possibly complete) parse for the sentence.4.7.2 Link Grammars[La�erty et al. 92][La�erty et al. 92] describe a probabilistic version of Link grammar. Link grammar, intro-duced in [Sleator and Temperley 91], is similar to both categorial grammars [Wood 93] andlexicalized TAGS in many ways. The lexicon speci�es a left and right disjunct for each wordin a language, a disjunct being an ordered list of left or right complements/adjuncts thatare required by the word (note that adjunction is not handled separately by the formalism,so a disjunct must list possible adjuncts as well as complements | this is a substantialdi�erence from categorial grammars or TAG). [La�erty et al. 92] describe a probabilisticmodel based on the top-down parsing algorithm in [Sleator and Temperley 91]: the modelis generative, specifying a distribution over the space of parse/sentence pairs. They give analgorithm for unsupervised training of the model (similar to the inside-outside algorithm).121

No evaluation of the model on a parsing task is given.By taking a closer look at the parameterization of the model we can see that the methodhas potential for capturing many of the representational properties in chapter 3, but thatthere may be problems with the particular modeling choices made in the paper. The mainparameters in the model are of the form P (W;d;OjL;R; l; r), where W is a word beinggenerated; L and R are two potential words that could generate W as a dependent; O is anorientation specifying which of the two words W could attach to (attaching to both wordsis a possibility); d is the disjunct for W ; and l, r are the potential connection sites forL and R respectively. [La�erty et al. 92] decompose this probability into three terms |P (W jL;R; l; r)P (djW; l; r)P (Ojd; l; r) | implicitly choosing to generate the word W �rst,followed by a choice of W 's disjunct, followed �nally by a choice of which of L and R toattach to. We see an immediate problem with this: W is generated before it is known whichof L or R it will attach to. Thus the trigram probability cannot be reduced to a bigraminvolving the word that generates W , or cannot be smoothed by back-o� to this bigram4.A more natural decomposition might be P (Ojd; l; r)P (W jL;R; l; r; O)P (djW; l; r). In thiscase the parameter P (W jL;R; l; r; O) can be backed o� to P (W jL) or P (W jR) dependingon the value of O, so the more predictive of the two bigrams can be used directly.A second problem concerns the disjunct probability P (djW; l; r). Disjuncts in linkgrammar must list adjuncts as well as complements that will attach to a head-word, aswell as the syntactic role that the word appears in. The original grammar formalism in[Sleator and Temperley 91] describes methods for concisely representing disjuncts, throughthe use of the OR connective for the representation of alternatives, and through the spec-i�cation of optional or iterated members of a disjunct. This means that a large number(possibly an in�nite number, given the iteration operator) of disjuncts can be speci�edin a single formula. Unfortunately, the parameter P (djW; l; r) must refer to prediction ofa disjunct d that fully speci�es the complements and adjuncts required by W : d cannotbe a formula that represents a set of possible disjuncts. This will make the number ofparameters of the form P (djW; l; r) very large, and will prevent the model from learning4This is particularly problematic given that the \third", less relevant, word involved in the trigram maystand in a more-or-less arbitrary relationship toW in the parse tree, see [Eisner 96] for further explanation.122

generalizations (such that a particular verb is transitive, in spite of taking a varying num-ber of adverbial modi�ers; or that a particular noun tends to take particular modi�ers,whether it is in subject, object, or some other syntactic position).4.7.3 Lexicalized PCFGs[de Marcken 95][de Marcken 95] describes experiments and analysis of unsupervised learning of PCFGs.He makes two very important points. First, he argues for a lexicalized formalism, whereeach non-terminal Z has an associated head-word z, and the probability of a rule Z 0(z)!Z(z)Y (y) is decomposed as the product of a rule and dependency probability, P (Z 0 !Z Y jZ 0)P (zjy; Y; Z). Thus the method includes dependency probabilities, and is similar tothe work described in [Charniak 97], [Goodman 97], and this thesis (although modi�cationof P (Z 0 ! Z Y jZ 0) to P (Z 0 ! Z Y jZ 0; z) would almost certainly lead to an improvedmodel). He shows that the global maximum of the likelihood function for an arti�cialexample is linguistically plausible with a lexicalized grammar, while with a simple PCFGthe global maximum is not linguistically plausible. Second, he gives analysis on an exampleproblem of an arti�cial corpus. This shows that even in a case where the global maximumof the likelihood function is a linguistically plausible grammar, the inside-outside algorithmis very likely to hill-climb to a local maximum that is not linguistically plausible.4.7.4 Head Automata[Alshawi 96][Alshawi 96] describes lexicalized head automata, a formalism for both parsing and machinetranslation. The formalism represents a parse tree through head-modi�er relationships:each head has a sequence of left and right modi�er words hw1:::wki; hwk+1:::wni, withassociated relations hr1:::rki; hrk+1:::rni. The paper describes a probability model that isgenerative, de�ning a probability distribution over all possible parse trees. Algorithms forboth parsing and generation are given; the paper also discusses how the models can beused for machine translation, and discusses the use of weights on transitions that are not123

probabilistic.[Alshawi 96] describes �ve parameter types: P (#; w0jw; r), the probability of seeingthe word w0 as an r-dependent of word w; P (m; qjr; #; w), the probability of starting instate q of machine m, given that w has just been generated as an r dependent of someother word; P (; qi; rjqi�1;m) and P (!; qi; rjqi�1;m), the probabilities of choosing togenerate an r-dependent to the left/right of the head respectively, and to move to stateqi, given that the model is in state qi�1 of machine m; P (2jq;m), the probability ofstopping, given that the machine is in state q of machine m. P (#; w0jw; r) is similar tothe parameter types PL1/PR1 in chapter 7 (see section 7.6.1 for a description of theseparameters). P (; qi; rjqi�1;m) and P (!; qi; rjqi�1;m) could be made to correspond tothe PL2/PR2 parameters, if the pair (q;m) is used to encode the conditioning variables suchas non-terminals, subcategorization frames, the distance measure, and the head word. Thehead-projection and subcategorization probabilities could be encoded in P (m; qjr; #; w) |in this case, P (m; qjr; #; w) is a probabilistic choice of the entire X-bar structure, includingsubcategorization frames, associated with w.4.7.5 Stochastic Attribute-Value Grammars[Brew 95][Brew 95] describes a stochastic formulation of Head-Driven Phrase Structure Grammar(HPSG) [Pollard and Sag 94]. The model assigns probabilities to type-hierarchies, andthereby to HPSG's representation of syntactic structure. The paper concentrates on de�n-ing parameters over these feature structures, rather than specifying the precise natureof the parameters: it is not clear that a model could, or would, include dependency pa-rameters, for example. The model is essentially speci�ed by drawing a parallel betweenthe hierarchical structures and a context-free grammar, then using a PCFG. A problemis noted with re-entrancy, where two values in a feature structure may be constrained totake the same value, but where the PCFG model loses probability mass to structures withdi�erent values of the feature.
124

[Abney 97][Abney 97] looks at assigning probabilities to attribute-value (AV) grammars. He notesthat the method in [Brew 95] leads to a model that does not sum to 1 when summed overall well-formed structures, due to the re-entrancy problem. [Abney 97] also notes that,although the model can be normalized so that is sums to 1, in this case the parameterestimates de�ned by [Brew 95] are no longer justi�able as maximum-likelihood estimates.[Abney 97] describes the use of maximum-entropy estimation methods to de�ne a modelover AV grammars. The estimation techniques require an iterative algorithm with Monte-Carlo sampling: this may be computationally expensive. As [Abney 97] points out in hisconclusion, the estimation method may also be of interest in context-free formalisms, as itallows parameters to be de�ned corresponding to arbitrary pieces of sub-structure withinparse trees.4.8 Previous Work on Parsing the Penn WSJ TreebankThe work described in this section is of very direct relevance to the work in this thesis. Inchapter 8, we give a much more detailed analysis and comparison of the methods.4.8.1 Formalisms Including Dependency Probabilities[Eisner 96][Eisner 96] describes three models for statistical parsing of dependency formalisms; inaddition [Eisner 96b] gives a fourth model, a more detailed description of the models,and more up-to-date results. The models vary from conditional probability models, to agenerative model that is similar to model 1 in chapter 7 of this thesis. The best resultsfor dependency accuracy on the test set (in [Eisner 96b]) are 92.6% accuracy. The modelin chapter 6 was trained and tested on the same data, with an identical result (withthe modest caveat that the chapter 6 parser used machine generated tags for this test,[Eisner 96b] used hand labeled tags). A more detailed comparison of Eisner's models tothe models of this work is given in section 8.4.3.125

[Charniak 97][Charniak 97] describes a probability model for a lexicalized PCFG. The probability of alexicalized rule is decomposed into the product of two terms: 1) a probability that predictsthe non-lexicalized part of a rule, conditioned on the parent non-terminal and its head-word; 2) a probability of generating the lexical head of each modi�er in the rule, givingdependency probabilities. Several other re�nements are given: conditioning on the non-terminal above the parent when predicting a rule; the use of automatically derived word-classes to smooth probabilities; the use of additional unsupervised training of parametervalues. Results on the Penn WSJ treebank of 86.7/86.6% recall/precision are obtained.A more detailed comparison of Charniak's model to the models of this work is given insection 8.4.1.[Goodman 97][Goodman 97] describes the use of probabilistic feature grammars. Each non-terminal inthe grammar is represented as a set of feature-value pairs; the probability P (X ! Y ZjX)of a rule X ! Y Z is decomposed as incremental prediction of the feature values of Yand Z. The formalism assumes binary branching rules (without loss of generality: a one-to-one mapping from n-ary rules to binary-branching rules is given). Experimental resultsare given on the Penn WSJ treebank with a non-terminal representation that includesthe non-terminal label, head-word, head POS, distance features, and additional contextin terms of modi�er non-terminals generated at earlier stages in the derivation. Resultson the Penn WSJ treebank of 84.8/85.3% recall/precision are given. A more detailedcomparison of Goodman's model to the models of this work is given in section 8.4.4.4.8.2 History-Based Models[Black et al. 92b][Black et al. 92b] describe a history-based model for parsing, with results on a computermanuals domain. This work can be viewed as a progression of the work in [Black et al. 92a].A hand-crafted grammar is again used in combination with a treebank; the paper describes126

a method for obtaining a training set of parses in the grammar's formalism using thetreebank and the grammar. A history-based generative model is then trained with thisconverted treebank: the parse tree is modeled as the sequence of decisions in a top-down,left-most derivation of the tree. Each decision corresponds to the choice of a rule expansion,followed by selection of non-terminal features on each child of the rule.A major change from [Black et al. 92a] is in the representation of non-terminals: eachnon-terminal has a syntactic category (e.g. NP), a semantic category (e.g. Data), and twohead-words. Head-words are represented as bit-strings, which are derived automaticallyusing the method in [Brown et al. 1992]. All probabilities are conditioned on featuresof the parent and grandparent non-terminal; the rule probability is estimated using adecision tree, other parameters are estimated using n-gram deleted interpolation methods.While the exact back-o� order is not speci�ed, the model clearly has the potential toinclude parameters similar to the model described in [Charniak 97]: i.e. the probabilityof expanding a rule given its lexical head, and head-modi�er dependency relationships.Results show a 36.8% relative error reduction from the PCFG model in [Black et al. 92a].[Jelinek et al. 94][Jelinek et al. 94] describe work on the computer manuals domain of [Black et al. 92a,Black et al. 92b]. In contrast to [Black et al. 92a, Black et al. 92b] the method does notrequire a hand-crafted grammar. Instead, a history-based conditional model is traineddirectly from a treebank. A syntactic tree is represented as the sequence of decisions ina bottom-up parse of the tree. The probability of each decision is based on surroundingcontext, and is estimated using a decision tree. There are three types of parameters: amodel for POS tagging; a model for extending a node, i.e. building a child-parent arc ineither a left, right or unary fashion; and a model for assigning non-terminal labels. Eachparameter type is estimated using decision trees. Each node in the tree is represented asits non-terminal label, head-word, and POS tag for the head-word. Words are representedas bit-strings derived using the clustering method in [Brown et al. 1992]. An additionalre�nement of the model is to assume a distribution over possible bottom-up derivations of127

the tree, the parameters specifying this distribution being estimated using EM training.5Results show a 29% error reduction over performance of the model in [Black et al. 92a], inspite of the move to direct learning from a treebank as opposed to the use of a hand-craftedgrammar.[Magerman 95][Magerman 95] describes the SPATTER parser, a progression of the work in [Jelinek et al. 94].SPATTER was applied to the computer manuals domain, and to the Penn WSJ treebank.This paper is crucial to the work in this thesis, as it describes the �rst result on the WSJtreebank that is signi�cantly higher than the result for PCFGs, using a parser that condi-tions strongly on lexical information. Running the parser on section 23 of the treebank6gave results of 84.0%/84.3% recall/precision at recovering labeled constituents.[Ratnaparkhi 97][Ratnaparkhi 97] describes a model that is also a history-based conditional model, associat-ing probabilities with decisions made by a parser. The work di�ers from [Jelinek et al. 94,Magerman 95] in several signi�cant ways: maximum-entropy models are used for estima-tion, rather than decision trees; words are represented directly, rather than as bit-strings(perhaps because of advantages of the maximum-entropy estimation technique); the deriva-tion order is quite di�erent, with separate stages for POS tagging and chunking; as aconsequence of the di�erent derivation order, the conditioning features for each decisionare di�erent; the search method uses a beam search which runs in expected linear time, arather simpler strategy than that described in [Magerman 95]; the model does not use ahidden derivation model, instead there is a one-to-one mapping between parse trees anddecision sequences. Results of 87.5/86.3% precision/recall on the WSJ treebank are ob-tained, a signi�cant improvement over [Magerman 95]. [Ratnaparkhi 97] also gives resultsfor recovery of the n-best parse trees: an oracle that could make an optimal choice from5This leads to a considerably more complicated model for both training and decoding in comparisonto �xing a simple single derivation model; and results in [Magerman 95, Ratnaparkhi 97], history-basedmodels without hidden derivations, suggest that this additional complexity may not help accuracy.6Thanks to David Magerman for allowing us to run these experiments.128

the top 20 parse trees recovered in this way would score around 93% precision and recall,suggesting that the investigation of reranking schemes for n-best parses might be a fruitfulline of research.A more detailed comparison of the models of [Ratnaparkhi 97, Magerman 95] to themodels of this work is given in section 8.4.2.[Chelba and Jelinek 98][Chelba and Jelinek 98] describe a history based model that parses strictly left-to-right,and assigns a joint probability P (T; S) to Tree-Sentence pairs. The main intention ofthe work is to build a language model for speech recognition. The model operates onbinary-branching trees; the Penn WSJ treebank is converted to binary-branching treescentered around the heads of rules. The model uses both a parsing and a prediction model.Structure is built up incrementally from left to right. When control is with the parsingmodel there are three possible moves: either to join the right-most adjacent two trees withthe left/right tree providing the head-word of the new constituent, or to choose not tojoin the structures, thereby passing control to the prediction model. The prediction modelgenerates a word-tag pair with some probability, conditioned on the two previous head-words exposed in the parse. Thus the model provides trigram probabilities conditioned onhead-words that may fall outside the three-word window of a usual trigram model. EMtraining is used to re-estimate the parameters of the model. The model achieves an 11%reduction in perplexity over a trigram model trained on the same data.

129

Chapter 5
Prepositional Phrase Attachmentthrough a Backed-O� Model
The major part of this chapter is joint work with James Brooks, having been originallypublished as [Collins and Brooks 95]. It remains largely unchanged and when it di�ers wemake a note at that point in the text. In the �nal discussion section we give more recentanalysis, and describe some additional experiments that have implications for the parsingwork in this thesis.5.1 IntroductionPrepositional phrase attachment is a common cause of structural ambiguity in naturallanguage. For example take the following sentence:Pierre Vinken, 61 years old, joined the board as a nonexecutive director.The PP `as a nonexecutive director' can either attach to the NP `the board' or to the VP`joined', giving two alternative structures. (In this case the VP attachment is correct):NP-attach: (joined ((the board) (as a nonexecutive director)))VP-attach: ((joined (the board)) (as a nonexecutive director))Work by [Ratnaparkhi et al. 94] and[Brill and Resnik 94] has considered corpus-based ap-proaches to this problem, using a set of examples to train a model which is then used to130

make attachment decisions on test data. Both papers describe methods which look at thefour head words involved in the attachment: the VP head, the �rst NP head, the preposi-tion and the second NP head (in this case joined, board, as and director respectively).This paper proposes a new statistical method for PP-attachment disambiguation basedon the four head words.5.2 Background5.2.1 Training and Test DataThe training and test data were supplied by IBM, being identical to the data that was usedin [Ratnaparkhi et al. 94]. Examples of verb phrases containing a (v np pp) sequence hadbeen taken from the Wall Street Journal Treebank [Marcus et al. 93]. For each such VPthe head verb, �rst head noun, preposition and second head noun were extracted, alongwith the attachment decision (1 for noun attachment, 0 for verb). For example, the verbphrase: ((joined (the board)) (as a nonexecutive director))would give the quintuple: 0 joined board as directorThe elements of this quintuple will from here on be referred to as the random variablesA, V , N1, P , and N2. In the above verb phrase A = 0, V = joined, N1 = board, P = as,and N2 = director.The data consisted of training and test �les of 20801 and 3097 quintuples respectively.In addition, a development set of 4039 quintuples was also supplied. This set was usedduring development of the attachment algorithm, ensuring that there was no implicittraining of the method on the test set itself.5.2.2 Outline of the ProblemA PP-attachment algorithm must take each quadruple (V = v, N1 = n1, P = p, N2 = n2)in test data and decide whether the attachment variable A = 0 or 1. The accuracy of the131

algorithm is then the percentage of attachments it gets `correct' on test data, using the Avalues taken from the treebank as the reference set.The probability of the attachment variable A being 1 or 0 (signifying noun or verbattachment respectively) is conditional on the values of the words in the quadruple. Ingeneral, a probabilistic algorithm will make an estimate, p̂, of this probability:p̂(A = 1jV = v;N1 = n1; P = p;N2 = n2) (5.1)For brevity this estimate will be referred to from here on as:p̂(1jv; n1; p; n2) (5.2)The decision can then be made using the test:p̂(1jv; n1; p; n2) � 0:5 (5.3)If this is true the attachment is made to the noun, if not then it is made to the verb.5.2.3 Lower and Upper Bounds on PerformanceWhen evaluating an algorithm it is useful to have an idea of the lower and upper boundson its performance. Some key results are summarised in the table below. All results inthis section are on the IBM training and test data, with the exception of the two `averagehuman' results. Method Percentage AccuracyAlways noun attachment 59.0Most likely for each preposition 72.2Average Human (4 head words only) 88.2Average Human (whole sentence) 93.2`Always noun attachment' means attach to the noun regardless of (v,n1,p,n2). `Mostlikely for each preposition' means use the attachment seen most often in training data forthe preposition seen in the test quadruple. The human performance results are taken from[Ratnaparkhi et al. 94], and are the average performance of 3 treebanking experts on a set132

of 300 randomly selected test events from the WSJ corpus, �rst looking at the four headwords alone, then using the whole sentence.A reasonable lower bound seems to be 72.2% as scored by the `Most likely for eachpreposition' method. An approximate upper bound is 88.2%: it seems unreasonable toexpect an algorithm to perform much better than a human.5.3 Estimation based on Training Data Counts5.3.1 NotationWe will use the symbol f to denote the number of times a particular tuple is seen in trainingdata. For example f(1; is; revenue; from; research) is the number of times the quadruple(is; revenue; from; research) is seen with a noun attachment. Counts of lower order tuplescan also be made: for example f(1; P = from) is the number of times (P = from) is seenwith noun attachment in training data, f(V = is;N2 = research) is the number of times(V = is;N2 = research) is seen with either attachment and any value of N1 and P.5.3.2 Maximum-Likelihood (ML) EstimationA maximum-likelihoodmethod would use the training data to give the following estimationfor the conditional probability:p̂(1jv; n1; p; n2) = f(1; v; n1; p; n2)f(v; n1; p; n2) (5.4)Unfortunately sparse data problems make this estimate useless. A quadruple may appearin test data which has never been seen in training data. ie. f(v; n1; p; n2) = 0. Theabove estimate is unde�ned in this situation, which happens extremely frequently in alarge vocabulary domain such as WSJ. (In this experiment about 95% of those quadruplesappearing in test data had not been seen in training data.)Even if f(v; n1; p; n2) > 0, it may still be very low, and this may make the above MLestimate inaccurate. Unsmoothed ML estimates based on low counts are notoriously badin similar problems such as n-gram language modeling [Gale and Church 90]. However,later in this paper it is shown that estimates based on low counts are surprisingly usefulin the PP-attachment problem. 133

5.3.3 Previous Work[Hindle and Rooth 93] describe one of the �rst statistical approaches to the prepositionalphrase attachment problem. Over 200,000 (v; n1; p) triples were extracted from 13 millionwords of AP news stories. The attachment decisions for these triples were unknown, soan unsupervised training method was used (section 5.5.2 describes the algorithm in moredetail). Two human judges annotated the attachment decision for 880 test examples, andthe method performed at 80% accuracy on these cases. Note that it is di�cult to comparethis result to results on Wall Street Journal, as the two corpora may be quite di�erent.TheWall Street Journal Treebank [Marcus et al. 93] enabled both [Ratnaparkhi et al. 94]and [Brill and Resnik 94] to extract a large amount of supervised training material for theproblem. Both of these methods consider the second noun, n2, as well as v, n1 and p, withthe hope that this additional information will improve results.[Brill and Resnik 94] use 12,000 training and 500 test examples. A greedy search isused to learn a sequence of `transformations' which minimise the error rate on trainingdata. A transformation is a rule which makes an attachment decision depending on upto 3 elements of the (v; n1; p; n2) quadruple. (Typical examples would be `If P=of thenchoose noun attachment' or `If V=buy and P=for choose verb attachment'.) A furtherexperiment incorporated word-class information fromWordNet into the model, by allowingthe transformations to look at classes as well as the words. (An example would be `If N2is in the time semantic class, choose verb attachment'.) The method gave 80.8% accuracywith words only, 81.8% with words and semantic classes, and they also report an accuracy of75.8% for the metric of [Hindle and Rooth 93] on this data. (But note our later discussionin section 5.8.2.) Transformations (using words only) score 81.9%1 on the IBM data usedin this paper.[Ratnaparkhi et al. 94] use the data described in section 5.2.1 of this paper: 20801training and 3097 test examples from Wall Street Journal. They use a maximum entropymodel which also considers subsets of the quadruple. Each sub-tuple predicts noun or verbattachment with a weight indicating its strength of prediction: the weights are trainedto maximise the likelihood of training data. For example (P = of) might have a strong1Personal communication from Brill. 134

weight for noun attachment, while (V = buy; P = for) would have a strong weight forverb attachment. [Ratnaparkhi et al. 94] also allow the model to look at class information,this time the classes were learned automatically from a corpus. Results of 77.7% (wordsonly) and 81.6% (words and classes) are reported. Crucially they ignore low-count eventsin training data by imposing a frequency cut-o� which they describe as being \usually 3to 5" in value.5.4 The Backed-O� Estimate[Katz 87] describes backed-o� n-gram word models for speech recognition. There the taskis to estimate the probability of the next word in a text given the (n-1) preceding words.The ML estimate of this probability would be:p̂(wnjw1; w2::::wn�1) = f(w1; w2::::wn)f(w1; w2::::wn�1) (5.5)But again the denominator f(w1; w2::::wn�1) will frequently be zero, especially for largen. The backed-o� estimate is a method of combating the sparse data problem. �f(x) isde�ned as the discounted count for event x, where the Good-Turing method is used fordiscounting. The backed-o� estimate is then de�ned recursively as follows2:If f(w1; w2::::wn) > c1̂p(wnjw1; w2::::wn�1) = �f(w1; w2::::wn)f(w1; w2::::wn�1)Else if f(w2; w3::::wn) > c2p̂(wnjw1; w2::::wn�1) = �1 � �f(w2; w3::::wn)f(w2; w3::::wn�1)Else if f(w3; w4::::wn) > c3p̂(wnjw1; w2::::wn�1) = �1 � �2 � �f(w3; w4::::wn)f(w3; w4::::wn�1)Else backing-o� continues in the same way.2[Collins and Brooks 95] gave a variation of the formulation in [Katz 87], for example stating the �rstconstraint as f(w1; w2::::wn�1) > c1 rather than f(w1; w2::::wn) > c1135

The idea here is to use estimates based on lower order n-grams if counts are not highenough to make an accurate estimate at the current level. The cut o� frequencies (c1,c2....) are thresholds determining whether to back-o� or not at each level: counts lowerthan ci at stage i are deemed to be too low to give an accurate estimate, so in thiscase backing-o� continues. (�1, �2,....) are normalisation constants which ensure thatconditional probabilities sum to one.The estimation of p̂(wnjw1; w2::::wn�1) is analogous to the estimation of p̂(1jv; n1; p; n2),and the above method can therefore also be applied to the PP-attachment problem. Forexample a simple method for estimation of p̂(1jv; n1; p; n2) would go from estimates ofp̂(1jv; n1; p; n2) to p̂(1jv; n1; p) to p̂(1jv; n1) to p̂(1jv) to p̂(1). However a crucial di�erencebetween the two problems is that in the n-gram task the words w1 to wn are sequen-tial, giving a natural order in which backing o� takes place: from p̂(wnjw1; w2::::wn�1) top̂(wnjw2; w3::::wn�1) to p̂(wnjw3; w4::::wn�1) and so on. There is no such sequence in thePP-attachment problem, and because of this there are four possible triples when backingo� from quadruples ((v; n1; p), (v; p; n2), (n1; p; n2) and (v; n1; n2)) and six possible pairswhen backing o� from triples ((v; p), (n1; p), (p; n2), (v; n1), (v; n2) and (n1; n2)).A key observation in choosing between these tuples is that the preposition is particularlyimportant to the attachment decision. For this reason only tuples which contained thepreposition were used in backed o� estimates: this reduces the problem to a choice between3 triples and 3 pairs at each respective stage. Section 5.6.2 describes experiments whichshow that tuples containing the preposition are much better indicators of attachment.The following method of combining the counts was found to work best in practice:p̂triple(1jv; n1; p; n2) = f(1; v; n1; p) + f(1; v; p; n2) + f(1; n1; p; n2)f(v; n1; p) + f(v; p; n2) + f(n1; p; n2) (5.6)and p̂pair(1jv; n1; p; n2) = f(1; v; p) + f(1; n1; p) + f(1; p; n2)f(v; p) + f(n1; p) + f(p; n2) (5.7)Note that this method e�ectively gives more weight to tuples with high overall counts.The method is equivalent to a weighted average of the three estimates, where the weight isproportional to the count on which the estimate is based. For example, 5.7 can be written136

as �1 f(1; v; p)f(v; p) + �2 f(1; n1; p)f(n1; p) + �3 f(1; p; n2)f(p; n2) (5.8)where d = f(v; p) + f(n1; p) + f(p; n2), and�1 = f(v; p)d �2 = f(n1; p)d �3 = f(p; n2)d (5.9)Another obvious method of combination, a simple average3, gives equal weight to the threetuples regardless of their total counts and does not perform as well.The cut-o� frequencies must then be chosen. A surprising di�erence from languagemodeling is that a cut-o� frequency of 0 is found to be optimum at all stages. Thise�ectively means however low a count is, still use it rather than backing o� a level.5.4.1 Description of the AlgorithmThe algorithm is then as follows:1. If4 f(v; n1; p; n2) > 0 p̂(1jv; n1; p; n2) = f(1; v; n1; p; n2)f(v; n1; p; n2)2. Else if f(v; n1; p) + f(v; p; n2) + f(n1; p; n2) > 0p̂(1jv; n1; p; n2) = f(1; v; n1; p) + f(1; v; p; n2) + f(1; n1; p; n2)f(v; n1; p) + f(v; p; n2) + f(n1; p; n2)3. Else if f(v; p) + f(n1; p) + f(p; n2) > 0p̂(1jv; n1; p; n2) = f(1; v; p) + f(1; n1; p) + f(1; p; n2)f(v; p) + f(n1; p) + f(p; n2)3eg. A simple average for triples would be de�ned asp̂triple(1jv; n1; p; n2) = f(1;v;n1;p)f(v;n1;p) + f(1;v;p;n2)f(v;p;n2) + f(1;n1;p;n2)f(n1;p;n2)34At stages 1 and 2 backing o� was also continued if p̂(1jv; n1; p; n2) = 0:5. ie. the counts were `neutral'with respect to attachment at this stage. 137

4. Else if f(p) > 0 p̂(1jv; n1; p; n2) = f(1; p)f(p)5. Else p̂(1jv; n1; p; n2) = 1:0 (default is noun attachment).The decision is then:If p̂(1jv; n1; p; n2) � 0:5 choose noun attachment.Otherwise choose verb attachment.Note that this back-o� method di�ers slightly from the method in [Katz 87], in that thedenominator count rather than the numerator is conditioned upon by each If statement,and the numerator counts are not discounted.5.5 ResultsThe �gure below shows the results for the method on the 3097 test sentences, also givingthe total count and accuracy at each of the backed-o� stages.Stage Total Number Number Correct Percent CorrectQuadruples 148 134 90.5Triples 764 688 90.1Doubles 1965 1625 82.7Singles 216 155 71.8Defaults 4 4 100.0Totals 3097 2606 84.15.5.1 Results with Morphological AnalysisIn an e�ort to reduce sparse data problems the following processing was run over both testand training data:� All 4-digit numbers were replaced with the string `YEAR'.� All other strings of numbers (including those which had commas or decimal points)were replaced with the token `NUM'.138

� The verb and preposition �elds were converted entirely to lower case.� In the n1 and n2 �elds all words starting with a capital letter followed by one ormore lower case letters were replaced with `NAME'.� All strings `NAME-NAME' were then replaced by `NAME'.� All verbs were reduced to their morphological stem using the morphological analyserdescribed in [Karp et al. 94].These modi�cations are similar to those performed on the corpus used by [Brill and Resnik 94].The result using this modi�ed corpus was 84.5%, an improvement of 0.4% on theprevious result.Stage Total Number Number Correct Percent CorrectQuadruples 242 224 92.6Triples 977 858 87.8Doubles 1739 1433 82.4Singles 136 99 72.8Default 3 3 100.0Totals 3097 2617 84.55.5.2 Comparison with Other WorkResults from [Ratnaparkhi et al. 94], [Brill and Resnik 94] and the backed-o� method areshown in the table below5. All results are for the IBM data. These �gures should be takenin the context of the lower and upper bounds of 72.2%{88.2% proposed in section 5.2.3.Method Percentage Accuracy[Ratnaparkhi et al. 94] (words only) 77.7[Ratnaparkhi et al. 94] (words and classes) 81.6[Brill and Resnik 94] (words only) 81.9Backed-o� (no processing) 84.1Backed-o� (morphological processing) 84.55Results for [Brill and Resnik 94] with words and classes were not available on the IBM data139

5.6 A Closer Look at Backing-O�5.6.1 Low Counts are ImportantA possible criticism of the backed-o� estimate is that it uses low count events withoutany smoothing, which has been shown to be a mistake in similar problems such as n-gramlanguage models. In particular, quadruples and triples seen in test data will frequently beseen only once or twice in training data.An experiment was made with all counts less than 5 being put to zero,6 e�ectivelymaking the algorithm ignore low count events. In [Ratnaparkhi et al. 94] a cut-o� `between3 and 5' is used for all events. The training and test data were both the unprocessed,original data sets. The results were as follows:Stage Total Number Number Correct Percent CorrectQuaduples 39 38 97.4Triples 263 243 92.4Doubles 1849 1574 85.1Singles 936 666 71.2Defaults 10 5 50.0Totals 3097 2526 81.6The decrease in accuracy from 84.1% to 81.6% is clear evidence for the importance oflow counts.5.6.2 Tuples with Prepositions are BetterWe have excluded tuples which do not contain a preposition from the model. This sectiongives results which justify this.The table below gives accuracies for the sub-tuples at each stage of backing-o�. The ac-curacy �gure for a particular tuple is obtained by modifying the algorithm in section 5.4.1 touse only information from that tuple at the appropriate stage. For example for (v; n1; n2),stage 2 would be modi�ed to read6Speci�cally: if for a subset x of the quadruple f(x) < 5, then make f(x) = f(1; x) = f(0; x) = 0.140

If f(v; n1; n2) > 0, p̂(1jv; n1; p; n2) = f(1; v; n1; n2)f(v; n1; n2)All other stages in the algorithm would be unchanged. The accuracy �gure is thenthe percentage accuracy on the test cases where the (v; n1; n2) counts were used. Thedevelopment set with no morphological processing was used for these tests.Triples Doubles SinglesTuple Accuracy Tuple Accuracy Tuple Accuracyn1 p n2 90.9 n1 p 82.1 p 72.1v p n2 90.3 v p 80.1 n1 55.7v n1 p 88.2 p n2 75.9 v 52.7v n1 n2 68.4 n1 n2 65.4 n2 47.4v n1 59.0v n2 53.4At each stage there is a sharp di�erence in accuracy between tuples with and withouta preposition. Moreover, if the 14 tuples in the above table were ranked by accuracy, thetop 7 tuples would be the 7 tuples which contain a preposition.5.7 ConclusionsThe backed-o� estimate scores appreciably better than other methods which have beentested on the Wall Street Journal corpus. The accuracy of 84.5% is close to the humanperformance �gure of 88% using the 4 head words alone. A particularly surprising resultis the signi�cance of low count events in training data. The algorithm has the additionaladvantages of being conceptually simple, and computationally inexpensive to implement.5.8 Further Discussion5.8.1 Results with Limited ContextThe parsers of chapters 6 and 7 use lexical information in making PP attachment decisions,but are e�ectively restricted to conditioning on the contexts (N1; P) and (V; P) and their141

subsets. To measure the impact on accuracy of this reduced context, we implemented thefollowing modi�ed algorithm:1. If f(v; p) + f(n1; p) > 0̂p(1jv; n1; p; n2) = f(1; v; p) + f(1; n1; p)f(v; p) + f(n1; p)2. Else if f(p) > 0 p̂(1jv; n1; p; n2) = f(1; p)f(p)3. Else p̂(1jv; n1; p; n2) = 1:0 (default is noun attachment).The resulting accuracy was 83.0%. This result is encouraging, in that the drop in accuracyfrom 84.1% is not too signi�cant.5.8.2 Results for Hindle and Rooth's MethodAlthough Hindle and Rooth's method was originally developed for unsupervised training,we can design a supervised model that has very similar parameters. Importantly, theparser in chapter 7 also uses very similar parameters in the case of PP attachment. Forthis reason, we would like to measure the accuracy of this Hindle and Rooth's model, andsee how it compares to the PP attachment models in this chapter.The model can be formulated as follows. It will de�ne a joint probability, P (A; V;N1; P;N2).The attachment decision is \Noun" if P (A = noun; V;N1; P;N2) � P (A = verb; V;N1; P;N2),\Verb" otherwise. The joint probability is �rst re-written using the chain rule:P (A; V;N1; P;N2) = P (V)P (N1)P (AjV;N1)P (P jA; V;N1)P (N2jP;A; V;N1) (5.10)Next, we make the following independence assumptions:P (AjV;N1) = P (AjN1) (5.11)P (P jA; V;N1) = P (P jA; V) if A = Verb, P (P jA;N1) otherwise (5.12)P (N2jP;A; V;N1) = P (N2) (5.13)142

The terms P (V), P (N1) and P (N2) do not involve A, and can therefore be discardedwhen making the attachment decision. The �nal decision is then \Noun" if P (A =nounjN1)P (P jA = noun;N1) � P (A = verbjN1)P (P jA = verb; V). This model formis similar to Hindle and Rooth's. It has similar probabilities of seeing the prepositiongiven the noun/verb, and P (A = nounjN1) is the equivalent of Hindle and Rooth's stopprobability.The probabilities were smoothed by holding a count of 1 out for the backed o� estimate,in each case backing o� to ignore either N1 or V . The results for this model on the IBMtest set were 81.3% accuracy.

143

Chapter 6
A Statistical Parser Based onBigram Lexical Dependencies
The major part of this chapter was originally published as [Collins 96]. It remains largelyunchanged and when it di�ers we make a note at that point in the text. In the �naldiscussion section we give more recent analysis in light of the mathematical results andrepresentation proposals of chapters 2 and 3.6.1 IntroductionThe previous chapter showed that lexical information is crucial for prepositional phraseattachment decisions, and it follows that lexical information is also useful when resolvingother cases of ambiguity such as coordination, relative clause modi�cation, noun-nouncompounds, and so on. However, many early approaches to probabilistic parsing (see theprevious work discussion in chapter 4) conditioned probabilities on non-terminal labelsand part of speech tags alone. The SPATTER parser [Magerman 95, Jelinek et al. 94] wasthe �rst probabilistic parser to use lexical information for parsing wide-domain text, andrecovered labeled constituents in Wall Street Journal text with above 84% accuracy { adramatic improvement over the 70.6%/74.8% recall/precision �gures for a non-lexicalizedprobabilistic context-free grammar (a result quoted in [Charniak 97]).This paper describes a new parser which is much simpler than SPATTER, yet performs144

at least as well when trained and tested on the same Wall Street Journal data. The methoduses lexical information directly by modeling head-modi�er1 relations between pairs ofwords. In this way it is similar to the previous work described in sections 4.7 and 4.8.1 ofthis work.6.2 The Statistical ModelThe aim of a parser is to take a tagged sentence as input (for example Figure 6.1(a)) andproduce a phrase-structure tree as output (Figure 6.1(b)). A statistical approach to thisproblem consists of two components. First, the statistical model assigns a probability toevery candidate parse tree for a sentence. Formally, given a sentence S and a tree T ,the model estimates the conditional probability P (T jS). The most likely parse under themodel is then: Tbest = argmaxT P (T jS) (6.1)Second, the parser is a method for �nding Tbest. This section describes the statisticalmodel, while section 6.3 describes the parser.The key to the statistical model is that any tree such as Figure 6.1(b) can be representedas a set of baseNPs2 and a set of dependencies as in Figure 6.1(c). We call the set ofbaseNPs B, and the set of dependencies D; Figure 6.1(d) shows B and D for this example.For the purposes of our model, T = (B;D), and:P (T jS) = P (B;DjS) = P (BjS)� P (DjS;B) (6.2)S is the sentence with words tagged for part of speech. That is, S =< (w1; t1); (w2; t2):::(wn; tn) >.For POS tagging we use the maximum-entropy tagger described in [Ratnaparkhi 96]. Thetagger performs at around 97% accuracy on Wall Street Journal Text, and is trained onthe �rst 40,000 sentences of the Penn Treebank [Marcus et al. 93].Given S and B, the reduced sentence �S is de�ned as the subsequence of S which isformed by removing punctuation and reducing all baseNPs to their head-word alone. Thus1By `modi�er' we mean the linguistic notion of either an argument or adjunct.2A baseNP or `minimal' NP is a non-recursive NP, i.e. none of its child constituents are NPs. The termwas �rst used in [Ramshaw and Marcus 95]. 145

(a) John/NNP Smith/NNP, the/DT president/NN of/IN IBM/NNP, an-nounced/VBD his/PRP$ resignation/NN yesterday/NN .(b)
John Smith the of announced his resignation

NNP NNP DT NN

president

NN NNPRP$

NP

NPNP

NP

NP NPVBD

VP

S

yesterday

NP

NNP

IBM

IN

PP

(c)
John Smith president IBM yesterdaythe of announced resignationhis[]][[] [] []

NP S VP VBD VP NP

NP NP NP VBD VP NPIN PP NPNP NP PP(d)
D={ Smith announced , announced resignationof IBM ,president of,Smith president ,

 announced yesterday }

NP S VP NP NP NP NP NP PP IN PP NP VBD VP NP

VBD VP NP

B={ [John Smith] , [the president], [IBM], [his resignation], [yesterday] }

Figure 6.1: An overview of the representation used by the model. (a) The tagged sentence;(b) A candidate parse-tree (the correct one); (c) A dependency representation of (b).Square brackets enclose baseNPs (heads of baseNPs are marked in bold). Arrows showmodi�er ! head dependencies. Section 6.2.1 describes how arrows are labeled with non-terminal triples from the parse-tree. Non-head words within baseNPs are excluded fromthe dependency structure; (d) B, the set of baseNPs, and D, the set of dependencies, areextracted from (c).
146

the reduced sentence is an array of word/tag pairs, �S =< h �w1; �t1i; h �w2; �t2i:::h �wm; �tmi >,where m � n. For example, for Figure 6.1(a)Example 1.�S = < hSmith;NNP i; hpresident;NNi; hof; INi; hIBM;NNP i;hannounced; V BDi; hresignation;NNi; hyesterday;NNi >Sections 6.2.1 to 6.2.4 describe the dependency model. Section 6.2.5 then describes thebaseNP model, which uses bigram tagging techniques similar to [Ramshaw and Marcus 95,Church 88].6.2.1 The Mapping from Trees to Sets of DependenciesThe dependency model is limited to relationships between words in reduced sentencessuch as Example 1. The mapping from trees to dependency structures is central to thedependency model. It is de�ned in two steps:1. For each constituent P !< C1:::Cn > in the parse tree a simple set of rules3 iden-ti�es which of the children Ci is the `head-child' of P . For example, NN would be identi�edas the head-child of NP ! <DET JJ JJ NN>, VP would be identi�ed as the head-childof S ! <NP VP>. Head-words propagate up through the tree, each parent receivingits head-word from its head-child. For example, in S ! <NP VP>, S gets its head-word,announced, from its head-child, the VP.
of IBM announced

NN

yesterdaySmith

NNP

resignation

NN

president

NN

NP(Smith)

NP(Smith)

NP(president)

NP(president) PP(of) NP(resignation) NP(yesterday)

VP(announced)

S(announced)

VBD(announced)

IN NP

NNPFigure 6.2: Parse tree for the reduced sentence in Example 1. The head-child of eachconstituent is shown in bold. The head-word for each constituent is shown in parentheses.2. Head-modi�er relationships are now extracted from the tree in Figure 6.2. Fig-ure 6.3 illustrates how each constituent contributes a set of dependency relationships. VBD3The rules are speci�ed in Appendix A. These rules are also used to �nd the head-word of baseNPs,enabling the mapping from S and B to �S. 147

is identi�ed as the head-child of VP ! <VBD NP NP>. The head-words of the two NPs,resignation and yesterday, both modify the head-word of the VBD, announced. Depen-dencies are labeled by the modi�er non-terminal, NP in both of these cases, the parentnon-terminal, VP, and �nally the head-child non-terminal, VBD. The triple of non-terminalsat the start, middle and end of the arrow specify the nature of the dependency relationship{ <NP,S,VP> represents a subject-verb dependency, <PP,NP,NP> denotes prepositionalphrase modi�cation of an NP, and so on4.
announced

NN

yesterdayresignation

NN

NP(resignation) NP(yesterday)

VP(announced)

VBD(announced)

yesterdayresignationannounced

VBD VP NP

VBD VP NPFigure 6.3: Each constituent with n children (in this case n = 3) contributes n� 1 depen-dencies.Each word in the reduced sentence, with the exception of the sentential head `an-nounced', modi�es exactly one other word. We use the notation5AF (j) = (hj ; Rj) (6.3)to state that the jth word in the reduced sentence is a modi�er to the hjth word, withrelationship Rj6. AF stands for `arrow from'. Rj is the triple of labels at the start, middleand end of the arrow. For example, �w1 = Smith in this sentence, and �w5 = announced,so AF (1) = (5; <NP,S,VP>).D is now de�ned as the m-tuple of dependencies: D = f(AF (1); AF (2):::AF (m)g. Notethat the tree T can be recovered from its associated set of dependencies,D. The linear orderof the words in the sentence, combined with the relation labels on the arrows, describeshow the dependencies combine to form constituency structure. For example, resignation,announced and Smith are all dependent on announced in �gure 6.2, with relationships4The triple can also be viewed as representing a semantic predicate-argument relationship, with the threeelements being the type of the argument, result and functor respectively. This is particularly apparentin Categorial Grammar formalisms [Wood 93], which make an explicit link between dependencies andfunctional application.5We preserve the notation from the original publication of this chapter, i.e., [Collins 96]. This di�ersfrom the notation in chapter 3 of this thesis, which would write the dependency as hwj ! whj ; Rji.6For the head-word of the entire sentence hj = 0, with Rj=<Label of the root of the parse tree >. Soin this case, AF (5) = (0; < S >). 148

hNP, VP, VBDi, hNP, VP, VBDi, and hNP, S, VPi respectively. Only one structure overthe order Smith announced resignation yesterday could have produced these dependencies.The model assumes that the dependencies are independent, so that:P (DjS;B) = mYj=1P (AF (j)jS;B) (6.4)6.2.2 Calculating Dependency ProbabilitiesThis section describes the way P (AF (j)jS;B) is estimated. The same sentence is veryunlikely to appear both in training and test data, so we need to back-o� from the entiresentence context. We believe that lexical information is crucial to attachment decisions,so it is natural to condition on the words and tags. Let V be the vocabulary of all wordsseen in training data, T be the set of all part-of-speech tags, and T RAIN be the trainingset, a set of reduced sentences. We de�ne the following functions:� C (ha; bi ; hc; di) for a; c � V, and b; d � T is the number of times ha; bi and hc; diare seen in the same reduced sentence in training data.7 Formally,C (ha; bi ; hc; di) =X�S � TRAINk;l=1::j�Sj; l 6=kh � �S[k] = ha; bi ; �S[l] = hc; di� (6.5)where h(x) is an indicator function that is 1 if x is true, 0 if x is false.� C (R; ha; bi ; hc; di) is the number of times ha; bi and hc; di are seen in the samereduced sentence in training data, and ha; bi modi�es hc; di with relationshipR. Formally,C (R; ha; bi ; hc; di) =X�S � T RAINk;l=1::j�Sj; l 6=kh(�S[k] = ha; bi ; �S[l] = hc; di ; AF (k) = (l; R)) (6.6)� F (R j ha; bi ; hc; di) is the probability that ha; bi modi�es hc; di with relationship R,given that ha; bi and hc; di appear in the same reduced sentence. The maximum-likelihood7Note that we count multiple co-occurrences in a single sentence, e.g. if �S = (< a; b >;< c; d >;< c; d >)then C(< a; b >;< c; d >) = C(< c; d >;< a; b >) = 2.149

estimate of F (R j ha; bi ; hc; di) is:F̂ (R j ha; bi ; hc; di) = C(R; ha; bi ; hc; di)C(ha; bi ; hc; di) (6.7)We can now make the following approximation:P (AF (j) = (hj ; Rj) j S;B) �F̂ (Rj j h �wj ; �tji ; h �whj ; �thj i)Pk=1::m;k 6=j;p�P F̂ (p j h �wj ; �tji ; h �wk; �tki) (6.8)where P is the set of all triples of non-terminals. The denominator is a normalising factorwhich ensures that Xk=1::m;k 6=j;p�PP (AF (j) = (k; p) j S;B) = 1From (6.4) and (6.8):P (DjS;B) � (6.9)mYj=1 F̂ (Rj j h �wj ; �tji ; h �whj ; �thj i)Pk=1::m;k 6=j;p�P F̂ (p j h �wj ; �tji ; h �wk; �tki)The denominator of (6.9) is constant, so maximising P (DjS;B) over D for �xed S;B isequivalent to maximising the product of the numerators, N (DjS;B). (This considerablysimpli�es the parsing process):N (DjS;B) = mYj=1 F̂ (Rj j h �wj ; �tji ; h �whj ; �thj i) (6.10)6.2.3 The Distance MeasureAn estimate based on the identities of the two tokens alone is problematic. Additionalcontext, in particular the relative order of the two words and the distance between them,will also strongly inuence the likelihood of one word modifying the other. For exam-ple consider the relationship between `sales' and the three tokens of `of' in the followingsentenceExample 2. Shaw, based in Dalton, Ga., has annual sales of about $ 1.18 billion, and haseconomies of scale and lower raw-material costs that are expected to boost the pro�tabilityof Armstrong 's brands, sold under the Armstrong and Evans-Black names .150

In this sentence `sales' and `of' co-occur three times. The parse tree in training dataindicates a relationship in only one of these cases, so this sentence would contribute anestimate of 13 that the two words are related. This seems unreasonably low given that`sales of' is a strong collocation. The latter two instances of `of' are so distant from `sales'that it is unlikely that there will be a dependency.This suggests that distance is a crucial variable when deciding whether two wordsare related. It is included in the model by de�ning an extra `distance' variable, �, andextending C, F and F̂ to include this variable. For example, C(ha; bi ; hc; di ;�) is thenumber of times ha; bi and hc; di appear in the same sentence at a distance � apart.(6.11) is then maximised instead of (6.10):N (DjS;B) = mYj=1 F̂ (Rj j h �wj ; �tji ; h �whj ; �thj i ;�j;hj) (6.11)A simple example of �j;hj would be �j;hj = hj � j. However, other features of a sentence,such as punctuation, are also useful when deciding if two words are related. We havedeveloped a heuristic `distance' measure which takes several such features into account.The current distance measure �j;hj is the combination of 6 features, or questions (wemotivate the choice of these questions qualitatively { section 6.4 gives quantitative resultsshowing their merit):Question 1 Does the hjth word precede or follow the jth word? English is a languagewith strong word order, so the order of the two words in surface text will clearly a�ecttheir dependency statistics.Question 2 Are the hjth word and the jth word adjacent? English is largely right-branching and head-initial, which leads to a large proportion of dependencies being betweenadjacent words 8. Table 6.1 shows just how local most dependencies are.Question 3 Is there a verb between the hjth word and the jth word? Conditioningon the exact distance between two words by making �j;hj = hj � j leads to severe sparsedata problems. But Table 6.1 shows the need to make �ner distance distinctions thanjust whether two words are adjacent. Consider the prepositions `to', `in' and `of' in thefollowing sentence:8For example in `(John (likes (to (go (to (University (of Pennsylvania)))))))' all dependencies are betweenadjacent words. 151

Distance 1 � 2 � 5 � 10Percentage 74.2 86.3 95.6 99.0Table 6.1: Percentage of dependencies vs. distance between the head words involved.These �gures count baseNPs as a single word, and are taken from WSJ training data.Number of verbs 0 <=1 <=2Percentage 94.1 98.1 99.3Table 6.2: Percentage of dependencies vs. number of verbs between the head words in-volved.Example 3. Oil stocks escaped the brunt of Friday 's selling and several were able topost gains , including Chevron , which rose 5/8 to 66 3/8 in Big Board composite tradingof 2.4 million shares .The prepositions' main candidates for attachment would appear to be the previousverb, `rose', and the baseNP heads between each preposition and this verb. They are lesslikely to modify a more distant verb such as `escaped'. Question 3 allows the parser toprefer modi�cation of the most recent verb { e�ectively another, weaker preference forright-branching structures. Table 6.2 shows that 94% of dependencies do not cross a verb,giving empirical evidence that question 3 is useful.Questions 4, 5 and 6� Are there 0, 1, 2, or more than 2 `commas' between the hjth word and the jth word?(All symbols tagged as a `,' or `:' are considered to be `commas').� Is there a `comma' immediately following the �rst of the hjth word and the jth word?� Is there a `comma' immediately preceding the second of the hjth word and the jthword?People �nd that punctuation is extremely useful for identifying phrase structure, andthe parser described here also relies on it heavily. Commas are not considered to be wordsor modi�ers in the dependency model { but they do give strong indications about the parsestructure. Questions 4, 5 and 6 allow the parser to use this information.152

6.2.4 Sparse DataThe maximum likelihood estimator in (6.7) is likely to be plagued by sparse data problems{ C(h �wj ; �tji ; h �whj ; �thj i ;�j;hj) may be too low to give a reliable estimate, or worse still itmay be zero leaving the estimate unde�ned. We use a backing-o� strategy (similar to themethod in Chapter 5) to smooth these probabilities.There are four estimates, E1, E2, E3 and E4, based respectively on: 1) both words andboth tags; 2) �wj and the two POS tags; 3) �whj and the two POS tags; 4) the two POStags alone. E1 = �1�1 E2 = �2�2 E3 = �3�3 E4 = �4�4 (6.12)where9 �1 = C(h �wj ; �tji ; h �whj ; �thj i ;�j;hj)�2 = C(h �wj ; �tji ; h�thj i ;�j;hj)�3 = C(h�tji ; h �whj ; �thj i ;�j;hj)�4 = C(h�tji ; h�thj i ;�j;hj)�1 = C(Rj ; h �wj ; �tji ; h �whj ; �thj i ;�j;hj)�2 = C(Rj ; h �wj ; �tji ; h�thj i ;�j;hj)�3 = C(Rj ; h�tji ; h �whj ; �thj i ;�j;hj)�4 = C(Rj ; h�tji ; h�thj i ;�j;hj) (6.13)Estimates 2 and 3 compete { for a given pair of words in test data both estimatesmay exist and they are equally `speci�c' to the test case example. Chapter 5 suggeststhe following way of combining them, which favours the estimate appearing more often intraining data:9 C(h �wj ; �tji ; h�thj i ;�j;hj) =Xx�V C(h �wj ; �tji ; hx; �thj i ;�j;hj)C(h�tji ; h�thj i ;�j;hj) =Xx�VXy�V C(hx; �tji ; hy; �thj i ;�j;hj)where V is the set of all words seen in training data; the other de�nitions of C follow similarly.153

E23 = �2 + �3�2 + �3 (6.14)This gives three estimates: E1, E23 and E4, a similar situation to trigram languagemodeling for speech recognition [Jelinek 90], where there are trigram, bigram and unigramestimates. [Jelinek 90] describes a deleted interpolation method, which combines theseestimates to give a `smooth' estimate, and the model uses a variation of this idea:If E1 exists, i.e. �1 > 0 F̂ (Rj j h �wj ; �tji ; h �whj ; �thj i ;�j;hj) =�1 �E1 + (1� �1)�E23 (6.15)Else If E23 exists, i.e. �2 + �3 > 0F̂ (Rj j h �wj ; �tji ; h �whj ; �thj i ;�j;hj) =�2 �E23 + (1� �2)�E4 (6.16)Else F̂ (Rj j h �wj ; �tji ; h �whj ; �thj i ;�j;hj) = E4 (6.17)[Jelinek 90] describes how to �nd � values in (6.15) and (6.16) which maximise thelikelihood of held-out data. We have taken a simpler approach, namely:�1 = �1�1 + 1�2 = �2 + �3�2 + �3 + 1 (6.18)These � values have the desired property of increasing as the denominator of the more`speci�c' estimator increases. We think that a proper implementation of deleted interpola-tion is likely to improve results, although basing estimates on co-occurrence counts alonehas the advantage of reduced training times.
154

6.2.5 The BaseNP ModelThe overall model would be simpler if we could do without the baseNP model and frameeverything in terms of dependencies. However, the baseNP model is needed for two rea-sons. First, while adjacency between words is a good indicator of whether there is somerelationship between them, this indicator is made substantially stronger if baseNPs are re-duced to a single word. Second, it means that words internal to baseNPs are not includedin the co-occurrence counts in training data. Otherwise, in a phrase like `The Securitiesand Exchange Commission closed yesterday', pre-modifying nouns like `Securities' and`Exchange' would be included in co-occurrence counts, when in practice there is no waythat they can modify words outside their baseNP.The baseNP model can be viewed as tagging the gaps between words with S(tart),C(ontinue), E(nd), B(etween) or N(ull) symbols, respectively meaning that the gap is atthe start of a BaseNP , continues a BaseNP , is at the end of a BaseNP , is between twoadjacent baseNP s, or is between two words which are both not in BaseNPs. We call thegap before the ith word Gi (a sentence with n words has n� 1 gaps). For example,[John Smith] [the president] of [IBM] has announced [his resignation] [yesterday])John C Smith B the C president E of S IBM E has N announced S his C resignation ByesterdayThe baseNP model considers the words directly to the left and right of each gap, andwhether there is a comma between the two words (we write ci = 1 if there is a comma,ci = 0 otherwise). Probability estimates are based on counts of consecutive pairs of wordsin unreduced training data sentences, where baseNP boundaries de�ne whether gaps fallinto the S, C, E, B or N categories. The probability of a baseNP sequence in an unreducedsentence S is then: Yi=2:::n P̂ (Gi j wi�1; ti�1; wi; ti; ci) (6.19)The estimation method is analogous to that described in the sparse data section of thispaper. The method is similar to that described in [Ramshaw and Marcus 95, Church 88],where baseNP detection is also framed as a tagging problem.155

6.2.6 Summary of the ModelThe probability of a parse tree T , given a sentence S, is:P (T jS) = P (B;DjS) = P (BjS)� P (DjS;B)The denominator in Equation (6.9) is not actually constant for di�erent baseNP se-quences, but we make this approximation for the sake of e�ciency and simplicity. Inpractice this is a good approximation because most baseNP boundaries are very well de-�ned, so parses which have high enough P (BjS) to be among the highest scoring parsesfor a sentence tend to have identical or very similar baseNPs. Parses are ranked by thefollowing quantity10: P̂ (BjS)�N (DjS;B) (6.20)Equations (6.19) and (6.11) de�ne P̂ (BjS) and N (DjS;B). The parser �nds the tree whichmaximises (6.20) subject to the hard constraint that dependencies cannot cross.6.2.7 Some Further Improvements to the ModelThis section describes two modi�cations which improve the model's performance.� In addition to conditioning on whether dependencies cross commas, a single constraintconcerning punctuation is introduced. If for any constituent Z in the chart Z ! <..X Y..>two of its children X and Y are separated by a comma, then the last word in Y must bedirectly followed by a comma, or must be the last word in the sentence. In training data96% of commas follow this rule. The rule also has the bene�t of improving e�ciency byreducing the number of constituents in the chart.� The model we have described thus far takes the single best sequence of tags from thetagger, and it is clear that there is potential for better integration of the tagger and parser.We have tried two modi�cations. First, the current estimation methods treat occurrencesof the same word with di�erent POS tags as e�ectively distinct types. Tags can be ignoredwhen lexical information is available by de�ningC (a; c) = Xb;d�T C (ha; bi ; hc; di) (6.21)10In fact we also model the set of unary productions, U , in the tree, which are of the form P !< C1 >.This introduces an additional term, P̂ (U jB; S), into (6.20).156

where T is the set of all tags. Hence C (a; c) is the number of times that the words a and coccur in the same sentence, ignoring their tags. The other de�nitions in (6.13) are similarlyrede�ned, with POS tags only being used when backing o� from lexical information. Thismakes the parser less sensitive to tagging errors.Second, for each word wi the tagger can provide the distribution of tag probabilitiesP (tijS) (given the previous two words are tagged as in the best overall sequence of tags)rather than just the �rst best tag. The score for a parse in equation (6.20) then has anadditional term, Qni=1 P (tijS), the product of probabilities of the tags which it contains.Ideally we would like to integrate POS tagging into the parsing model rather thantreating it as a separate stage. This is an area for future research.MODEL � 40 Words (2245 sentences)LR LP CBs 0 CBs � 2 CBs(1) 84.9% 84.9% 1.32 57.2% 80.8%(2) 85.4% 85.5% 1.21 58.4% 82.4%(3) 85.5% 85.7% 1.19 59.5% 82.6%(4) 85.8% 86.3% 1.14 59.9% 83.6%SPATTER 84.6% 84.9% 1.26 56.6% 81.4%MODEL � 100 Words (2416 sentences)LR LP CBs 0 CBs � 2 CBs(1) 84.3% 84.3% 1.53 54.7% 77.8%(2) 84.8% 84.8% 1.41 55.9% 79.4%(3) 85.0% 85.1% 1.39 56.8% 79.6%(4) 85.3% 85.7% 1.32 57.2% 80.8%SPATTER 84.0% 84.3% 1.46 54.0% 78.8%Table 6.3: Results on Section 23 of the WSJ Treebank. (1) is the basic model; (2) is thebasic model with the punctuation rule described in section 6.2.7: (3) is model (2) withPOS tags ignored when lexical information is present; (4) is model (3) with probabilitydistributions from the POS tagger. LR/LP = labeled recall/precision. CBs is the averagenumber of crossing brackets per sentence. 0 CBs, � 2 CBs are the percentage of sentenceswith 0 or � 2 crossing brackets respectively.
157

VBD

announced his resignation

NPVBD

announced his resignation

NP

VP

Score=S1 Score=S2

P(<np,vp,vbd> | resignation, announced)

Score = S1 * S2 *
P(Gap=S | announced, his) *Figure 6.4: Diagram showing how two constituents join to form a new constituent. Eachoperation gives two new probability terms: one for the baseNP gap tag between the twoconstituents, and the other for the dependency between the head words of the two con-stituents.6.3 The Parsing AlgorithmThe parsing algorithm is a simple bottom-up chart parser. There is no grammar as such,although in practice any dependency with a triple of non-terminals which has not beenseen in training data will get zero probability. Thus the parser searches through the spaceof all trees with non-terminal triples seen in training data. Probabilities of baseNPs in thechart are calculated using (6.19), while probabilities for other constituents are derived fromthe dependencies and baseNPs that they contain. A dynamic programming algorithm isused: if two proposed constituents span the same set of words, have the same label, head,and distance from the head to the left and right end of the constituent, then the lowerprobability constituent can be safely discarded. Figure 6.4 shows how constituents in thechart combine in a bottom-up manner.6.4 ResultsThe parser was trained on sections 02 - 21 of the Wall Street Journal portion of the PennTreebank [Marcus et al. 93] (approximately 40,000 sentences), and tested on section 23(2,416 sentences). For comparison SPATTER [Magerman 95, Jelinek et al. 94] was alsotested on section 23. We use the PARSEVAL measures [Black et al. 91] to compare per-formance:Labeled Precision = number of correct constituents in proposed parsenumber of constituents in proposed parseLabeled Recall = number of correct constituents in proposed parsenumber of constituents in treebank parse158

Distance Lexical LR LP CBsMeasure InformationYes Yes 85.0% 85.1% 1.39Yes No 76.1% 76.6% 2.26No Yes 80.9% 83.6% 1.51Table 6.4: The contribution of various components of the model. The results are for allsentences of � 100 words in section 23 using model (3). For `no lexical information' allestimates are based on POS tags alone. For `no distance measure' the distance measure isQuestion 1 alone (i.e. whether �wj precedes or follows �whj).Crossing Brackets = number of constituents which violate constituent boundaries witha constituent in the treebank parse.For a constituent to be `correct' it must span the same set of words (ignoring punctu-ation, i.e. all tokens tagged as commas, colons or quotes) and have the same label11 as aconstituent in the treebank parse. Four con�gurations of the parser were tested: (1) Thebasic model; (2) The basic model with the punctuation rule described in section 6.2.7;(3) Model (2) with tags ignored when lexical information is present, as described in 6.2.7;and (4) Model (3) also using the full probability distributions for POS tags. We shouldemphasize that test data outside of section 23 was used for all development of the model,avoiding the danger of implicit training on section 23. Table 6.3 shows the results of thetests. Table 6.4 shows results which indicate how di�erent parts of the system contributeto performance.6.4.1 Performance IssuesAll tests were made on a Sun SPARCServer 1000E, using 100% of a 60Mhz SuperSPARCprocessor. The parser uses around 180 megabytes of memory, and training on 40,000sentences (essentially extracting the co-occurrence counts from the corpus) takes under 15minutes. Loading the hash table of bigram counts into memory takes approximately 8minutes.Two strategies are employed to improve parsing e�ciency. First, a constant probability11SPATTER collapses ADVP and PRT to the same label, for comparison we also removed this distinctionwhen calculating scores. 159

threshold is used while building the chart { any constituents with lower probability thanthis threshold are discarded. If a parse is found, it must be the highest ranked parse bythe model (as all constituents discarded have lower probabilities than this parse and couldnot, therefore, be part of a higher probability parse). If no parse is found, the threshold islowered and parsing is attempted again. The process continues until a parse is found.Second, a beam search strategy is used. For each span of words in the sentence theprobability, Ph, of the highest probability constituent is recorded. All other constituentsspanning the same words must have probability greater than Ph� for some constant beamsize � { constituents which fall out of this beam are discarded. The method risks intro-ducing search-errors, but in practice e�ciency can be greatly improved with virtually noloss of accuracy. Table 6.5 shows the trade-o� between speed and accuracy as the beam isnarrowed. Beam Speed LR LP CBsSize � Sentences/minute1000 118 84.9% 85.1% 1.39150 166 84.8% 85.1% 1.3820 217 84.7% 85.0% 1.403 261 84.1% 84.5% 1.441.5 283 83.7% 84.1% 1.481.2 289 83.5% 83.9% 1.50Table 6.5: The trade-o� between speed and accuracy as the beam-size is varied. Model(3) was used for this test on all sentences � 100 words in section 23.
6.5 Further Discussion6.5.1 Representational IssuesIf we examine this chapter's model in the light of the representation proposals of chapter3, a number of points become clear:� The model contains all of the representation proposals, with the exception of subcat-egorization frames. (Unfortunately, the model structure as it stands does not readilyallow the addition of subcategorization.)160

� Fortunately, as argued in section 3.3.7, the distance variable gives a close approxima-tion to subcategorization (this almost certainly saves the model). Unfortunately, thedistance measure is the second one described in section 3.3.7, and therefore breaksdown | particularly as a model of subcategorization | in some cases.� The model is limited to conditioning on properties of the surface string alone, ratherthan on any previously built structure. This is a quite severe limitation (and precludesthe incorporation of subcategorization and wh-movement, two re�nements in the nextchapter's model).6.5.2 Mathematical IssuesThere are also a few mathematical problems with the model:� The normalization factor in equation 6.8 means that the estimate cannot be justi�ed asmaximum-likelihood estimation; see section 2.3.3 for more discussion of this problem.Furthermore, even with this normalization factor the model is still de�cient, due tostructures with crossing dependencies receiving some probability.� The model has no principled way of dealing with unary rules, currently a probabilityP (Rule j word; tag)12 is multiplied into the parse score for each unary rule, but thisis rather ad-hoc.6.5.3 SummaryIn summary, this chapter's model includes most of the representation proposals in chapter3, and this is its strength. Its main weaknesses are some mathematical problems, and amodel structure that prevents the representation of subcategorization, wh-movement, or a\correct" distance measure.
12The probability, given that a particular (word,tag) pair is seen in a sentence, that a unary rule Rule isseen with (word,tag) as a head somewhere in the parse tree.161

Chapter 7
Three Generative, LexicalizedModels for Statistical Parsing7.1 IntroductionThe problems with the previous chapter's model, described in section 6.5, lead us to a newapproach to the parsing problem. The models in this chapter de�ne a joint probabilityP (T; S) over Tree-Sentence pairs. A history-based model is used: a parse tree is repre-sented as a sequence of decisions, the decisions being made in a head-centered, top-downderivation of the parse tree. Representing a parse-tree in this way allows independenceassumptions that lead to parameters conditioned on lexical heads: head-projection, sub-categorization, complement/adjunct placement, dependency, distance, and wh-movement(gap propagation) parameters.We �rst describe three parsing models based on this approach, giving results on thePenn WSJ treebank. We then give a detailed breakdown of the results, in terms of accuracyon di�erent kinds of constituents and attachment ambiguities | the intention being to geta better idea of the parser's strengths and weaknesses. The next chapter gives a muchfuller discussion of the modeling choices made, their inuence on accuracy, and also givescomparisons to related work.The three new models are:� In Model 1 we show how to extend Probabilistic Context Free Grammars (PCFGs)to lexicalized grammars in a way that results in a quite similar model to that described162

in Chapter 6. Most importantly, it again has parameters corresponding to dependen-cies between pairs of head-words. We also show how to incorporate the \distance"measure into these models, by generalizing the model to a history-based approach.The advantages of the new model over the work of the previous chapter are:{ The model is not de�cient (i.e., PP (T; S) = 1); Unary rules are handled in aquite natural way by the model.{ The distance measure is slightly di�erent, and is improved. For example, theadjacency variable now corresponds directly to right-branching structures.{ The model shows an accuracy improvement over the models in Chapter 6 of1.5%/1.9% recall/precision. The later models (2 and 3) show an overall improve-ment of 2.2%/2.4% recall/precision.{ The models in Chapter 6 were constrained to conditioning on features of the surfacestring alone, whereas the models in this chapter can potentially condition on any(previously generated) structure: we e�ectively make use of this in models 2 and3.{ Part-of-speech tagging is naturally incorporated into the model.{ The model de�nes a joint probability measure P (T; S), and can therefore be usedas a language model for applications such as speech recognition or machine trans-lation. It also means that it can be trained in an unsupervised manner usingthe EM algorithm [Dempster, Laird and Rubin 77], unlike models that only de-�ne conditional probabilities P (T j S).� InModel 2, we extend the parser to make the complement/adjunct distinction, whichwill be important for most applications using the output from the parser (for example,distinguishing \IBM" as a complement, from \yesterday", a temporal adjunct, in\yesterday IBM bought Lotus").Model 2 is also extended to have parameters corresponding directly to probability dis-tributions over subcategorization frames for head-words; this leads to an improvementin accuracy.� InModel 3 we give a probabilistic treatment of wh-movement, which is derived fromthe analysis in Generalized Phrase Structure Grammar [Gazdar et al. 95]. The output163

of the parser is now enhanced to show trace co-indexations in wh-movement cases.The parameters in this model are interesting in that they correspond directly to theprobability of propagating GPSG-style slash features through parse trees, potentiallyallowing the model to learn island constraints.In summary, the work in this chapter makes two advances over previous models. First,Model 1 performs signi�cantly better than the model in Chapter 6, and Models 2 and 3give further improvements | our �nal results are 88.3/88.0% constituent precision/recall,an average improvement of 2.3% over results in Chapter 6. Second, the parsers in Chap-ter 6 and [Charniak 97, Ratnaparkhi 97, Goodman 97, Magerman 95, Jelinek et al. 94]produce trees without information about wh-movement or subcategorization. Most NLPapplications will need this information to extract predicate-argument structure from parsetrees.7.1.1 Probabilistic Context-Free GrammarsProbabilistic context-free grammars are the starting point for the models in this chapter.For this reason we briey recap the theory behind non-lexicalized PCFGs, before movingto the lexicalized case. (See chapter 2 for a full discussion of PCFG models.)In general, a statistical parsing model de�nes the conditional probability, P(T j S), foreach candidate parse tree T for a sentence S. The parser itself is an algorithm that searchesfor the tree, Tbest, that maximises P(T j S). A generative model uses the observation thatmaximising P(T; S) is equivalent to maximising P(T j S): 1Tbest = argmaxT P(T j S) = argmaxT P(T; S)P(S) = argmaxT P(T; S) (7.1)P(T; S) is then de�ned by attaching probabilities to a top-down derivation of the tree.Each context-free rule is of the format LHS ! RHS (LHS stands for \Left hand side",RHS stands for \Right hand side"). In a PCFG, for a tree derived by n applications ofcontext-free rules LHSi ! RHSi, 1 � i � n,P(T; S) = Yi=1::nP(RHSi j LHSi) (7.2)1P(S) is constant, hence maximising P(T;S)P(S) is equivalent to maximising P(T; S).164

TOPSNPJJLast NNweek NPNNPIBM VPVBDbought NPNNPLotus

Internal rules Lexical rulesTOP -> S JJ -> LastS -> NP NP VP NN -> weekNP -> JJ NN NNP -> IBMNP -> NNP VBD -> boughtVP -> VBD NP NNP -> LotusNP -> NNP
Figure 7.1: A non-lexicalized parse tree, and a list of the rules it contains.The rules are either internal to the tree, where LHS is a non-terminal and RHS is a stringof one or more non-terminals; or lexical, where LHS is a part-of-speech tag and RHS isa word. See �gure 7.1 for an example.A central problem in PCFGs is to de�ne the conditional probability P(RHS j LHS)for each rule LHS ! RHS in the grammar. A simple way to do this is to take countsfrom a treebank and then to use the maximum likelihood estimateP(RHS j LHS) = Count(LHS ! RHS)Count(LHS) (7.3)7.1.2 Lexicalized PCFGsA PCFG can be lexicalized2 by associating a word w and a part-of-speech (POS) tag twith each non-terminal X in the tree. See �gure 7.2 for an example tree.The PCFG model can be applied to these lexicalized rules and trees in exactly thesame way as before. Whereas before the non-terminals were simple, for example \S"or \NP", they are now extended to include a word and part-of-speech tag, for example\S(bought,VBD)" or \NP(IBM,NNP)". Thus we write a non-terminal as X(x), wherex = hw; ti, and X is a constituent label. Formally, nothing has changed, we have justvastly increased the number of non-terminals in the grammar (by up to a factor of jVj�jT j,2We �nd lexical heads in Penn treebank data using the rules described in Appendix A.165

TOPS(bought)NP(week)JJLast NNweek NP(IBM)NNPIBM VP(bought)VBDbought NP(Lotus)NNPLotusTOP -> S(bought)S(bought) -> NP(week) NP(IBM) VP(bought)NP(week) -> JJ(Last) NN(week)NP(IBM) -> NNP(IBM)VP(bought) -> VBD(bought) NP(Lotus)NP(Lotus) -> NNP(Lotus)Figure 7.2: A lexicalized parse tree, and a list of the rules it contains. For brevity we omitthe POS tag associated with each word.where jVj is the number of words in the vocabulary, and jT j is the number of part of speechtags).While nothing has changed from a formal point of view, the practical consequencesof expanding the number of non-terminals quickly become apparent when attempting tode�ne a method for parameter estimation. The simplest solution would be to use themaximum-likelihood estimate as in equation 7.3, for example estimating the probability ofS(bought) -> NP(week) NP(IBM) VP(bought) asP(NP(week) NP(IBM) VP(bought) j S(bought)) =Count(S(bought)! NP(week) NP(IBM) VP(bought))Count(S(bought)) (7.4)But the addition of lexical items makes the statistics for this estimate very sparse: thecount for the denominator is likely to be relatively low, and the number of outcomes(possible lexicalized RHSs) is huge, meaning that the numerator is very likely to be zero.Predicting the whole lexicalized rule in one go is too big a step.One way to overcome these sparse data problems is to break down the generation of166

the RHS of each rule into a sequence of smaller steps, such that:1. The steps are small enough for the parameter estimation problem to be tractable (pro-viding that smoothing techniques are used to mitigate remaining sparse data prob-lems).2. The independence assumptions made are linguistically plausible. Model 1 uses a de-composition where parameters corresponding to lexical dependencies are a naturalresult, and also incorporates a preference for right-branching structures through con-ditioning on \distance"; Model 2 extends the decomposition to include a step wheresubcategorization frames are chosen probabilistically; Model 3 handles wh-movementby adding parameters corresponding to slash categories being passed from the parentof the rule to one of its children, or being discharged as a trace.

167

7.2 Model 17.2.1 The Basic ModelThis section describes how the generation of the RHS of rule is broken down into a sequenceof smaller steps in model 1. The �rst thing to note is that each rule in a lexicalized PCFGhas the form3: P (h)! Ln(ln):::L1(l1)H(h)R1(r1):::Rm(rm) (7.5)H is the head-child of the phrase, which inherits the head-word h from its parent P .L1:::Ln and R1:::Rm are left and right modi�ers of H. Either n or m may be zero,and n = m = 0 for unary rules. Figure 7.2 shows a tree which will be used as anexample throughout this chapter. We will extend the left and right sequences to include aterminating STOP symbol, allowing a Markov process to model the left and right sequences.Thus Ln+1 = Rm+1 = STOP. (See section 2.4 for a discussion of the use of Markov modelsfor probabilities over sequences.)For example, in S(bought,VBD) ! NP(week,NN) NP(IBM,NNP) VP(bought,VBD):n = 2 m = 0 P = SH = VP L1 = NP L2 = NPL3 = STOP R1 = STOP h = hbought, VBDil1 = hIBM, NNPi l2 = hweek, NNiThe probability of a rule can be rewritten (exactly) using the chain rule of probabilities:P(Ln+1(ln+1):::L1(l1)H(h)R1(r1):::Rm+1(rm+1) j P (h)) =Ph(H j P (h))�Yi=1:::n+1Pl(Li(li) j L1(l1):::Li�1(li�1); P (h);H) �Yj=1:::m+1Pr(Rj(rj) j L1(l1):::Ln+1(ln+1); R1(r1):::Rj�1(rj�1); P (h);H) (7.6)(the subscripts h, l and r are used to denote the head, left modi�er and right modi�erparameters respectively).3With the exception of the top rule in the tree, which has the form TOP ! H(h).168

Next, we make the assumption that the modi�ers are generated independently of eachother, Pl(Li(li) j L1(l1):::Li�1(li�1); P (h);H) = Pl(Li(li) j P (h);H)(7.7)Pr(Rj(rj) j L1(l1):::Ln+1(ln+1); R1(r1):::Rj�1(rj�1); P (h);H) = Pr(Rj(rj) j P (h);H)(7.8)In summary, the generation of the RHS of a rule such as (7.5), given the LHS, hasbeen decomposed into three steps4:1. Generate the head constituent label of the phrase, with probability PH(H j P; h).2. Generate modi�ers to the left of the head with probabilityQi=1::n+1PL(Li(li)jP; h;H),where Ln+1(ln+1) = STOP. The STOP symbol is added to the vocabulary of non-terminals, and the model stops generating left modi�ers when it is generated.3. Generate modi�ers to the right of the head with probabilityQi=1::m+1 PR(Ri(ri)jP; h;H).Rm+1(rm+1) is de�ned as STOP.For example, the probability of the rule S(bought) -> NP(week) NP(IBM) VP(bought)would be estimated asPh(VP j S,bought)�Pl(NP(IBM) j S,VP,bought)�Pl(NP(week) j S,VP,bought)�Pl(STOP j S,VP,bought)�Pr(STOP j S,VP,bought)
7.2.2 History-Based ModelsThe next section describes the addition of distance to the model, but �rst we extend themodel to be \history-based", an extension that the distance model uses. ([Black et al. 92b]introduced history-based models for parsing; section 2.7 discusses these models.) Equa-tions 7.7 and 7.8 made the independence assumption that each modi�er is generated inde-pendently of the others. In general, though, each modi�er could depend on any function4An exception is the �rst rule in the tree, TOP ! H(h), which has probability PTOP (H;hjTOP)169

TOPS(bought)???? NP(IBM)NNPIBM VP(bought)VBbought NP(Lotus)NNPLotusFigure 7.3: A partially completed tree derived depth-�rst. ???? marks the position of thenext modi�er to be generated | it could be a Non-terminal/head-word/head-tag triple,or the STOP symbol. The distribution over possible symbols in this position could beconditioned on any previously generated structure, i.e., any structure appearing in the�gure.� of the previous modi�ers, head/parent category and head word.Pl(Li(li) j L1(l1):::Li�1(li�1); P (h);H) =Pl(Li(li) j �(L1(l1):::Li�1(li�1); P (h);H)) (7.9)Pr(Rj(rj) j L1(l1):::Ln+1(ln+1); R1(r1):::Rj�1(rj�1); P (h);H) =Pr(Rj(rj) j �(L1(l1):::Ln+1(ln+1); R1(r1):::Rj�1(rj�1); P (h);H)) (7.10)In equations 7.7 and 7.8, � was chosen to ignore everything but P , H and h.Furthermore, if the top down derivation order is fully speci�ed, then the probability ofgenerating a modi�er can be conditioned on any of the structure that has been previouslygenerated. The remainder of this chapter assumes that the derivation order is depth-�rst| that is, each modi�er recursively generates the sub-tree below it before the next modi�eris generated. Figure 7.3 gives an example that illustrates this.
170

7.2.3 Adding Distance to the ModelThe models in Chapter 6 showed that the distance between words standing in head-modi�errelationships was important, in particular that it is important to capture a preferencefor right-branching structures (which almost translates into a preference for dependenciesbetween adjacent words), and a preference for dependencies not to cross a verb.Thus far the model has assumed that the modi�ers are generated independently of eachother (equations 7.7 and 7.8). Distance can be incorporated into the model by increasingthe amount of dependence between the modi�ers. If the derivation order is �xed to bedepth-�rst, as in the general case of history-based models discussed in the preceding section,the model can condition on any structure below the preceding modi�ers.For the moment we exploit this by making the approximationsPl(Li(li) jH;P; h; L1(l1):::Li�1(li�1)) = Pl(Li(li) jH;P; h; distancel(i� 1))(7.11)Pr(Ri(ri) jH;P; h;R1(r1):::Ri�1(ri�1)) = Pr(Ri(ri) jH;P; h; distancer(i� 1))(7.12)where distancel and distancer are functions of the surface string below the previous mod-i�ers. (see �gure 7.4). The distance measure is similar to that in Chapter 6, a vector withthe following 2 elements: (1) is the string of zero length? (Allowing the model to learn apreference for right-branching structures); (2) does the string contain a verb? (Allowingthe model to learn a preference for modi�cation of the most recent verb).5 See section3.3.7 for motivation for the distance measure; see section 8.1 for further discussion of thedistance measure within the models of this chapter.5In the models described in [Collins 97], there was a third question concerning punctuation: (3) Doesthe string contain 0, 1, 2 or > 2 commas? (where a comma is anything tagged as \," or \:"). The modeldescribed in this chapter has a cleaner incorporation of punctuation into the generative process, as describedin section 7.5.3.
171

h

P(h)

H(h) R1(r1) R2(r2) R3(r3)

distanceFigure 7.4: The next child, R3(r3), is generated with probabilityP(R3(r3) j P;H; h; distancer(2)). The distance is a function of the surface stringbelow previous modi�ers R1 and R2. In principle the model could condition on anystructure dominated by H, R1 or R2 (or, for that matter, on any structure previouslygenerated elsewhere in the tree).7.3 Model 2: The complement/adjunct distinction and sub-categorizationThe tree in �gure 7.2 illustrates the importance of the complement/adjunct distinction.It would be useful to identify \IBM" as a subject, and \Last week" as an adjunct (tem-poral modi�er), but this distinction is not made in the tree, as both NPs are in the sameposition6 (sisters to a VP under an S node). From here on we will identify complements7by attaching a \-C" su�x to non-terminals. Figure 7.5 shows the tree in �gure 7.2 withadded complement markings. TOPS(bought)NP(week)Last week NP-C(IBM)IBM VP(bought)VBDbought NP-C(Lotus)LotusFigure 7.5: A tree with the \-C" su�x used to identify complements. \IBM" and \Lotus"are in subject and object position respectively. \Last week" is an adjunct.A post-processing stage could add this detail to the parser output, but we give tworeasons for making the distinction while parsing:6Except \IBM" is closer to the VP, but note that \IBM" is also the subject in \IBM last week boughtLotus".7We use the term complement in a broad sense that includes both complements and speci�ers under theterminology of Government and Binding. 172

1. Identifying complements is complex enough to warrant a probabilistic treatment. Lex-ical information is needed | for example, knowledge that \week" is likely to be atemporal modi�er. Knowledge about subcategorization preferences | for examplethat a verb takes exactly one subject | is also required. (For example, \week" cansometimes be a subject, as in Last week was a good one, so the model must balancethe preference for having a subject against the relative improbability of \week" beingthe head-word of a subject.)These problems are not restricted to NPs, compare \The spokeswoman said (SBAR thatthe asbestos was dangerous)" vs. \Bonds beat short-term investments (SBAR becausethe market is down)", where an SBAR headed by \that" is a complement, but an SBARheaded by \because" is an adjunct.2. Making the complement/adjunct distinction while parsing may help parsing accuracy.The assumption that complements are generated independently of each other oftenleads to incorrect parses. See �gure 7.6 for further explanation.1(a) Incorrect 1(b) CorrectSNP-CDreyfus NP-Cthe best fund VPwas ADJPlow
SNP-CNPDreyfus NPthe best fund VPwas ADJPlow2(a) Incorrect 2(b) CorrectSNP-CThe issue VPwas NP-Ca bill VP-Cfunding NP-CCongress

SNP-CThe issue VPwas NP-CNPa bill VPfunding NP-CCongressFigure 7.6: Two examples where the assumption that modi�ers are generated indepen-dently of each other leads to errors. In (1) the probability of generating both \Drey-fus" and \fund" as subjects, P(NP-C(Dreyfus) j S,VP,was) � P(NP-C(fund) j S,VP,was)is unreasonably high. (2) is similar: P(NP-C(bill),VP-C(funding) j VP,VB,was) =P(NP-C(bill) j VP,VB,was) � P(VP-C(funding) j VP,VB,was) is a bad independence as-sumption. 173

Identifying Complements and Adjuncts in the Penn TreebankWe add the \-C" su�x to all non-terminals in training data that satisfy the followingconditions:1. The non-terminal must be: (1) an NP, SBAR, or S whose parent is an S; (2) an NP,SBAR, S, or VP whose parent is a VP; or (3) an S whose parent is an SBAR.2. The non-terminal must not have one of the following semantic tags: ADV, VOC, BNF,DIR, EXT, LOC, MNR, TMP, CLR or PRP. See [Marcus et al. 94] for an explanation ofwhat these tags signify. For example, the NP \Last week" in �gure 7.2 would havethe TMP (temporal) tag; and the SBAR in \(SBAR because the market is down)", wouldhave the ADV (adverbial) tag.In addition, the �rst child following the head of a prepositional phrase is marked as acomplement.Probabilities over Subcategorization FramesModel 1 could be retrained on training data with the enhanced set of non-terminals, and itmight learn the lexical properties which distinguish complements and adjuncts (\IBM" vs\week", or \that" vs. \because"). However, it would still su�er from the bad independenceassumptions illustrated in �gure 7.6. To solve these kinds of problems, the generativeprocess is extended to include a probabilistic choice of left and right subcategorizationframes:1. Choose a head H with probability PH(H j P; h).2. Choose left and right subcat frames, LC and RC, with probabilities Plc(LC j P;H; h)and Prc(RC j P;H; h). Each subcat frame is a multiset8 specifying the complementsthat the head requires in its left or right modi�ers.3. Generate the left and right modi�ers with probabilities Pl(Li; li jH;P; h; distancel(i�1); LC) and Pr(Ri; ri jH;P; h; distancer(i� 1); RC) respectively. Thus the subcat re-quirements are added to the conditioning context. As complements are generated theyare removed from the appropriate subcat multiset. Most importantly, the probability8A multiset, or bag, is a set which may contain duplicate non-terminal labels.174

of generating the STOP symbol will be 0 when the subcat frame is non-empty, and theprobability of generating a complement will be 0 when it is not in the subcat frame;thus all and only the required complements will be generated.The probability of the phrase S(bought) -> NP(week) NP-C(IBM) VP(bought) is now:Ph(VP j S,bought)�Plc(fNP-Cg j S,VP,bought)�Prc(fg j S,VP,bought)�Pl(NP-C(IBM) j S,VP,bought; fNP-Cg)�Pl(NP(week) j S,VP,bought; fg) �Pl(STOP j S,VP,bought; fg) �Pr(STOP j S,VP,bought; fg)Here the head initially decides to take a single NP-C (subject) to its left, and no com-plements to its right. NP-C(IBM) is immediately generated as the required subject, andNP-C is removed from LC, leaving it empty when the next modi�er, NP(week) is gen-erated. The incorrect structures in �gure 7.6 should now have low probability becausePlc(fNP-C,NP-Cg j S,VP,bought) and Prc(fNP-C,VP-Cg j VP,VB,was) are small.7.4 Model 3: Traces and Wh-MovementAnother obstacle to extracting predicate-argument structure from parse trees is wh-movement.This section describes a probabilistic treatment of extraction from relative clauses. Nounphrases are most often extracted from subject position, object position, or from withinPPs:Example 1. The store (SBAR that TRACE bought Lotus)Example 2. The store (SBAR that IBM bought TRACE)Example 3. The store (SBAR that IBM bought Lotus from TRACE)It might be possible to write rule-based patterns that identify traces in a parse tree.However, we argue again that this task is best integrated into the parser: the task iscomplex enough to warrant a probabilistic treatment, and integration may help parsingaccuracy. A couple of complexities are that modi�cation by an SBAR does not alwaysinvolve extraction (e.g., \the fact (SBAR that besoboru is played with a ball and a bat)"),175

NP(store)NP(store)The store SBAR(that)(+gap)WHNP(that)WDTthat S(bought)(+gap)NP-C(IBM)IBM VP(bought)(+gap)VBDbought TRACE NP(week)last week(1) NP -> NP SBAR(+gap)(2) SBAR(+gap) -> WHNP S-C(+gap)(3) S(+gap) -> NP-C VP(+gap)(4) VP(+gap) -> VB TRACE NPFigure 7.7: A +gap feature can be added to non-terminals to describe wh-movement. Thetop-level NP initially generates an SBAR modi�er, but speci�es that it must contain an NPtrace by adding the +gap feature. The gap is then passed down through the tree, until itis discharged as a TRACE complement to the right of bought.and it is not uncommon for extraction to occur through several constituents, (e.g., \Thechanges (SBAR that he said the government was prepared to make TRACE)").The second reason for an integrated treatment of traces is to improve the parameter-ization of the model. In particular, the subcategorization probabilities are smeared byextraction. In examples 1, 2 and 3 above `bought' is a transitive verb; but without knowl-edge of traces, example 2 in training data will contribute to the probability of `bought'being an intransitive verb.Formalisms similar to GPSG [Gazdar et al. 95] handle wh-movement by adding a gapfeature to each non-terminal in the tree, and propagating gaps through the tree untilthey are �nally discharged as a trace complement (see �gure 7.7). In extraction cases thePenn treebank annotation co-indexes a TRACE with the WHNP head of the SBAR, so it is176

straightforward to add this information to trees in training data.Given that the LHS of the rule has a gap, there are 3 ways that the gap can be passeddown to the RHS:Head The gap is passed to the head of the phrase, as in rule (3) in �gure 7.7.Left, Right The gap is passed on recursively to one of the left or right modi�ers of thehead, or is discharged as a TRACE argument to the left/right of the head. In rule (2)it is passed on to a right modi�er, the S complement. In rule (4) a TRACE is generatedto the right of the head VB.We specify a parameter PG(G j P; h;H) where G is either Head, Left or Right. Thegenerative process is extended to choose between these cases after generating the head ofthe phrase. The rest of the phrase is then generated in di�erent ways depending on howthe gap is propagated: In the Head case the left and right modi�ers are generated asnormal. In the Left, Right cases a gap requirement is added to either the left or rightSUBCAT variable. This requirement is ful�lled (and removed from the subcat list) whena trace or a modi�er non-terminal which has the +gap feature is generated. For example,Rule (2), SBAR(that)(+gap) -> WHNP(that) S-C(bought)(+gap), has probabilityPh(WHNP j SBAR,that)�PG(Right j SBAR,WHNP,that)� PLC(fg j SBAR,WHNP,that)�PRC(fS-Cg j SBAR,WHNP,that)�PR(S-C(bought)(+gap) j SBAR,WHNP,that; fS-C,+gapg)�PR(STOP j SBAR,WHNP,that; fg)�PL(STOP j SBAR,WHNP,that; fg)Rule (4), VP(bought)(+gap) -> VB(bought) TRACE NP(week), has probabilityPh(VB j VP,bought)�PG(Right j VP,bought,VB)�PLC(fg j VP,bought,VB)�PRC(fNP-Cg j VP,bought,VB)�PR(TRACE j VP,bought,VB; fNP-C, +gapg)�PR(NP(week) j VP,bought,VB; fg)�PL(STOP j VP,bought,VB; fg)�PR(STOP j VP,bought,VB; fg)In rule (2) Right is chosen, so the +gap requirement is added to RC. Generation ofS-C(bought)(+gap) ful�lls both the S-C and +gap requirements in RC. In rule (4)Right is chosen again. Note that generation of TRACE satis�es both the NP-C and +gapsubcat requirements. 177

(a) NPBPierre Vinken (b) NPBADJPNew York-based Loews Corp. (c) NPBNPBtoday 's New England JournalFigure 7.8: Three examples of structures with baseNPs7.5 Special CasesSections 7.2 to 7.4 described the basic framework for the parsing models in this chapter.This section describes a handful of special cases: modi�cations to the basic models thatare linguistically motivated, and give an increase in accuracy.7.5.1 Non-recursive NPsWe de�ne non-recursive NPs (from here on referred to as baseNPs, and labeled \NPB"rather than \NP") as NPs that do not directly dominate an NP themselves, unless that NPis a possessive NP (i.e. it directly dominates a POS-tag \POS"). Figure 7.8 gives someexamples. BaseNPs deserve special treatment for three reasons:� The boundaries of baseNPs are often strongly marked: particularly the start points ofbaseNPs, which are often marked with a determiner or another distinctive item suchas an adjective. Because of this, the probability of generating the STOP symbol shouldbe greatly increased when the previous modi�er is, for example, a determiner. Asthey stand, the independence assumptions in the models lose this information. Theprobability of NPB(dog) -> DT(the) NN(dog) would be estimated asPh(NN j NPB,dog)�Pl(DT(the) j NPB,NN,dog)�Pl(STOP j NPB,NN,dog)�Pr(STOP j NPB,NN,dog)In making the independence assumptionPl(STOP j DT(the); NPB,NN,dog) = Pl(STOP j NPB,NN,dog)the model will fail to learn that the STOP symbol is very likely to follow a determiner.As a result, the model will assign unreasonably high probability to NPs such as [NPyesterday the dog] in sentences such as [yesterday the dog barked].178

� The annotation standard in the treebank leaves the internal structure of baseNPsunderspeci�ed. For example, both pet food volume (where pet modi�es food and foodmodi�es volume) and vanilla ice cream (where both vanilla and ice modify cream)would have the structure NPB -> NN NN NN. Because of this, there is no reason tobelieve that modi�ers within NPBs are dependent on the head rather than the previousmodi�er. In fact, if it so happened that a majority of phrases were like pet food volume,then conditioning on the previous modi�er rather than the head would be preferable.� In general it is important (in particular for the distance measure to be e�ective) tohave di�erent non-terminal labels for what are e�ectively di�erent X-bar levels. Seesection 8.2.2 for further discussion.For these reasons the following modi�cations were made to the models:� The non-terminal label for baseNPs is changed from NP to NPB. For consistency, when-ever an NP is seen with no pre or post modi�ers, an NPB level is added. For example,[S [NP the dog] [VP barks]] would be transformed to [S [NP [NPB the dog]] [VP barks]]. These \extra" NPBs are removed before scoring the output of theparser against the treebank.� The independence assumptions are di�erent when the parent non-terminal is an NPB.Speci�cally, equations 7.11 and 7.12 are modi�ed to bePl(Li(li) jH;P; h; L1(l1):::Li�1(li�1)) = Pl(Li(li) j P;Li�1(li�1)) (7.13)Pr(Ri(ri) jH;P; h;R1(r1):::Ri�1(ri�1)) = Pr(Ri(ri) j P;Ri�1(ri�1)) (7.14)The modi�er and previous-modi�er non-terminals are always adjacent, so the distancevariable is constant and is omitted. For the purposes of this model, L0(l0) and R0(r0)are de�ned to be H(h). The probability of the previous example is nowPh(NN j NPB,dog)�Pl(DT(the) j NPB,NN,dog)�Pl(STOP j NPB,DT,the)�Pr(STOP j NPB,NN,dog)Presumably Pl(STOP j NPB,DT,the) will be very close to 1.179

(a) XX CC X (b) NP(man)NP(man)NPBthe man CCand NP(dog)NPBhis dog(c) VP(likes)VP(likes)likes ice cream CCand VP(hates)hates bananasFigure 7.9: (a) the generic way of annotating coordination in the treebank. (b) and (c)show speci�c examples (with baseNPs added as described in section 7.5.1). Note that the�rst item of the conjunct is taken as the head of the phrase.7.5.2 CoordinationCoordination constructions are another example where the independence assumptions inthe basic models fail badly (at least given the current annotation method in the treebank).Figure 7.9 shows how coordination is annotated in the treebank.9 To use an example toillustrate the problems, take the rule NP(man) -> NP(man) CC(and) NP(dog), which hasprobability Ph(NP j NP,man)�Pl(STOP j NP,NP,man)�Pr(CC(and) j NP,NP,man)�Pr(NP(dog) j NP,NP,man)�Pr(STOP j NP,NP,man)The independence assumptions mean that the model fails to learn that there is alwaysexactly one phrase following the coordinator (CC). The basic probability models will givemuch too high probability to unlikely phrases such as NP -> NP CC or NP -> NP CC NP NP.For this reason we alter the generative process to allow generation of both the coordinatorand the following phrase in one step; instead of just generating a non-terminal at eachstep, a non-terminal and a binary-valued coord ag are generated. coord=1 if there is a9See Appendix A for a description of how the head rules treat phrases involving coordination.180

coordination relationship. For the preceding example this would give probabilityPh(NP j NP,man)�Pl(STOP j NP,NP,man)�Pr(NP(dog), coord=1 j NP,NP,man) (7.15)Pr(STOP j NP,NP,man)�Pcc(CC,and j NP,NP,NP,man,dog)There is now a new type of parameter, Pcc, for the generation of the coordinator word andPOS-tag. The generation of coord=1 along with NP(dog) in the example implicitly requiresgeneration of a coordinator tag/word pair through the Pcc parameter. The generation ofthis tag/word pair is conditioned on the two words in the coordination dependency (manand dog in the example), and the label on their relationship (NP,NP,NP in the example,representing NP coordination).The coord ag is implicitly 0 when normal non-terminals are generated, for examplethe phrase S(bought) -> NP(week) NP(IBM) VP(bought) now has probabilityPh(VP j S,bought)�Pl(NP(IBM),coord=0 j S,VP,bought)�Pl(NP(week),coord=0 j S,VP,bought)�Pl(STOP j S,VP,bought)�Pr(STOP j S,VP,bought) (7.16)
7.5.3 PunctuationThis section describes our treatment of \punctuation" in the model, where \punctuation" isused to refer to words tagged as a comma or colon. Previous work | the models describedin chapter 6 and the earlier version of these generative models described in [Collins 97] |conditioned on punctuation as surface features of the string, treating it quite di�erentlyfrom lexical items. In particular, the model in [Collins 97] failed to generate punctuation,a de�ciency of the model. This section describes how punctuation is integrated into thegenerative models.Our �rst step, for consistency, is to raise punctuation as high in the parse trees as pos-sible. Punctuation at the beginning or end of sentences is removed from the training/test181

S
NPNPBPierre Vinken , ADJP61 years old , VPjoined NPNPBthe board

:
S

NPNPBPierre Vinken , ADJP61 years old
, VPjoined NPNPBthe boardFigure 7.10: A parse tree before and after the punctuation transformationsdata altogether. All punctuation items apart from those tagged as comma or colon (i.e.items tagged \ " or .) are removed altogether. These transformations mean that punctu-ation always appears between two non-terminals, as opposed to appearing at the end of aphrase. See �gure 7.10 for an example.Punctuation is then treated in a very similar way to coordination: our intuition is thatthere is a strong dependency between the punctuation mark and the following phrase.Punctuation is therefore generated with the following phrase through a punc ag whichis similar to the coord ag (a binary-valued feature equal to 1 if a punctuation mark isgenerated with the following phrase).

182

Under this model, NP(Vinken) -> NPB(Vinken) ,(,) ADJP(old) would have proba-bility Ph(NPB j NP,Vinken)�Pl(STOP j NP,NPB,Vinken)�Pr(ADJP(old),coord=0,punc=1 j NP,NPB,Vinken)�Pr(STOP j NP,NPB,bought)�Pp(, , j NP,NPB,ADJP,Pierre,old) (7.17)Pp is a new parameter type for generation of punctuation tag/word pairs. The generationof punc=1 along with ADJP(old) in the example implicitly requires generation of a punc-tuation tag/word pair through the Pp parameter. The generation of this tag/word pairis conditioned on the two words in the punctuation dependency (Pierre and old in theexample), and the label on their relationship (NP,NPB,ADJP in the example.)7.5.4 Sentences with empty (PRO) subjectsSentences in the treebank occur frequently with PRO subjects which may or may not becontrolled: as the treebank annotation currently stands the non-terminal is S whether ornot a sentence has an overt subject. This is a problem for the subcategorization probabili-ties in models 2 and 3 | the probability of having zero subjects, Plc(fg j S, VP, verb) willbe fairly high because of this. In addition, sentences with and without subjects appear inquite di�erent syntactic environments. For these reasons we modify the non-terminal forsentences without subjects to be SG. See �gure 7.11. The resulting model has a cleaner divi-sion of subcategorization: Plc(fNP-Cg j S, VP, verb) � 1 and Plc(fNP-Cg j SG, VP, verb) =0. The model will learn probabilistically the environments in which S and SG are likely toappear.7.5.5 The Punctuation RuleThe hard constraint concerning punctuation, originally described in section 6.2.7, is alsoused in the models of this chapter. It would be preferable to develop a probabilisticanalogue of this rule, but we leave this to future research.183

(a) SSNP-SBJ-NONE- VPying planes VPis dangerous
(b) SSVPying planes VPis dangerous

(c) SSGVPying planes VPis dangerousFigure 7.11: (a) the treebank annotates sentences with empty subjects with an empty-NONE- element under subject position; (b) in training (and for evaluation), this nullelement is removed; (c) in models 2 and 3 sentences without subjects are changed to havea non-terminal SG.

184

Back-o� PH(H j :::) PG(G j :::) PL1(Li(lti); c; p j :::) PL2(lwi j :::)Level PLC(LC j :::) PR1(Ri(rti); c; p j :::) PR2(rwi j :::)PRC(RC j :::)1 P, w, t P, H, w, t P, H, w, t, �, LC Li, lti, c, p, P, H, w, t, �, LC2 P, t P, H, t P, H, t, �, LC Li, lti, c, p, P, H, t, �, LC3 P P, H P, H, �, LC ltiTable 7.1: The conditioning variables for each level of back-o�. For example, PH estimationinterpolates e1 = PH(H jP;w; t), e2 = PH(H jP; t), and e3 = PH(H jP). � is the distancemeasure.7.6 Practical Issues7.6.1 Parameter EstimationTable 7.1 shows the various levels of back-o� for each type of parameter in the model.Note that we decompose PL(Li(lwi; lti); c; p j P;H;w; t;�; LC) (where lwi and lti are theword and POS tag generated with non-terminal Li, c and p are the coord and punc agsassociated with the non-terminal, � is the distance measure) into the productPL1(Li(lti); c; p j P;H;w; t;�; LC) �PL2(lwi j Li; lti; c; p; P;H;w; t;�; LC)These two probabilities are then smoothed separately. ([Eisner 96b] originally used POStags to smooth a generative model in this way.) In each case the �nal estimate ise = �1e1 + (1� �1)(�2e2 + (1� �2)e3)where e1, e2 and e3 are maximum likelihood estimates with the context at levels 1, 2 and3 in the table, and �1, �2 and �3 are smoothing parameters where 0 � �i � 1. We use thesmoothing method described in section 2.9.4: if the more speci�c estimate is nifi | thatis, fi is the value of the denominator count | and the number of unique outcomes in thedistribution is ui, then �i = fifi + 5ui (7.18)The constant 5 was optimized on the development set, section 0 of the treebank (in practiceit was found that any value in the range 2{5 gave a very similar level of performance).185

7.6.2 Dealing with Unknown WordsAll words occurring less than 5 times in training data, and words in test data which havenever been seen in training, are replaced with the \UNKNOWN" token. This allows themodel to robustly handle the statistics for rare or new words.7.6.3 Part of Speech TaggingPart of speech tags are generated along with the words in the models, so tagging is fullyintegrated. In e�ect, all possible tag sequences are considered. When parsing, the POStags allowed for each word are limited to those which have been seen in training data forthat word (any word/tag pairs not seen in training would give an estimate of zero in thePL2 and PR2 distributions). For unknown words, the output from the tagger described in[Ratnaparkhi 96] is used as the single possible tag for that word. (A method such as theunknown-word model of [Weischedel et al. 93] | which allows multiple possible tags forunknown words, probabilistically generating the word-features of unknown words | wouldalmost certainly be preferable, in that it would fully integrate POS tagging for unknownwords into the parsing model.)7.7 The Parsing AlgorithmA chart parser is used to �nd the maximum probability tree for each sentence. Figure 7.12shows four basic operations that can be used to create new edges from existing edges inthe chart; �gure 7.13 sketches the full algorithm, with calls to these four operations. Thealgorithm is described in detail in Appendix B (Model 1) and Appendix C (Model 2).7.7.1 An Analysis of Parsing ComplexityAppendix D derives upper bounds for the parsing complexity of the algorithm in �gure 7.13.Note, however, that the beam search method means that the parsing algorithm is almostcertainly more e�cient in practice. (In fact, our feeling is that the running time of thealgorithm depends much more on the e�ectiveness of the pruning method, rather than theasymptotic complexity of the algorithm. [Caraballo and Charniak 98, Goodman 97b] both186

discuss strategies for pruning the search space of a probabilistic parser.) The complexityanalysis assumes the following de�nitions:� n is the number of words in a sentence.� N is the number of non-terminals in the grammar, excluding POS tags.� T is the maximum number of POS tags for any word in the vocabulary.� D is the number of values for the left and right distance variables.� �D is the number of values regarding distance that need to be stored for edges thathave their STOP probabilities (for the models of this chapter, �D = 2; a ag specifyingwhether or not an edge contains a verb is all that is needed).� L is the number of distinct left-subcategorization states seen in conditioning contextsin training data.� R is the number of distinct right-subcategorization states seen in conditioning contextsin training data.With these de�nitions, the complexity of the algorithm is O(n5T 2N3D2 �DLR).Appendix D also shows that a tighter bound can be derived if we assume the followingde�nition of the set X :X = fhX,Y,L,Ri j hParent = X, Head-label = Y, left-subcat = Li andhParent = X, Head-label = Y, right-subcat = Riare both seen as conditioning contexts in training datag(7.19)In the worst case, X = N2LR, but in practice X may be much smaller than N2LR. AnO(N2LR) factor within O(n5T 2N3D2 �DLR) is then reduced to O(jX j); the overall parsingcomplexity is O(n5jX jT 2ND2 �D).
187

(a) OUT = add single(edge E,label P)H(+). . . .) P(-)H(+). . . .Prob(E) = X Prob(OUT) = X �PH(H j P; :::)
(b) OUT = join 2 edges follow(edge E1,edge E2)P(-).. H R1 .. + Ri(+)) P(-).. H R1 .. RiProb(E1) = X Prob(E2) = Y Prob(OUT) = X � Y � PR(Ri(ri) j P;H; :::)
(c) OUT = join 2 edges precede(edge E1,edge E2)Li(+) + P(-).. L1 H ..) P(-)Li .. L1 H ..Prob(E1) = X Prob(E2) = Y Prob(OUT) = X � Y � PL(Li(li) j P;H; :::)
(d) OUT = add stops(edge E)P(-). . . .) P(+). . . .Prob(E) = X Prob(OUT) = X �PL(STOP j ::::)�PR(STOP j ::::)Figure 7.12: Four operations where a new constituent, OUT, is formed from either twoexisting edges, E1 and E2, or a single edge, E. Figure 7.13 gives pseudo-code that makescalls to these four operations. (+) means a constituent is complete (i.e. it includes thestop probabilities), (�) means a constituent is incomplete. In (a), a new constituent isstarted by projecting a complete rule upwards; in (b) and (c), a constituent takes either aright or left modi�er; in (d), STOP probabilities are added to complete the constituent.188

edge parse(){ //initialize adds edges for all word/tag pairs in the sentence, and//adds their projections through add_singles and add_stops,//giving the `base' of the bottom-up parseinitialize();//assume n is the number of words in the sentencefor span = 2 to nfor start = 1 to n-span+1{ end = start + span -1;//this step combines pairs of edgesfor split = start to end-1{ foreach edge e1 in chart[start,split] such that e1.stop == FALSEforeach edge e2 in chart[split+1,end] such that e2.stop == TRUEjoin_2_edges_follow(e1,e2);foreach edge e1 in chart[start,split] such that e1.stop == TRUEforeach edge e2 in chart[split+1,end] such that e2.stop == FALSEjoin_2_edges_precede(e1,e2);}//Allow at most MAXU consecutive unary rulesfor i = 1 to MAXU{ //this step adds stop probabilitiesforeach edge e in chart[start,end] such that e.stop == FALSEadd_stops(e);//this step adds unary projections upwardsforeach edge e in chart[start,end] such that e.stop == TRUEforeach non-terminal P in the grammaradd_single(e,P);}}//assume TOP is the start symbol (must be at the top of the tree)X = edge with highest probability spanning words 1...n, with label TOP;return X;}Figure 7.13: A sketch of the parsing algorithm. The functions join 2 edges follow,join 2 edges precede, add single and add stops are illustrated in �gure 7.12.189

MODEL � 40 Words (2245 sentences)LR LP CBs 0 CBs � 2 CBs[Magerman 95] 84.6% 84.9% 1.26 56.6% 81.4%Chapter 6 85.8% 86.3% 1.14 59.9% 83.6%[Goodman 97] 84.8% 85.3% 1.21 57.6% 81.4%[Charniak 97] 87.5% 87.4% 1.00 62.1% 86.1%Model 1 87.9% 88.2% 0.95 65.8% 86.3%Model 2 88.5% 88.7% 0.92 66.7% 87.1%Model 3 88.6% 88.7% 0.90 67.1% 87.4%MODEL � 100 Words (2416 sentences)LR LP CBs 0 CBs � 2 CBs[Magerman 95] 84.0% 84.3% 1.46 54.0% 78.8%Chapter 6 85.3% 85.7% 1.32 57.2% 80.8%[Charniak 97] 86.7% 86.6% 1.20 59.5% 83.2%[Ratnaparkhi 97] 86.3% 87.5% 1.21 60.2% |Model 1 87.5% 87.7% 1.09 63.4% 84.1%Model 2 88.1% 88.3% 1.06 64.0% 85.1%Model 3 88.0% 88.3% 1.05 64.3% 85.4%Table 7.2: Results on Section 23 of the WSJ Treebank. LR/LP = labeled recall/precision.CBs is the average number of crossing brackets per sentence. 0 CBs, � 2 CBs are thepercentage of sentences with 0 or � 2 crossing brackets respectively. All the results inthis table are for models trained and tested on the same data, using the same evaluationmetric. (Note that these results show a slight improvement over those in [Collins 97]; themain model changes were the improved treatment of punctuation (section 7.5.3) togetherwith the addition of the Pp and Pcc parameters.)7.8 ResultsThe parser was trained on sections 02 - 21 of the Wall Street Journal portion of the PennTreebank [Marcus et al. 93] (approximately 40,000 sentences), and tested on section 23(2,416 sentences). We use the PARSEVAL measures [Black et al. 91] to compare perfor-mance:Labeled Precision = number of correct constituents in proposed parsenumber of constituents in proposed parseLabeled Recall = number of correct constituents in proposed parsenumber of constituents in treebank parseCrossing Brackets = number of constituents which violate constituent boundaries witha constituent in the treebank parse. 190

For a constituent to be `correct' it must span the same set of words (ignoring punctu-ation, i.e. all tokens tagged as commas, colons or quotes) and have the same label10 as aconstituent in the treebank parse. Table 7.2 shows the results for Models 1, 2 and 3.The precision/recall of the traces found by Model 3 was 93.8%/90.1% (out of 437 casesin section 23 of the treebank), where three criteria must be met for a trace to be \correct":(1) it must be an argument to the correct head-word; (2) it must be in the correct positionin relation to that head word (preceding or following); (3) it must be dominated by thecorrect non-terminal label. For example, in �gure 7.7 the trace is an argument to bought,which it follows, and it is dominated by a VP. Of the 437 cases, 341 were string-vacuousextraction from subject position, recovered with 96.3%/98.8% precision/recall; and 96 werelonger distance cases, recovered with 81.4%/59.4% precision/recall 11.7.8.1 A Closer look at the ResultsIn this section we look more closely at the parser, by evaluating its performance on speci�cconstituents or constructions. The intention is to get a better idea of the parser's strengthsand weaknesses. First, table 7.3 has a breakdown of precision and recall by constituenttype.A breakdown of accuracy by constituent type isn't all that informative though, as it failsto capture the idea of attachment accuracy. For this reason we also evaluate the parser'sprecision and recall in recovering dependencies between words: accuracy on di�erent kindsof attachments can then be investigated. A dependency is de�ned as a triple with thefollowing elements (see �gure 7.14 for an example tree and its associated dependencies):1) Relation A hParent, Head, Modifier, Directioni 4-tuple, where the four elementsare the parent, head and modi�er non-terminals involved in the dependency, and thedirection of the dependency (L for left, R for right). For example, hS, VP, NP-C, Liwould indicate a subject-verb dependency. In coordination cases there is a �fth element10[Magerman 95] collapses ADVP and PRT to the same label, for comparison we also removed this distinctionwhen calculating scores.11We exclude in�nitival relative clauses from these �gures, for example \I called a plumber TRACE to�x the sink" where `plumber' is co-indexed with the trace subject of the in�nitival. The algorithm scored41%/18% precision/recall on the 60 cases in section 23 | but in�nitival relatives are extremely di�culteven for human annotators to distinguish from purpose clauses (in this case, the in�nitival could be apurpose clause modifying `called') (Ann Taylor, p.c.)191

Proportion Count Label Recall Precision42.21 15146 NP 91.15 90.2619.78 7096 VP 91.02 91.1113.00 4665 S 91.21 90.9612.83 4603 PP 86.18 85.513.95 1419 SBAR 87.81 88.872.59 928 ADVP 82.97 86.521.63 584 ADJP 65.41 68.951.00 360 WHNP 95.00 98.840.92 331 QP 84.29 78.370.48 172 PRN 32.56 61.540.35 126 PRT 86.51 85.160.31 110 SINV 83.64 88.460.27 98 NX 12.24 66.670.25 88 WHADVP 95.45 97.670.08 29 NAC 48.28 63.640.08 28 FRAG 21.43 46.150.05 19 WHPP 100.00 100.000.04 16 UCP 25.00 28.570.04 16 CONJP 56.25 69.230.04 15 SQ 53.33 66.670.03 12 SBARQ 66.67 88.890.03 9 RRC 11.11 33.330.02 7 LST 57.14 100.000.01 3 X 0.00 |0.01 2 INTJ 0.00 |Table 7.3: Recall and precision for di�erent constituent types, for section 0 of the treebankwith model 2. Label is the non-terminal label; Proportion is the percentage of constituentsin the treebank section 0 that have this label; Count is the number of constituents thathave this label.
192

of the tuple, CC: hNP, NP, NP, R CCi would be an instance of NP coordination.In addition, the relation is \normalized" to some extent. First, all POS tags arereplaced with the token TAG: this is so that POS tagging errors do not lead to errors independencies12. Second, any complement markings on the parent or head non-terminalare removed. For example, hNP-C, NPB, PP, Ri is replaced by hNP, NPB, PP, Ri. Thisprevents parsing errors where a complement has been mistaken to be an adjunct (orvice versa) leading to more than one dependency error. (In �gure 7.14, if the NP theman was mistakenly identi�ed as an adjunct then without normalisation this wouldlead to two dependency errors: both the PP dependency and the verb-object relationwould be incorrect. With normalization, only the verb-object relation is incorrect.)2) Modi�er The index of the modi�er word in the sentence.3) Head The index of the head word in the sentence.Under this de�nition, gold-standard and parser-output trees can be converted to sets ofdependencies, and precision/recall can be calculated on these dependencies. Dependencyaccuracies are given for section 0 of the treebank in �gure 7.15. Tables 7.4 and 7.5 give abreakdown of the accuracies by dependency type.Tables 7.6 and 7.7 show the dependency accuracy for 8 sub-types of dependency, whichtogether account for 94% of all dependencies. These sub-types are:Complement to a verb: 93.76/92.96 recall/precision. This type includes any rela-tions of the form h S VP ** i where ** is any complement, or h VP TAG ** i where** is any complement except VP-C (i.e., auxiliary-verb|verb dependencies are ex-cluded). The most frequent verb complements, Subject-verb and Object-verb, arerecovered with over 95% and 92% precision/recall respectively.Other complements: 94.47/94.12 recall/precision. This type includes any depen-dencies where the modi�er is a complement, and the dependency does not fall into thecomplement to a verb type.PP Modi�cation: 82.29/81.51 recall/precision. Any dependency where the modi-�er is a PP.12The justi�cation for this is that there is an estimated 3% error rate in the hand-assigned POS tags inthe treebank [Ratnaparkhi 96], and we didn't want this noise to contribute to dependency errors.193

Coordination: 61.47/62.20 recall/precision.Modi�cation within baseNPs: 93.20/92.59 recall/precision. Any dependency wherethe parent is NPB.Modi�cation to NPs: 73.20/75.49 recall/precision. Any dependency where the par-ent is NP, the head is NPB, and the modi�er is not a PP.Sentential Head: 94.99/94.99 recall/precision. Dependency involving the head-wordof the entire sentence.Adjunct to a verb: 75.11/78.44 recall/precision. Any dependency where the par-ent is VP, the head is TAG, and the modi�er is not a PP; or where the parent is S,the head is VP, and the modi�er is not a PP.A conclusion to draw from these accuracies is that the parser is doing very well atrecovering the core structure of sentences: complements, sentential heads, and baseNPrelationships (NP chunks) are all recovered with over 90% accuracy. The main sources oferror are adjuncts. Coordination is especially di�cult, most likely because it often involvesa dependency between two content-words, leading to very sparse statistics.

194

TOPSNP-CNPBPRPI0
VPVBsaw1 NP-CNPBDTthe2 NNman3 PPINwith4 NP-CNPBDTthe5 NNtelescope6\Raw" Dependencies Normalized DependenciesRelation Modi�er Head Relation Modi�er HeadS VP NP-C L 0 1 S VP NP-C L 0 1TOP TOP S R 1 -1 TOP TOP S R 1 -1NPB NN DT L 2 3 NPB TAG TAG L 2 3VP VB NP-C R 3 1 VP TAG NP-C R 3 1NP-C NPB PP R 4 3 NP NPB PP R 4 3NPB NN DT L 5 6 NPB TAG TAG L 5 6PP IN NP-C R 6 4 PP TAG NP-C R 6 4Figure 7.14: A tree and its associated dependencies. Note that in \normalizing" depen-dencies, all POS tags are replaced with \TAG", and the NP-C parent in the third relationis replaced with NP.
195

Evaluation Precision RecallNo Labels 91.0% 90.9%No Complements 88.5% 88.5%All 88.3% 88.3%Figure 7.15: Dependency accuracy on Section 0 of the treebank with Model 2. No Labelsmeans that only the dependency needs to be correct, the relation may be wrong; NoComplements means all complement (-C) markings are stripped before comparing relations;All means complement markings are kept on the modifying non-terminal.
R CP P Count Relation Rec Prec1 29.65 29.65 11786 NPB TAG TAG L 94.60 93.462 40.55 10.90 4335 PP TAG NP-C R 94.72 94.043 48.72 8.17 3248 S VP NP-C L 95.75 95.114 54.03 5.31 2112 NP NPB PP R 84.99 84.355 59.30 5.27 2095 VP TAG NP-C R 92.41 92.156 64.18 4.88 1941 VP TAG VP-C R 97.42 97.987 68.71 4.53 1801 VP TAG PP R 83.62 81.148 73.13 4.42 1757 TOP TOP S R 96.36 96.859 74.53 1.40 558 VP TAG SBAR-C R 94.27 93.9310 75.83 1.30 518 QP TAG TAG R 86.49 86.6511 77.08 1.25 495 NP NPB NP R 74.34 75.7212 78.28 1.20 477 SBAR TAG S-C R 94.55 92.0413 79.48 1.20 476 NP NPB SBAR R 79.20 79.5414 80.40 0.92 367 VP TAG ADVP R 74.93 78.5715 81.30 0.90 358 NPB TAG NPB L 97.49 92.8216 82.18 0.88 349 VP TAG TAG R 90.54 93.4917 82.97 0.79 316 VP TAG SG-C R 92.41 88.2218 83.70 0.73 289 NP NP NP R CC 55.71 53.3119 84.42 0.72 287 S VP PP L 90.24 81.9620 85.14 0.72 286 SBAR WHNP SG-C R 90.56 90.5621 85.79 0.65 259 VP TAG ADJP R 83.78 80.3722 86.43 0.64 255 S VP ADVP L 90.98 84.6723 86.95 0.52 205 NP NPB VP R 77.56 72.6024 87.45 0.50 198 ADJP TAG TAG L 75.76 70.0925 87.93 0.48 189 NPB TAG TAG R 74.07 75.68Table 7.4: Accuracy of the 25 most frequent dependency types in section 0 of the treebank,as recovered by model 2. R = rank; CP = cumulative percentage; P = percentage; Rec =Recall; Prec = precision. 196

R CP P Count Relation Rec Prec26 88.40 0.47 187 VP TAG NP R 66.31 74.7027 88.85 0.45 180 VP TAG SBAR R 74.44 72.4328 89.29 0.44 174 VP VP VP R CC 74.14 72.4729 89.71 0.42 167 NPB TAG ADJP L 65.27 71.2430 90.11 0.40 159 VP TAG SG R 60.38 68.5731 90.49 0.38 150 VP TAG S-C R 74.67 78.3232 90.81 0.32 129 S S S R CC 72.09 69.9233 91.12 0.31 125 PP TAG SG-C R 94.40 89.3934 91.43 0.31 124 QP TAG TAG L 77.42 83.4835 91.72 0.29 115 S VP TAG L 86.96 90.9136 92.00 0.28 110 NPB TAG QP L 80.91 81.6537 92.27 0.27 106 SINV VP NP R 88.68 95.9238 92.53 0.26 104 S VP S-C L 93.27 78.8639 92.79 0.26 102 NP NP NP R 30.39 25.4140 93.02 0.23 90 ADJP TAG PP R 75.56 78.1641 93.24 0.22 89 TOP TOP SINV R 96.63 94.5142 93.45 0.21 85 ADVP TAG TAG L 74.12 73.2643 93.66 0.21 83 SBAR WHADVP S-C R 97.59 98.7844 93.86 0.20 81 S VP SBAR L 88.89 85.7145 94.06 0.20 79 VP TAG ADVP L 51.90 49.4046 94.24 0.18 73 SINV VP S L 95.89 92.1147 94.40 0.16 63 NP NPB SG R 88.89 81.1648 94.55 0.15 58 S VP PRN L 25.86 48.3949 94.70 0.15 58 NX TAG TAG R 10.34 75.0050 94.83 0.13 53 NP NPB PRN R 45.28 60.00Table 7.5: Accuracy of the 26-50'th most frequent dependency types in section 0 of thetreebank, as recovered by model 2. R = rank; CP = cumulative percentage; P = percent-age; Rec = Recall; Prec = precision
197

Type Sub-type Description Count Recall PrecisionComplement to a verb S VP NP-C L Subject 3248 95.75 95.11VP TAG NP-C R Object 2095 92.41 92.156495 = 16.3% of all cases VP TAG SBAR-C R 558 94.27 93.93VP TAG SG-C R 316 92.41 88.22VP TAG S-C R 150 74.67 78.32S VP S-C L 104 93.27 78.86S VP SG-C L 14 78.57 68.75...TOTAL 6495 93.76 92.96Other complements PP TAG NP-C R 4335 94.72 94.04VP TAG VP-C R 1941 97.42 97.987473 = 18.8% of all cases SBAR TAG S-C R 477 94.55 92.04SBAR WHNP SG-C R 286 90.56 90.56PP TAG SG-C R 125 94.40 89.39SBAR WHADVP S-C R 83 97.59 98.78PP TAG PP-C R 51 84.31 70.49SBAR WHNP S-C R 42 66.67 84.85SBAR TAG SG-C R 23 69.57 69.57PP TAG S-C R 18 38.89 63.64SBAR WHPP S-C R 16 100.00 100.00S ADJP NP-C L 15 46.67 46.67PP TAG SBAR-C R 15 100.00 88.24...TOTAL 7473 94.47 94.12PP modi�cation NP NPB PP R 2112 84.99 84.35VP TAG PP R 1801 83.62 81.144473 = 11.2% of all cases S VP PP L 287 90.24 81.96ADJP TAG PP R 90 75.56 78.16ADVP TAG PP R 35 68.57 52.17NP NP PP R 23 0.00 0.00PP PP PP L 19 21.05 26.67NAC TAG PP R 12 50.00 100.00...TOTAL 4473 82.29 81.51Coordination NP NP NP R 289 55.71 53.31VP VP VP R 174 74.14 72.47763 = 1.9% of all cases S S S R 129 72.09 69.92ADJP TAG TAG R 28 71.43 66.67VP TAG TAG R 25 60.00 71.43NX NX NX R 25 12.00 75.00SBAR SBAR SBAR R 19 78.95 83.33PP PP PP R 14 85.71 63.16...TOTAL 763 61.47 62.20Table 7.6: Accuracy for various types/sub-types of dependency (part 1). Only sub-typesoccurring more than 10 times are shown. 198

Type Sub-type Description Count Recall PrecisionMod'n within BaseNPs NPB TAG TAG L 11786 94.60 93.46NPB TAG NPB L 358 97.49 92.8212742 = 29.6% of all cases NPB TAG TAG R 189 74.07 75.68NPB TAG ADJP L 167 65.27 71.24NPB TAG QP L 110 80.91 81.65NPB TAG NAC L 29 51.72 71.43NPB NX TAG L 27 14.81 66.67NPB QP TAG L 15 66.67 76.92...TOTAL 12742 93.20 92.59Mod'n to NPs NP NPB NP R Appositive 495 74.34 75.72NP NPB SBAR R Relative clause 476 79.20 79.541418 = 3.6% of all cases NP NPB VP R Reduced relative 205 77.56 72.60NP NPB SG R 63 88.89 81.16NP NPB PRN R 53 45.28 60.00NP NPB ADVP R 48 35.42 54.84NP NPB ADJP R 48 62.50 69.77...TOTAL 1418 73.20 75.49Sentential head TOP TOP S R 1757 96.36 96.85TOP TOP SINV R 89 96.63 94.511917 = 4.8% of all cases TOP TOP NP R 32 78.12 60.98TOP TOP SG R 15 40.00 33.33...TOTAL 1917 94.99 94.99Adjunct to a verb VP TAG ADVP R 367 74.93 78.57VP TAG TAG R 349 90.54 93.492242 = 5.6% of all cases VP TAG ADJP R 259 83.78 80.37S VP ADVP L 255 90.98 84.67VP TAG NP R 187 66.31 74.70VP TAG SBAR R 180 74.44 72.43VP TAG SG R 159 60.38 68.57S VP TAG L 115 86.96 90.91S VP SBAR L 81 88.89 85.71VP TAG ADVP L 79 51.90 49.40S VP PRN L 58 25.86 48.39S VP NP L 45 66.67 63.83S VP SG L 28 75.00 52.50VP TAG PRN R 27 3.70 12.50VP TAG S R 11 9.09 100.00...TOTAL 2242 75.11 78.44Table 7.7: Accuracy for various types/sub-types of dependency (part 2). Only sub-typesoccurring more than 10 times are shown. 199

Chapter 8
Discussion
This chapter discusses and motivates the models in chapter 7 in more detail. We �rst con-sider the distance measure: its e�ect on accuracy, and cases where it helps to discriminatebetween rival analyses. We then look at the underlying assumptions that the models makeabout the tree annotation style. Next, we look more closely at why it is important tobreak rules down, rather than to simply read a context-free grammar from the treebank.Finally, we consider related work.8.1 More about the Distance MeasureThe distance measure, whose implementation was described in section 7.2.3, deserves morediscussion and motivation. In this section we consider it from three perspectives: its inu-ence on parsing accuracy; an analysis of distributions in training data that are sensitive tothe distance variables; and some examples of sentences where it is useful in discriminatingbetween competing analyses.8.1.1 The Impact of the Distance Measure on AccuracyTable 8.1 shows the results for models 1 and 2 with and without the adjacency and verbdistance measures. It's clear that the distance measure improves accuracy.

200

MODEL A V LR LP CBs 0 CBs � 2 CBsModel 1 NO NO 75.0% 76.5% 2.18 38.5% 66.4Model 1 YES NO 86.6% 86.7% 1.22 60.9% 81.8Model 1 YES YES 87.8% 88.2% 1.03 63.7% 84.4Model 2 NO NO 85.1% 86.8% 1.28 58.8% 80.3Model 2 YES NO 87.7% 87.8% 1.10 63.8% 83.2Model 2 YES YES 88.7% 89.0% 0.95 65.7% 85.6Table 8.1: Results on Section 0 of the WSJ Treebank. A = YES, V = YES mean thatthe adjacency/verb conditions respectively were used in the distance measure. LR/LP =labeled recall/precision. CBs is the average number of crossing brackets per sentence. 0CBs, � 2 CBs are the percentage of sentences with 0 or � 2 crossing brackets respectively.(a) PPINamong NPNPBa group PPINof NPNPBworkers
(b) SBARWHNPthat Sshow up Sresearchers saidFigure 8.1: Two examples of bad parses produced by model 1 with no distance or subcat-egorization conditions (Model1(No,No) in table 8.1). In (a) one PP has two complements,the other has none; in (b) the SBAR has two complements. In both examples either theadjacency condition or the subcategorization parameters will correct the errors, so theseare examples where the adjacency and subcategorization variables overlap in their utility.What is most striking is just how badly model 1 performs without the distance mea-sure. Looking at the parser's output, the reason for this is that the adjacency condi-tion in the distance measure is approximating subcategorization information. In partic-ular, in phrases such as PPs and SBARs (and, to a lesser extent, in VPs) which almostalways take exactly one complement to the right of their head, the adjacency featureencodes this mono-valency through parameters P(STOPjPP/SBAR, adjacent) = 0 andP(STOPjPP/SBAR, not adjacent) = 1. Figure 8.1.1 shows some particularly bad struc-tures returned by model 1 with no distance variables. (See section 3.3.7 for more discussionof how the distance variable approximates subcategorization.)The other surprise is that subcategorization can be very useful, but that the distance201

measure has masked this utility. One interpretation in moving from the least parameter-ized model Model1(No,No) to the fully parameterized model Model2(Yes,Yes) is that theadjacency condition adds around 11% in accuracy; the verb condition adds another 1.5%;and subcategorization �nally adds a mere 0.8%. Under this interpretation subcategoriza-tion information isn't all that useful (and this was my original assumption, as historicallythis was the order in which I had added features to the model).But under another interpretation subcategorization is very useful: in moving fromModel1(No,No) to Model2(No,No) we see a 10% improvement due to subcategorizationparameters; adjacency then adds a 1.5% improvement; and the verb condition adds a �nal1% improvement.From an engineering point of view, given a choice of whether to add just distance orsubcategorization to the model, distance is preferable. But linguistically it is clear thatadjacency can only approximate subcategorization, and that subcategorization is more\correct" in some sense. In free word order languages distance may not approximatesubcategorization at all well | a complement may appear to either the right or left of thehead, confusing the adjacency condition.8.1.2 Frequencies in Training DataTables 8.2 and 8.3 show the e�ect of distance on the distribution of modi�ers in two ofthe most frequent syntactic environments: NP and verb modi�cation. The distributionvaries a great deal with distance. Most striking is the way that the probability of STOPincreases with increasing distance: from 71% to 89% to 98% in the NP case, from 8% to60% to 96% in the verb case. Each modi�er probability generally decreases with distance.For example, the probability of seeing a PP modi�er to an NP decreases from 17.7% to5.57% to 0.93%.8.1.3 The Adjacency Condition and Right-Branching StructuresBoth the adjacency and verb components of the distance measure allow the model tolearn a preference for right-branching structures. First, consider the adjacency condition.Table 8.4 shows some examples where right-branching structures are more frequent. Using202

NPNPB... ?
A=TRUE,V=FALSE A=FALSE,V=FALSE A=FALSE,V=TRUE%age ? %age ? %age ?70.78 STOP 88.53 STOP 97.65 STOP17.7 PP 5.57 PP 0.93 PP3.54 SBAR 2.28 SBAR 0.55 SBAR3.43 NP 1.55 NP 0.35 NP2.22 VP 0.92 VP 0.22 VP0.61 SG 0.38 SG 0.09 SG0.56 ADJP 0.26 PRN 0.07 PRN0.54 PRN 0.22 ADVP 0.04 ADJP0.36 ADVP 0.15 ADJP 0.03 ADVP0.08 TO 0.09 -RRB- 0.02 S0.08 CONJP 0.02 UCP 0.02 -RRB-0.03 UCP 0.01 X 0.01 X0.02 JJ 0.01 RRC 0.01 VBG0.01 VBN 0.01 RB 0.01 RB0.01 RRC0.01 FRAG0.01 CD0.01 -LRB-Table 8.2: Distribution of non-terminals generated as post-modi�ers to an NP (see treeto the left), at various distances from the head. A=TRUE means the modi�er is adjacentto the head, V=TRUE means there is a verb between the head and the modi�er. Thedistributions were calculated from the �rst 10000 events for each of the distributions insections 2-21 of the treebank.the statistics from tables 8.2 and 8.3, the probability of the alternative structures canbe calculated | the results are given below. The right-branching structures get higherprobability (although this is before the lexical dependency probabilities are multipliedin, so this \prior" preference for right-branching structures can be over-ruled by lexicalpreferences). If the distance variables were not conditioned on, the product of terms forthe two alternatives would be identical, and the model would have no preference for onestructure over another.Probabilities for the two alternative PP structures in table 8.4 (excluding probabilityterms that are constant across the two structures. A=1 means distance is adjacent, A=0means not adjacent):Right-branching P(PPjNP, NPB, A=1)P(STOPjNP, NPB, A=0)P(PPjNP, NPB, A=1)P(STOPjNP, NPB, A=0)= 0:177 � 0:8853 � 0:177 � 0:8853 = 0:02455 (8.1)203

VPVB... ?

A=TRUE,V=FALSE A=FALSE,V=FALSE A=FALSE,V=TRUE%age ? %age ? %age ?39 NP-C 59.87 STOP 95.92 STOP15.8 PP 22.7 PP 1.73 PP8.43 SBAR-C 3.3 NP-C 0.92 SBAR8.27 STOP 3.16 SG 0.5 NP5.35 SG-C 2.71 ADVP 0.43 SG5.19 ADVP 2.65 SBAR 0.16 ADVP5.1 ADJP 1.5 SBAR-C 0.14 SBAR-C3.24 S-C 1.47 NP 0.05 NP-C2.82 RB 1.11 SG-C 0.04 PRN2.76 NP 0.82 ADJP 0.02 S-C2.28 PRT 0.2 PRN 0.01 VBN0.63 SBAR 0.19 PRT 0.01 VB0.41 SG 0.09 S 0.01 UCP0.16 VB 0.06 S-C 0.01 SQ0.1 S 0.06 -RRB- 0.01 S0.1 PRN 0.03 FRAG 0.01 FRAG0.08 UCP 0.02 -LRB- 0.01 ADJP0.04 VBZ 0.01 X 0.01 -RRB-0.03 VBN 0.01 VBP 0.01 -LRB-0.03 VBD 0.01 VB0.03 FRAG 0.01 UCP0.03 -LRB- 0.01 RB0.02 VBG 0.01 INTJ0.02 SBARQ0.02 CONJP0.01 X0.01 VBP0.01 RBR0.01 INTJ0.01 DT0.01 -RRB-Table 8.3: Distribution of non-terminals generated as post-modi�ers to a verb within a VP(see tree to the left), at various distances from the head. A=TRUE means the modi�er isadjacent to the head, V=TRUE means there is a verb between the head and the modi�er.The distributions were calculated from the �rst 10000 events for each of the distributionsin sections 2-21. Auxiliary verbs (verbs taking a VP complement to their right) wereexcluded from these statistics.
204

Non Right-branchingP(PPjNP, NPB, A=1)P(PPjNP, NPB, A=0)P(STOPjNP, NPB, A=0)P(STOPjNP, NPB, A=1)= 0:177 � 0:0557 � 0:8853 � 0:7078 = 0:006178 (8.2)Probabilities for the SBAR case in table 8.4, assuming the SBAR contains a verb (V=0means modi�cation does not cross a verb, V=1 means it does):Right-branching P(PPjNP,NPB,A=1,V=0)P(SBARjNP,NPB,A=1,V=0)P(STOPjNP,NPB,A=0,V=1)P(STOPjNP,NPB,A=0,V=1)= 0:177 � 0:0354 � 0:9765 � 0:9765 = 0:005975 (8.3)Non Right-branchingP(PPjNP,NPB,A=1)P(STOPjNP,NPB,A=1)P(SBARjNP,NPB,A=0)P(STOPjNP,NPB,A=0,V=1)= 0:177 � 0:7078 � 0:0228 � 0:9765 = 0:002789 (8.4)8.1.4 The Verb Condition and Right-Branching StructuresTable 8.5 shows some examples where the verb condition is important in di�erentiating theprobability of two structures. In both cases an adjunct can attach either high or low, butthe high attachment results in a dependency crossing a verb, and has lower probability.An alternative to the surface string feature would be a predicate such as \were any ofthe previous modi�ers in X", where X is a set of non-terminals that are likely to contain averb, such as VP, SBAR, S or SG. This would allow the model to handle cases like the �rstexample in table 8.5 correctly. The second example shows why it is preferable to conditionon the surface string. In this case the verb is \invisible" to the top level, as it is generatedrecursively below the NP object. 205

68% NPNPB PPIN NPNPB PP
32% NPNPB PPIN NPNPB PP

61% NPNPB PPIN NPNPB SBAR
39% NPNPB PPIN NPNPB SBAR

Table 8.4: Some alternative structures for the same surface sequence of chunks (NPB PPPP in the �rst case, NPB PP SBAR in the second case), where the adjacency conditiondistinguishes between the two structures. The percentages are taken from sections 2-21 ofthe treebank. In both cases right-branching structures are more frequent.95% VPV SGVPTO VPV NP PP
5% VPV SGVPTO VPV NP PP

67% VPV NPNPB VPV X PP
33% VPV NPNPB VPV X PP

Table 8.5: Some alternative structures for the same surface sequence of chunks, where theverb condition in the distance measure distinguishes between the two structures. In bothcases the low-attachment analyses will get higher probability under the model, due to thelow probability of generating a PP modi�er involving a dependency that crosses a verb.(X stands for any non-terminal.) 206

8.1.5 Structural vs. Semantic PreferencesOne hypothesis would be that lexical statistics are really what is important in parsing:that arriving at a correct interpretation for a sentence is simply a matter of �nding themost semantically plausible analysis, and that the statistics related to lexical dependenciesapproximate this notion of plausibility. Implicitly, we'd be just as well o� (maybe evenbetter o�) if statistics were calculated between items at the predicate-argument level, withno reference to structure. The distance preferences under this interpretation are just a wayof mitigating sparse data problems: when the lexical statistics are too sparse, then fallingback on some structural preference is not ideal, but is at least better than chance. Thishypothesis is suggested by the results on PP attachment, which showed that models willperform better given lexical statistics, and that a straight structural preference is merelya fall-back.But some examples suggest this is not the case: that, in fact, many sentences haveseveral equally semantically plausible analyses, but that structural preferences distinguishstrongly between them. Take the following example (from [Pereira and Warren 80]):Example 1. John was believed to have been shot by BillSurprisingly, this sentence has two analyses | Bill can be the deep subject of either\believed" or \shot". Yet people have a very strong preference for Bill to be doing theshooting, so much so that they may even miss the second analysis. (To see that thedispreferred analysis is semantically quite plausible, consider Bill believed John to havebeen shot.)As evidence that structural preferences can even over-ride semantic plausibility, takethe following example (from [Pinker 94]):Example 2. Flip said that Squeaky will do the work yesterdayThis sentence is a garden path: the structural preference for \yesterday" to modifythe most recent verb is so strong that it is easy to miss the (only) semantically plausibleinterpretation, paraphrased below as Flip said yesterday that Squeaky will do the work.The model makes the correct predictions in these cases. In example 1, the statistics intable 8.3 show that a PP is 9 times as likely to attach low than high when two verbs are207

candidate attachment points (the chances of seeing a PP modi�er are 15.8% and 1.73% incolumns 1 and 3 of the table respectively). In example 2, the probability of seeing an NP(adjunct) modi�er to do in a non-adjacent but non-verb-crossing environment is 2.11% insections 2-21 of the treebank (8 out of 379 cases); in contrast the chance of seeing an NPadjunct modifying said across a verb is 0.026% (1 out of 3778 cases). The di�erence is afactor of almost 80.8.2 The Importance of the Choice of Tree RepresentationFigures 8.2 and 8.3 show some alternative styles of syntactic annotation. The Penn tree-bank annotation style tends to leave trees quite at, typically with one level of structurefor each X-bar level; at the other extreme are completely binary-branching representa-tions. The two annotation styles are in some sense equivalent, in that it is easy to de�ne aone-to-one mapping between them. But crucially, two di�erent annotation styles may leadto quite di�erent parsing accuracies for a given model, even if the two representations areequivalent under some one-to-one mapping.A parsing model does not need to be tied to the annotation style of the treebank onwhich it is trained. The following procedure can be used to transform trees in both trainingand test data to a new representation:1. Transform training data trees to the new representation and train the model.2. Recover parse trees in the new representation when running the model over test datasentences.3. Convert the test output back to the treebank representation for scoring purposes.As long as there is a one-to-one mapping between the treebank and the new repre-sentation, nothing is lost in doing this. [Goodman 97] and [Johnson 97] both suggest thisstrategy: [Goodman 97] converts the treebank to binary branching trees; [Johnson 97] con-siders conversion to a number of di�erent representations, and discusses how this inuencesaccuracy for non-lexicalized PCFGs.The models developed in chapter 7 have tacitly assumed the Penn-treebank style ofannotation, and will perform badly given other representations (such as binary branching208

(a) SX2 X1 VPV Y1 Y2 (b) SX2 :::X1 VP:::V Y1 Y2Figure 8.2: Alternative annotation styles for a sentence S with a verb head V, left modi�ersX1...X2, and right modi�ers Y1...Y2. (a) is the Penn treebank style of analysis: one levelof structure for each bar level. (b) is an alternative but equivalent binary branchingrepresentation.(a) NPNPX2 X1 N Y1 Y2 (a') NPNPBX2 X1 N Y1 Y2
(b) NPNPNPX2 :::X1 N Y1 Y2
Figure 8.3: Alternative annotation styles for a noun phrase with a noun head N, leftmodi�ers X1...X2, and right modi�ers Y1...Y2. (a) is the Penn treebank style of analysis:one level of structure for each bar level, although notice that the non-recursive as well asrecursive noun phrases are labeled NP. (b) is an alternative but equivalent binary branchingrepresentation. (a') is our modi�cation of the Penn treebank style to di�erentiate recursiveand non-recursive NPs (in some sense NPB is a bar 1 structure, NP is a bar 2 structure).

209

trees). This section makes this point more explicit: describing exactly what annotationstyle is suitable for the models of chapter 7, and showing how other annotation styles willcause problems. This dependence on Penn{treebank style annotations does not imply thatthe models are inappropriate for a treebank annotated in a di�erent style | in this casewe simply recommend transforming the trees to at, one-level per X-bar level trees beforetraining the model, as in the 3-step procedure outlined above.Other models in the literature are also very likely to be sensitive to annotation style.[Charniak 97]'s models will most likely perform quite di�erently with binary branchingtrees (for example, his current models will learn that rules such as VP -> V SG PP arevery rare, but with binary branching structures this context-sensitivity will be lost). Themodels of [Magerman 95, Ratnaparkhi 97] use contextual predicates which would mostlikely need to be modi�ed given a di�erent annotation style. [Goodman 97]'s models arethe exception, as he already speci�es that the treebank should be transformed to his chosenrepresentation, binary branching trees.8.2.1 Representation A�ects Structural, not Lexical, PreferencesThe alternative representations in �gures 8.2 and 8.3 have the same lexical dependencies(providing that the binary-branching structures are centered about the head of the phrase,as in the examples). The di�erence between the representations involves structural prefer-ences such as the right-branching preferences encoded by the distance measure. A binarybranching tree representation makes the distance measure as described in chapter 7 uselessas a preference for right branching structures.To see this, consider the examples in �gure 8.4. In each binary branching example thegeneration of the �nal modifying PP is \blind" to the distance between it and the headthat it modi�es. At the top level of the tree it is apparently adjacent to the head; cruciallythe closer modi�er (SG in (a), the other PP in (b)) is hidden lower in the tree structure. Sothe model will be unable to di�erentiate generation of the PP in adjacent vs. non-adjacentor non-verb-crossing vs. verb-crossing environments, and the structures in �gure 8.4 willget unreasonably high probability.This does not mean that distance preferences cannot be encoded in a binary branching210

PCFG. [Goodman 97] achieves this by adding distance features to the non-terminals. Thespirit of this implementation is that the top level rules VP -> VP PP and NP -> NP PPwould be modi�ed to VP -> VP(+rverb) PP and NP -> NP(+rmod) PP, where (+rverb)means a phrase where the head has a verb in its right-modi�ers, and (+rmod) meansa phrase that has at least one right-modi�er to the head. The model will learn fromtraining data that P(VP ! VP(+rverb) PPjVP) � P(VP ! VP(-rverb) PPjVP), i.e.,that a prepositional phrase modi�cation is much more likely when it does not cross averb.(a) BB VPVPV SG PP (b) BB NPNPNP PP PP
(a') FLAT VPV SG PP (b') FLAT NPNPB PP PPFigure 8.4: BB = binary branching structures; FLAT = Penn treebank style annotations.In each case the binary branching annotation style prevents the model from learning thatthese structures should receive low probability due to the long distance dependency asso-ciated with the �nal PP (in bold).8.2.2 The Importance of Di�erentiating Non-recursive vs. RecursiveNPsFigure 8.5 shows the modi�cation to the Penn treebank annotation to relabel baseNPs asNPB. It also illustrates a problem that arises if this distinction is not made: structuressuch as that in �gure 8.5(b) receive high probability even if they are never seen in trainingdata. ([Johnson 97] notes that this structure has higher probability than the correct, atstructure, given counts taken from the treebank for a standard PCFG.) The model is fooledby the binary branching style into modeling both PPs as being adjacent to the head of thenoun-phrase, so 8.5(b) will get very high probability.211

(a) NPNPX2 X1 N Y1 Y2 (a') NPNPBX2 X1 N Y1 Y2
(b) NPNPNP PP PPFigure 8.5: (a) The way the Penn treebank annotates NPs. (a') Our modi�cation to theannotation, to di�erentiate recursive (NP) vs. non-recursive (NPB) noun phrases. (b) astructure that is never seen in training data, but will receive much too high probabilityfrom a model trained on trees of style (a).(a) ADJPADJPfar higher SBARthan expected (b) ADVPADVPmore stringently SBARthan expectedFigure 8.6: Examples of other phrases in the Penn treebank where non-recursive andrecursive phrases are not di�erentiated.This problem does not only apply to NPs | other phrases such as adjectival phrases(ADJPs) or adverbial phrases (ADVPs) also have non-recursive (bar 1) and recursive (bar2) levels, which are not di�erentiated in the Penn treebank. See �gure 8.6 for examples.Ideally these cases should be di�erentiated too: we did not implement this change becauseit is unlikely to make much di�erence to accuracy given the relative infrequency of thesecases (excluding coordination cases, and looking at the 80,254 instances in sections 2-21 ofthe Penn treebank where a parent and head non-terminal were the same: 94.5% were theNP case; 2.6% were cases of coordination where a punctuation mark was the coordinator1;only 2.9% were similar to those in �gure 8.6).8.2.3 SummaryTo summarise, the models in this chapter assume:1for example, (S (S John eats apples) ; (S Mary eats bananas))212

1. Tree representations are \at": i.e., one level per X-bar level.2. Di�erent X-bar levels have di�erent labels (in particular, non-recursive vs. recursivelevels are di�erentiated, at least for the most frequent case of NPs).8.3 The Need to Break Down RulesThe parsing approaches described in the previous two chapters have both concentratedon breaking down context-free rules in the treebank into smaller components. In theprevious chapter, rules were initially broken down to bare-bones Markov processes: contextdependency was built back up through the distance measure and subcategorization. Evenwith this additional context, the models are still able to recover rules in test data thathave never been seen in training data.An alternative, proposed in [Charniak 97], is to limit parsing to those context freerules seen in training data. A lexicalized rule is predicted in two steps. First, the wholecontext-free rule is generated. Second, the lexical items are �lled in. The probability of arule is estimated as2:P(Ln(ln):::L1(l1)H(h)R1(r1):::Rm(rm) j P (h)) =P(Ln:::L1HR1:::Rm) j P (h)) �Yi=1:::nPl(li j Li; P; h) �Yj=1:::mPr(rj j Rj; P; h) � (8.5)The estimation technique used in [Charniak 97] for the CF rule probabilities interpolatesseveral estimates, the lowest being P(Ln:::L1HR1:::Rm) j P). Any rules not seen intraining data will get zero probability under this model. Parse trees in test data will belimited to include rules seen in training.A problem with this approach is coverage. As shown in this section, many test datasentences will require rules that have not been seen in training. Hence the motivation for2Charniak's model also conditions on the parent of the non-terminal being expanded, we omit this herefor brevity. 213

breaking down rules into smaller components. This section motivates the need to breakdown rules from four perspectives: �rst, we discuss how the Penn treebank annotationstyle leads to a very large number of grammar rules; second, we assess the extent of thecoverage problem by looking at rule frequencies in training data; third, we run experimentsto assess the impact of the coverage problem on accuracy; fourth, we discuss how breakingrules down may improve estimation as well as coverage.8.3.1 The Penn Treebank Annotation Style Leads to Many RulesThe \atness" of the Penn treebank annotation style has already been discussed in sec-tion 8.2. The atness of the trees leads to a very large (and constantly growing) numberof rules. The prime reason for this is that the number of adjuncts to a head is potentiallyunlimited, for example there can be any number of PP adjuncts to a head verb. A binary-branching (Chomsky adjunction) grammar can generate an unlimited number of adjunctswith very few rules. For example, the following grammar generates any sequence VP -> VNP PP*: VP -> V NPVP -> VP PPIn contrast, the Penn treebank style would create a new rule for each number of PPs seenin training data. The grammar would beVP -> V NPVP -> V NP PPVP -> V NP PP PPVP -> V NP PP PP PP.... and so onOther adverbial adjuncts, such as adverbial phrases or adverbial SBARs, can also modifya verb several times; and all of these di�erent types of adjuncts can be seen together inthe same rule. The result is a combinatorial explosion in the number of rules. To give a214

avour of this, here is a random sample of rules that occurred only once in sections 2-21of the Penn treebank, and were of the format VP -> VB modifier*:VP -> VB NP NP NP PRNVP -> VB NP SBAR PP SG ADVPVP -> VB NP ADVP ADVP PP PPVP -> VB RBVP -> VB NP PP NP SBARVP -> VB NP PP SBAR PPIt is not only verb phrases that cause this kind of combinatorial explosion: other phrases,in particular non-recursive noun phrases, also contribute a huge number of rules. The nextsection considers the distributional properties of the rules in more detail.Note that there is good motivation for the Penn treebank's decision to represent rulesin this way, rather than with rules expressing Chomsky adjunction (i.e., a schema wherecomplements and adjuncts are separated, through rule types hVP ! VB fcomplementg*iand hVP ! VP fadjunctgi). First, it allowed the argument/adjunct distinction for PPmodi�ers to verbs to be left unde�ned: this decision was found to be very di�cult forannotators. Second, in the surface ordering (as opposed to deep structure), adjunctsare often found closer to the head than complements, thereby yielding structures that falloutside the Chomsky adjunction schema. (For example, a rule such as hVP ! VB NP-C PPSBAR-Ci is found very frequently in the Penn treebank; SBAR complements nearly alwaysextrapose over adjuncts.)8.3.2 Quantifying the Coverage ProblemIn order to quantify the coverage problem, rules were collected from sections 2-21 of thePenn treebank. Punctuation was raised as high as possible in the tree, and the rules didnot have complement markings or the distinction between baseNPs and recursive NPs.939,382 rule tokens were collected in this way; there were 12,409 distinct rule types. Wealso collected the count for each rule. Table 8.6 shows some statistics for these rules.A majority of rules in the grammar | 6,765, or 54.5% | occurred only once. Theserules account for 0.72% of rules by token. That is, if a rule was drawn at random from215

Rule Count No. of Rules Percentage No. of Rules Percentageby Type by Type by token by token1 6765 54.52 6765 0.722 1688 13.60 3376 0.363 695 5.60 2085 0.224 457 3.68 1828 0.195 329 2.65 1645 0.186 ... 10 835 6.73 6430 0.6811 ... 20 496 4.00 7219 0.7721 ... 50 501 4.04 15931 1.7051 ... 100 204 1.64 14507 1.54> 100 439 3.54 879596 93.64Table 8.6: Statistics for rules taken from sections 2-21 of the treebank, where complementmarkings were not included on non-terminals.the 939,382 rule tokens in sections 2-21 of the treebank, there would be a 0.72% chanceof that being the only instance of that rule. On the other hand, when drawing a rule atrandom from the 12,409 rules in the grammar induced from those sections, there would bea 54.5% chance of that rule having occurred only once.The percentage by token of the 1-count rules is an indication of the coverage problem.From this estimate, 0.72% of all rules (or 1 in 139 rules) required in test data would neverhave been seen in training. It was also found that 15.0% (1 in 6.67) of all sentences hadat least one rule that occurred just once. This gives an estimate that roughly 1 in 6.67sentences in test data will not be covered by a grammar induced from 40,000 sentences inthe treebank.If the complement markings are added to the non-terminals, and the baseNP/non-recursive NP distinction is made, then the coverage problem is made worse. Table 8.7gives the statistics in this case. 17.1% of all sentences (1 in 5.8 sentences) contained atleast one 1-count rule.8.3.3 The Impact of Coverage on AccuracyParsing experiments were used to assess the impact of the coverage problem on parsingaccuracy. Section 0 of the treebank was parsed with models 1 and 2 as before, but theparse trees were restricted to include rules already seen in training data. Table 8.8 shows216

Rule Count No. of Rules Percentage No. of Rules Percentageby Type by Type by token by token1 7865 55.00 7865 0.842 1918 13.41 3836 0.413 815 5.70 2445 0.264 528 3.69 2112 0.225 377 2.64 1885 0.206 ... 10 928 6.49 7112 0.7611 ... 20 595 4.16 8748 0.9321 ... 50 552 3.86 17688 1.8851 ... 100 240 1.68 16963 1.81> 100 483 3.38 870728 92.69Table 8.7: Statistics for rules taken from sections 2-21 of the treebank, where complementmarkings were included on non-terminals.MODEL AccuracyLR LP CBs 0 CBs � 2 CBsModel 1 87.9 88.3 1.02 63.9 84.4Model 1 (restricted) 87.4 86.7 1.19 61.7 81.8Model 2 88.8 89.0 0.94 65.9 85.6Model 2 (restricted) 87.9 87.0 1.19 62.5 82.4Table 8.8: Results on Section 0 of the WSJ Treebank. \restricted" means the model isrestricted to recovering rules that have been seen in training data. LR/LP = labeledrecall/precision. CBs is the average number of crossing brackets per sentence. 0 CBs,� 2 CBs are the percentage of sentences with 0 or � 2 crossing brackets respectively.the results. Restricting the rules leads to a 0.5/1.6% decrease in recall/precision for model1, and a 0.9/2.0% decrease for model 2.8.3.4 Breaking Down Rules Improves EstimationCoverage problems are not the only motivation for breaking down rules. The method mayalso improve estimation. To illustrate this, consider the rules headed by told, whose countsare shown in table 8.9. Estimating the probability P(Rule j VP, told) using [Charniak 97]'smethod would interpolate two maximum-likelihood estimates:�Pml(Rule j VP, told) + (1� �)Pml(Rule j VP) (8.6)217

Estimation interpolates between the speci�c, lexically sensitive distribution in table 8.9,and the non-lexical estimate based on just the parent non-terminal, VP. There are manydi�erent rules in the more speci�c distribution (26 di�erent rule types, out of 147 tokenswhere told was a VP head); and there are several 1-count rules (11 cases). From thesestatistics � would have to be relatively low. There's a high chance of a new rule for \told"being required in test data, therefore a reasonable amount of probability mass must be leftto the backed-o� estimate Pml(Rule j VP).This estimation method is missing a crucial generalisation: in spite of there being manydi�erent rules, the distribution over subcategorization frames is much sharper. \told" isseen with only 5 subcategorization frames in training data | the large number of rules isalmost entirely due to adjuncts or punctuation appearing after or between complements.The estimation method in model 2 e�ectively estimates the probability of a rule asPlc(LC j VP, told) � Prc(RC j VP, told) � P(Rule j VP, told, LC, RC) (8.7)The left and right subcategorization frames, LC and RC, are chosen �rst. The entire rule isthen generated by Markov processes.Once armed with the Plc and Prc parameters, the model has the ability to learn thegeneralisation that \told" appears with a quite limited, sharp distribution over subcat-egorization frames. Say these parameters are again estimated through interpolation, forexample �Pml(LC j VP, told) + (1� �)Pml(LC j VP) (8.8)In this case � can be quite high. Only 5 subcategorization frames (as opposed to 26 ruletypes) have been seen in the 147 cases. The lexically speci�c distributionPml(LC j VP, told)can therefore be quite highly trusted. Relatively little probability mass is left to the backed-o� estimate.In summary, from the distributions in table 8.9, the model should be quite uncertainabout what rules \told" can appear with. However, it should be relatively certain aboutthe subcategorization frame. Introducing subcategorization parameters allows the modelto generalise in an important way about rules. We have carefully isolated the \core" ofrules | the subcategorization frame | that the model should be certain about.218

(a)

Count Rule70 VP told -> VBD NP-A SBAR-A23 VP told -> VBD NP-A6 VP told -> VBD NP-A SG-A5 VP told -> VBD NP-A NP SBAR-A5 VP told -> VBD NP-A : S-A4 VP told -> VBD NP-A PP SBAR-A4 VP told -> VBD NP-A PP4 VP told -> VBD NP-A NP3 VP told -> VBD NP-A PP NP SBAR-A2 VP told -> VBD NP-A PP PP2 VP told -> VBD NP-A NP PP2 VP told -> VBD NP-A , SBAR-A2 VP told -> VBD NP-A , S-A2 VP told -> VBD2 VP told -> ADVP VBD NP-A SBAR-A1 VP told -> VBD NP-A SG-A SBAR1 VP told -> VBD NP-A SBAR-A PP1 VP told -> VBD NP-A SBAR , PP1 VP told -> VBD NP-A PP SG-A1 VP told -> VBD NP-A PP NP1 VP told -> VBD NP-A PP : S-A1 VP told -> VBD NP-A NP : S-A1 VP told -> VBD NP-A ADVP SBAR-A1 VP told -> VBD NP-A ADVP PP NP1 VP told -> VBD NP-A ADVP1 VP told -> VBD NP-A , PRN , SBAR-A147 TOTAL

(b) Count Subcat Frame89 fNP-A, SBAR-Ag39 fNP-Ag9 fNP-A, S-Ag8 fNP-A, SG-Ag2 fg147 TOTAL

Table 8.9: (a) Distribution over rules with \told" as the head (from sections 2-21 of thetreebank); (b) Distribution over subcategorization frames with \told" as the head.We should note that Charniak's method will certainly have some advantages in estima-tion: it will capture some statistical properties of rules that our independence assumptionswill lose (e.g., the distribution over the number of PP adjuncts seen for a particular head).

219

8.4 Comparison to Related Work on Parsing the Penn WSJTreebank8.4.1 [Charniak 97]The model described in [Charniak 97] has two types of parameters:Lexical Dependency Parameters Charniak's dependency parameters are similar tothe L2 parameters of section 7.6.1. Whereas our parameters arePL2(lwi j Li; lti; c; p; P;H;w; t;�; LC)Charniak's parameters in our notation would bePL2(lwi j Li; P; w)For example, the dependency parameter for an NP headed by pro�ts being the subjectof the verb rose would be P (profitsjNP;S; rose).Rule Parameters The second type of parameters are associated with context free rulesin the tree. As an example, take the S node in the following tree:VP(said)VBsaid S(rose)?This non-terminal could expand with any of the rules S ! � in the grammar. Therule probability is de�ned as P (S ! �jrose; S; V P). So the rule probability dependson the non-terminal being expanded, its headword, and also its parent.The next few sections give further explanation of the di�erences between Charniak'smodels and the models of this thesis.Additional Features of Charniak's ModelThere are some notable additional features of Charniak's model. First, the rule proba-bilities are conditioned on the parent of the non-terminal being expanded. Our modelsdo not include this information, although distinguishing recursive from non-recursive NPs220

can be considered a reduced form of this information. (See section 8.2.2 for a discussionof this distinction; the arguments in that section are also motivation for Charniak's choiceof conditioning on the parent.)Second, Charniak uses word-class information to smooth probabilities, and reports a0.35% improvement from this feature.Finally, Charniak uses 30 million words of text for unsupervised training. A parser istrained from the treebank, and used to parse this text; statistics are then collected fromthis machine-parsed text and merged with the treebank statistics to train a second model.This gave a 0.5% improvement in performance.The Dependency Parameters of Charniak's ModelWhile similar to ours, Charniak's dependency parameters are conditioned on less infor-mation. Whereas our parameters are PL2(lwi j Li; lti; c; p; P;H;w; t;�; LC), Charniak'sparameters in our notation would be PL2(lwi j Li; P; w). The additional information is asfollows:H The head non-terminal label (VP in the pro�ts/rose example). At �rst glance this mightseem redundant | for example an S will usually take a VP as its head. However, insome cases the head label can vary, for example an S can take another S as its headin coordination cases.lti; t The POS tags for the head and modi�er words. This allows our model to use POStags as word-class information. Charniak's model may be missing an important gen-eralization in this respect.c The coordination ag. This distinguishes, for example, coordination cases from apposi-tives: Charniak's model will have the same parameter | P (modifierjhead;NP;NP)| in both of these cases.p, �, LC/RC The punctuation, distance and subcategorization variables. It is di�cultto tell without empirical tests whether these features are important.
221

The Rule Parameters of Charniak's ModelThe rule parameters in Charniak's model are e�ectively decomposed into our L1 parame-ters (section 7.6.1), the head parameters, and | in models 2 and 3 | the subcategorizationand gap parameters. This decomposition allows our model to assign probability to rulesnot seen in training data: see section 8.3 for extensive discussion.Right-Branching Structures in Charniak's ModelOur models have used distance features to encode preferences for right-branching struc-tures. Charniak's model does not represent this information explicitly, but instead learnsit implicitly through rule probabilities. For example, for an NP PP PP sequence the pref-erence for a right-branching structure is encoded through a much higher probability forthe rule NP ! NP PP rather than NP ! NP PP PP. (Notice that conditioning on the rule'sparent is needed to disallow the structure [NP [NP PP] PP]; see [Johnson 97] for furtherdiscussion.)This strategy does not encode all of the information in the distance measure. Thedistance measure e�ectively penalises rules NP ! NPB NP PP where the middle NP con-tains a verb: in this case the PP modi�cation results in a dependency that crosses a verb.Charniak's model is unable to distinguish cases where the middle NP does/doesn't containa verb (i.e., the PP modi�cation does/doesn't cross a verb).8.4.2 [Jelinek et al. 94, Magerman 95, Ratnaparkhi 96]We now make a detailed comparison to the history-based models of [Ratnaparkhi 97] and[Jelinek et al. 94, Magerman 95]. A strength of these models is undoubtedly the powerfulestimation techniques that they use: maximum entropy modeling (in [Ratnaparkhi 97]),or decision trees (in [Jelinek et al. 94, Magerman 95]). A weakness, we will argue in thissection, is the method of associating parameters with parser moves. We give exampleswhere this leads to the parameters unnecessarily fragmenting the training data in somecases, or ignoring important context in other cases.We �rst analyze the model of [Magerman 95] through three common examples of am-biguity: PP attachment, coordination and appositives. In each case a word sequence S has222

two competing structures | T1 and T2 | with associated decision sequences hd1; :::; dniand he1; :::; emi respectively. Thus the probability of the two structures can be written asP (T1jS) = Yi=1:::nP (dijd1:::di�1; S) (8.9)P (T2jS) = Yi=1:::mP (eije1:::ei�1; S) (8.10)It will be useful to isolate the decision between the two structures to a single probabilityterm. Let the value j be the minimum value of i such that di 6= ei. Then we can rewritethe two probabilities:P (T1jS) = Yi=1:::j�1P (dijd1:::di�1; S)� P (dj jd1:::dj�1; S)� Yi=j+1:::nP (dijd1:::di�1; S)(8.11)P (T2jS) = Yi=1:::j�1P (eije1:::ei�1; S)� P (ej je1:::ej�1; S)� Yi=j+1:::mP (eije1:::ei�1; S)(8.12)The �rst thing to note is that Qi=1:::j�1 P (dijd1:::di�1; S) = Qi=1:::j�1 P (eije1:::ei�1; S),so that these probability terms are irrelevant to the decision between the two structures.We make one additional assumption, thatYi=j+1:::nP (dijd1:::di�1; S) � Yi=j+1:::mP (eije1:::ei�1; S) � 1This is justi�ed for the examples in this section, because once the jth decision is made,the following decisions are practically deterministic. (Equivalently, we are assuming thatP (T1jS) +P (T2jS) � 1, i.e., that very little probability mass is lost to trees other than T1or T2.) Given these two equalities, we have isolated the decision between the two structuresto the parameters P (dj jd1:::dj�1; S) and P (ej je1:::ej�1; S).Figure 8.7 shows a case of PP attachment. The �rst thing to notice is that the PPattachment decision is made before the PP is even built. The decision is linked to the NPpreceding the preposition: whether the arc above the NP should go left or right.The next thing to notice is that at least one important feature, the verb, falls outsideof the conditioning context. (The model only considers information up to two constituentspreceding or following the location of the decision.) This could be �xed by considering223

(a) VPVB NPNPDT NN PPIN NPDT NN PPIN NPDT NN
(b) VPVB NPNPDT NN PPIN NPNPDT NN PPIN NPDT NN(c) VB NPDT NN IN ?NPDT NN IN DT NNFigure 8.7: (a) and (b) are two candidate structures for the same sequence of words. (c)shows the �rst decision (labeled \?") where the two structures di�er. The arc above theNP can go either left (for verb attachment of the PP) or right (for noun attachment of thePP).

224

(a) NPNPNPDT NN PPIN NPDT NN CC NPDT NN
(b) NPNPDT NN PPIN NPNPDT NN CC NPDT NN(c) NPDT NN IN ?NPDT NN CC DT NNFigure 8.8: (a) and (b) are two candidate structures for the same sequence of words. (c)shows the �rst decision (labeled \?") where the two structures di�er. The arc above theNP can go either left (for high attachment (a) of the coordinated phrase) or right (for lowattachment (b) of the coordinated phrase).additional context: but there is no �xed bound on how far the verb can be from the decisionpoint. Note also that in other cases the method fragments the data in unnecessary ways.Cases where the verb directly precedes the NP, or is one place further to the left, aretreated separately.Figure 8.8 shows a similar example, NP coordination ambiguity. Again, the pivotaldecision is made in a somewhat counter-intuitive location: at the NP preceding the coor-dinator. At this point the NP following the coordinator has not been built, and its headnoun is not in the contextual window. Figure 8.9 shows an appositive example where thehead noun of the appositive NP is not in the contextual window when the decision is made.These last two examples can be extended to illustrate another problem. The NP after225

(a) NPNPDT NN PPIN NPDT NN , NPDT NN
(b) NPNPDT NN PPIN NPNPDT NN , NPDT NN(c) NPDT NN IN ?NPDT NN , DT NNFigure 8.9: (a) and (b) are two candidate structures for the same sequence of words. (c)shows the �rst decision (labeled \?") where the two structures di�er. The arc above theNP can go either left (for high attachment (a) of the appositive phrase) or right (for nounattachment (b) of the appositive phrase).

226

the conjunct or comma could be the subject of a following clause. For example, in Johnlikes Mary and Bill loves Jill the decision not to coordinate Mary and Bill is made justafter the NP Mary is built. At this point, the verb loves is outside the contextual window,and the model has no way of telling that Bill is the subject of the following clause. Themodel is assigning probability mass to globally implausible structures due to points of localambiguity in the parsing process.Some of these problems can be �xed by changing the derivation order or the condition-ing context. [Ratnaparkhi 97] has an additional chunking stage which means that the headnoun does fall within the contextual window for the coordination and appositive cases.8.4.3 [Eisner 96, Eisner 96b][Eisner 96] describes a number of probability models with dependency parameters; in ad-dition [Eisner 96b] describes further experiments and newer models. The second paperdescribes models A, B, C, and D. Model C is quite similar to model 1 of chapter 7 (andpre-dated model 1's original publication in [Collins 97]). This model represents a nodein the dependency tree as a tag/word pair. Each word can have 0 or more right or leftdependents; probability distributions over di�erent sequences are modeled using 1st orderMarkov processes. The major di�erences between model C and our model 1 are as follows:� There are no non-terminal labels beyond the POS tags at each node (see section 3.3.5of this thesis for discussion of the importance of non-terminal information.)� The dependency trees are at, with each head taking all of its modi�es at the samelevel. Because of this the head parameters PH of model 1 are unnecessary in modelC.� The Markov process is 1st order, conditioning on the previously generated tag-wordpair as well as the head. This may well be additional useful context, and will capturesome features of the distance variable: for example, the adjacency condition, or thatthe STOP symbol is likely to follow a heavy phrase such as an SBAR.� [Eisner 96b] describes the addition of distance variables to the model. The distanceof a modi�er from its head is generated along with the modi�er. This improves per-formance, but leads to a probability model that does not sum to 1.227

[Eisner 96b] reports results for dependency accuracy on a test corpus. The best resultswere 92.6% accuracy, for model D. The model of chapter 6 was found to have identicalaccuracy when evaluated with the same training and test data (with the modest caveatthat the chapter 6 parser was penalised by using machine generated POS tags for this test,[Eisner 96b] used hand-labeled tags).Model C performs at 90.4% accuracy; it is somewhat surprising that model C performsworse than model D, given that the models have similar features, and that model C isless de�cient (i.e., it comes closer to a model that sums to 1). A likely explanation isthat the smoothing method's used | holding a count of 3 out for backed-o� estimates,and not smoothing at all when the denominator count was greater than 8 | severelyimpacted performance in model C. (Our experience has been that generative models, whichtypically have many more possible outcomes for a distribution, require more back-o� thanconditional models. The count of 3 is very low, and the threshold of 8 is particularlyextreme.)8.4.4 [Goodman 97, Goodman 98][Goodman 97, Goodman 98] describes Probabilistic feature grammars (PFGs). Each non-terminal in the grammar is represented as a set of feature-value pairs; the probabilityP (X ! Y ZjX) of a rule X ! Y Z is decomposed as incremental prediction of thefeature values of Y and Z. The formalism assumes binary branching rules (without lossof generality: a one-to-one mapping from n-ary rules to binary-branching rules is given).As [Goodman 98] argues, the formalism has a number of computational advantages. Allconditioning variables are encoded through features, allowing a uni�ed account of lexicaldependencies, distance features and so on. Parsing can be achieved through standarddynamic programming algorithms, and the formalism allows e�cient computation of theinside and outside probabilities for unsupervised training, using the method in [Baker 79].Having chosen the features on non-terminals, the parameters of the model are speci�edby �rst choosing an order for the features being predicted, then making independenceassumptions and choosing a back-o� order for smoothing. Thus these choices are likelyto have a critical e�ect on the parameterization of the model (as in the Belief Networks228

example in section 1.5.1) | although [Goodman 98] places little emphasis on these choices.In particular, the use of binary branching trees may be computationally advantageous,but it may make a linguistically plausible parameterization di�cult. [Goodman 98] (page231), in referring to the work in [Collins 97], claims that \a PFG that is extremely similarcould be created". Our feeling is that while it would easy enough to add the same fea-tures to Goodman's model, it would take considerably more ingenuity to encode the sameparameters within a PFG. As an example, the models of chapter 7 generate modi�ers toa head from inside to outside, while a binary-branching formalism e�ectively generatesmodi�ers outside to inside; once subcategorization is added this leads to quite di�erentparameters for the two models. Our guess is that these di�erences, combined with thechoice of decomposition in predicting the features on child non-terminals, are likely to bequite important for parsing accuracy.

229

Chapter 9
Future Work
9.1 Improving Parsing AccuracyIncreased Context and Improved Estimation. The models in chapter 7 have pa-rameters that are conditioned on a limited amount of context, making n-gram estima-tion methods feasible. The history{based framework, as described in section 7.2.2, al-lows the model to condition on any structure that has been previously generated. Forexample, it might make sense to condition upon the previously generated child (as in[Eisner 96]), or to condition upon features of the surface string under previous modi-�ers (in addition to the two features encoded by the distance measure). Adding manymore features of this kind would quickly make n-gram estimation methods infeasible;a natural choice would be to move to more sophisticated estimation methods such asdecision trees (as used in [Magerman 95, Jelinek et al. 94]) or maximum-entropy mod-els (as in [Ratnaparkhi 97]). Thus we could combine the insights of the work in thisthesis (i.e., an emphasis on using a head-centered with the strengths of the work in[Magerman 95, Jelinek et al. 94, Ratnaparkhi 97] (i.e., estimation techniques that can usevery rich feature sets).Unsupervised Learning. Many parsing errors are no doubt caused by poor pa-rameter estimates resulting from sparse data problems. Chapter 5 gave results for PPattachment showing that over 90% accuracy could be achieved on test cases where threeor more of the head-words involved had been seen in training data (only around 30% of230

test data examples met this criterion); but that accuracy dropped to below 72% in caseswhere the preposition was the sole source of conditioning information. The breakdown ofresults by dependency type in section 7.8.1 suggested that many parsing errors are dueto adjunct placement (e.g., the model recovers PP attachments with 82% precision andrecall); our guess is that many of these errors are due to sparse data problems.Results in [Hindle and Rooth 91], and more recently in [Ratnaparkhi 98], have sug-gested that unsupervised training for the PP attachment problem can yield results thatare competitive with those for supervised models. Two natural questions are then:1. Given a very large amount of training data, could an unsupervised method give im-proved accuracy over a supervised approach? (e.g., could it approach over 90% accu-racy on all cases in test data, rather than just 30% of the cases?)2. Can the methods in [Hindle and Rooth 91, Ratnaparkhi 98] be generalized to other,or all, cases of parsing ambiguity?9.2 Recovering Additional InformationPredicate Argument Structure. Chapter 7 stressed the need for additional parseinformation (namely, complement markings and wh-movement annotations) to facilitatethe recovery of predicate{argument structure. There are several other phenomena thathave not been treated, for example: wh-movement of phrases other than complement NPs;PRO-control (e.g., recovery of the subject of leave in cases like she promised him to leave,she persuaded him to leave, she kept him from leaving); and non-constituent coordination(e.g., Sam likes and Bill hates peanuts or Sam eats peanuts and Bill grapes). Some of thesephenomena (such as PRO control) may be easily recovered through post-processing of theparser's output; others, such as the wh-movement or coordination cases, may be complexenough to require full integration into the statistical model.Lexicalized grammatical formalisms such as LFG, TAG, CCG and HPSG have allconsidered these phenomena in some detail; the parameters of this thesis could no doubtbe carried over to these theories, with the result that a stochastic treatment of the variousphenomena would in some sense come for free. (We actually see this as the main motivation231

for a move to stochastic versions of these formalisms; our feeling is that moving to theseformalisms is unlikely to help parsing accuracy much, given that most of the parsing errorshave to do with ambiguity rather than syntactic constraints.)\Deep" Syntactic Roles. A related point is the extraction of \deep" syntactic roles.There is still some remaining ambiguity in the mapping from syntactic trees to semanticroles. Take the following examples. Uncontrolled PRO is usually co-indexed with theprevious subject, as in example (1) below, but given su�cient semantic evidence it maybe co-indexed with other NPs such as the previous object, as in (2):(1) Jan was named as president, PRO succeeding Bill.(2) The company named Jan president, PRO succeeding Bill.Syntactic roles within nominalizations are quite exible in their mapping to semantic roles.A possessive NP can be a deep-subject of the noun that it modi�es, or a deep-object, oran adjunct such as a temporal modi�er:His appointment of Clinton) deep-subjectHis appointment by Clinton) deep-objecttoday 's appointment) temporal modi�erSimilarly, pre-modifying nouns can take a number of semantic rolesthe Clinton appointment) deep subject or object?the January appointment) temporal modi�erThe examples suggest that a combination of syntactic biases and semantic plausibility isneeded to resolve these kinds of ambiguities. The ideal would be an integrated statisticalmodel that simultaneously recovered syntactic structure and \deep" syntactic roles.Information Extraction. [Miller et al. 98] describe the BBN system for the 7thMessage Understanding Conference (MUC-7). One of the tasks was to extract pairs ofentities in relationships such as the employer-employee relationship, as in the followingexample:John Smith, an IBM spokesman, said ...) fEmployee = John Smith, Employer = IBMg232

[Miller et al. 98] describe an integrated statistical model which simultaneously recovers thesyntactic tree along with semantic roles. The syntactic part of the model is quite similar tothe models in chapter 7. [Collins and Miller 98] describe a model for extraction of eventsin the MUC-6 management successions domain (IN is a person coming into a new post,POST is the title of the position), as in the following example:Last week Hensley West, 59 years old, was named as president,a surprising development.) fIN = Hensley West, POST = presidentgIn [Collins and Miller 98] the model is semantically driven, but syntactically naive; a pars-ing model that recovered both syntactic and semantic information would again be prefer-able.9.3 Parsing Languages other than EnglishThis thesis has described work on parsing English; other languages may raise new prob-lems for the approach. Model 1 of chapter 7 was applied to parsing Czech [Hajic et al. 98]in the 1998 Johns Hopkins Summer Workshop on Language Engineering. Czech has somecharacteristics that make it very di�erent from English, including a very high degree ofinection, and much freer word order. The model recovered dependencies with 80% ac-curacy (with around 82% accuracy for newswire articles), when trained and tested on thePrague Dependency Treebank (PDT) [Hajic 98]. A major topic for future research is howto deal with the high degree of inection. This raised two problems:� The part-of-speech tags encoded multiple �elds of information| case, person, number,gender and so on. This meant that the POS tags were potentially a very rich sourceof disambiguating information, but also that there were a very large number of tags(potentially over 3,000). The question then becomes how to leverage the informationin the tags, without running into sparse data problems. A key problem may be howto parameterize probabilities of the form P (modi�er POSjhead POS).� There are a huge number of possible word forms in Czech, leading to a large numberof words in test data being unseen in training data: again, sparse data problems are233

prevalent. A natural area for future research concerns how to use the (much lesssparse) word stems; a key problem may be how to parameterize probabilities of theform P (word-formjword-stem, POS tag).

234

Chapter 10
Conclusions
This thesis has considered how to parameterize the statistical parsing problem; in otherwords, we have considered the following question:� What linguistic objects (e.g., context-free rules, parse moves etc.) should the model'sparameters be associated with? I.e., how should trees be decomposed into smallerevents?Our hypothesis has been that probabilities should be conditioned on lexical heads, andthat they should reect a head's local domain of inuence within a parse tree.Chapter 3 motivated a series of lexically conditioned parameter types through ex-ample trees where the parameters provided useful discriminative information. Chapter5 described the �rst empirical indication of the utility of lexical information: a methodthat considered the four head-words involved in prepositional phrase attachment decisionscorrectly classi�ed test examples with over 84% accuracy. Chapter 6 then described a�rst attempt at generalizing these results to full parsing. The resulting parser made exten-sive use of probabilities tied to pairs of words in dependency relationships, and recoveredconstituent labelings with over 85% precision and recall.Chapter 7 described the �nal parsing models of this thesis. The models use a history-based approach, where a parse tree is represented by the series of decisions made in atop-down, head-centered derivation of the tree. Independence assumptions then follow

235

naturally. The resulting models have parameters that encode the X-bar schema, subcat-egorization, ordering of complements, placement of adjuncts, lexical dependencies, wh-movement, and preferences for close attachment; all of these preferences are expressed byprobabilities conditioned on lexical heads.Evaluation on Wall Street Journal text (all sentences � 100 words in length) showedthat the model recovered labeled constituents with 88.3/88.0% precision/recall. The latermodels have an additional advantage over previous approaches, in that they make thecomplement/adjunct distinction, and they recover wh-movement annotations. This infor-mation should facilitate the mapping to predicate-argument structure.While this thesis has largely concentrated on representational issues, the learning com-ponent should not be underestimated. Once the model structure has been de�ned, thelearning process is remarkable in a couple of respects. First, the model incorporates a vastamount of information. There are almost 780,000 dependency events in training data1;if backed-o� counts are also considered, the model incorporates information from over 9million events or sub-events associated with dependencies. The head-projection, subcat-egorization and other parameters further inate this number. Second, the model has atremendous ability to balance the interaction between diverse sources of disambiguatinginformation (e.g., lexical dependencies vs. close-attachment preferences), and to balance�ne-grained lexical statistics against coarser statistics based on part-of-speech tags, ormore structural information. The mathematical foundations, as outlined in Chapter 2,are essential in solving the delicate task of blending these di�erent information sources.This brings us to our �nal point. Our guess is that it would be extremely di�cult tohand-craft a parser with accuracy that competes with statistical approaches: the volume ofinformation required, together with the complex interactions between the di�erent types ofinformation, quickly becomes overwhelming for a human. On the other hand, we should notexpect statistical methods to provide the whole solution. In choosing the model structure| in particular, in making a choice of decomposition in history-based approaches | wehave introduced a substantial bias. It is better to ackowledge this bias, and to work withit, rather than to pretend that the learning component will learn all there is to learn.1This count is by token | there are 390,000 distinct dependency types.236

Most importantly, it is best to embed our prior knowledge of linguistic structure in thesemodeling choices. Linguistic knowledge, then, should be brought to bear in designing themodel structure; learning becomes a problem of estimating parameter values within thisstructure. Neither part of the problem should be underestimated in its importance.

237

Appendix A
A Description of The Head Rules
This appendix describes the rules used to �nd heads of constituents in the treebank; i.e.,for a context-free rule hX! Y1 ... Yn i these rules decide which of hY1 ... Yni is thehead of the rule.Table A.1 shows the rules used for most constituents in the treebank (there are a coupleof exceptions to this table | NPs and coordinated phrases | which we will describe soon).The rules are a modi�ed version of those used in the SPATTER parser [Magerman 95]1.As an example of how the table is used, for rules hX! Y1 ... Yni where X is a VP, thealgorithm would �rst search from the left of the sequence hY1 ... Yni for the �rst Yi oftype TO; if no TOs were found it would then search for the �rst Yi of type VBD; if no VBDswere found it would search for a VBP; and so on. If none of the items on the list werefound, the left-most child of the rule (Y1) would be chosen.Rules for NPsThe rules for NPs are slightly di�erent, and are as follows:� If the last word is tagged POS, return (last-word);� Else search from right to left for the �rst child which is an NN, NNP, NNPS, NNS, NX,POS, or JJR.� Else search from left to right for the �rst child which is an NP1Thanks to David Magerman for allowing us to use and distribute them.238

� Else search from right to left for the �rst child which is a $, ADJP or PRN.� Else search from right to left for the �rst child which is a CD.� Else search from right to left for the �rst child which is a JJ, JJS, RB or QP.� Else return the last word.Rules for Coordinated PhrasesIn coordinated phrases such as hNP ! NP CC NPi, the �rst coordinated child is taken asthe head of the phrase. The second coordinated child is then taken to modify this head ina special coordination relationship (e.g., see section 7.5.2 for how the model of chapter 7deals with coordination). Other modi�ers are also taken to modify the �rst head, in theusual way (e.g., in a rule hNP ! NP1 CC NP2 ADJPi, the ADJP is taken to modify NP1).The head rules are then required to identify rules containing sub-sequences hYi Yi+1Yi+2i where: (1) Yi is the �rst head; (2) Yi+1 is a coordinator; and (3) Yi+2 is a modi�er tothe �rst head, in a special coordination relationship. This is accomplished in the followingsteps:� First run the rule hX! Y1 ... Yni through the usual head-rules, thereby identifyingthe head of the rule, Yh.� If h < n� 2, and Yh+1 is the non-terminal CC, then the triple hYh Yh+1 Yh+2i forms atriple of non-terminals in a coordinating relationship (i.e., they ful�ll the three criteriadescribed above).� Else If h > 2, and Yh�1 is the non-terminal CC, then the triple hYh�2 Yh�1 Yhi forms atriple of non-terminals in a coordinating relationship. In this case, the head is modi�edto be Yh�2.

239

Parent Direction Priority ListNon-terminalADJP Left NNS QP NN $ ADVP JJ VBN VBG ADJP JJR NP JJS DTFW RBR RBS SBAR RBADVP Right RB RBR RBS FW ADVP TO CD JJR JJ IN NP JJS NNCONJP Right CC RB INFRAG RightINTJ LeftLST Right LS :NAC Left NN NNS NNP NNPS NP NAC EX $ CD QP PRP VBG JJJJS JJR ADJP FWPP Right IN TO VBG VBN RP FWPRN LeftPRT Right RPQP Left $ IN NNS NN JJ RB DT CD NCD QP JJR JJSRRC Right VP NP ADVP ADJP PPS Left TO IN VP S SBAR ADJP UCP NPSBAR Left WHNP WHPP WHADVP WHADJP IN DT S SQ SINVSBAR FRAGSBARQ Left SQ S SINV SBARQ FRAGSINV Left VBZ VBD VBP VB MD VP S SINV ADJP NPSQ Left VBZ VBD VBP VB MD VP SQUCP RightVP Left TO VBD VBN MD VBZ VB VBG VBP VP ADJP NN NNSNPWHADJP Left CC WRB JJ ADJPWHADVP Right CC WRBWHNP Left WDT WP WP$ WHADJP WHPP WHNPWHPP Right IN TO FWTable A.1: The head-rules used by the parser. Parent is the non-terminal on the left-hand-side of a rule. Direction speci�es whether search starts from the left or right end ofthe rule. Priority gives a priority ranking, with priority decreasing when moving down thelist.
240

Appendix B
The Parsing Algorithm for Model1 of Chapter 7
This appendix describes the parsing algorithm for Model 1 in chapter 7. Speci�cally:� Section B.1 describes the edge data-type. This is central to the parsing algorithm, inthat constituents in the chart are represented using the edge data-type.� Section B.2 describes how new edges in the chart are created from existing edges.� Section B.3 describes how the entire chart is �lled: subroutines used for initialization,completion of entire spans of the chart, and �nally full parsing.All of the pseudo-code for the parser is given in �gures B.3 to B.11. Figure B.11 givesthe highest level routine, parse(), which will parse an entire sentence.Appendix C describes the modi�cations to the algorithm required for model 2.B.1 The edge data-typeThe central data-type in the chart parser is the edge data-type, which holds all the infor-mation about a particular constituent in the chart. Table B.1 lists the elements in the edgedata-type, �gure B.1 shows an example constituent and its edge representation. Figure B.2shows how a leaf-node (POS tag/word pair) is represented.The chart itself is a set of edges. We will assume that edges are indexed by their start241

Variable Type Descriptiontype int 0 for a leaf (POS tag with no children), 1 for a non-terminallabel string the non-terminal labelheadlabel string the non-terminal label of the head-child of the edgeheadword string the head wordheadtag string the part-of-speech tag of the head-wordstart int index of �rst word in the edge's spanend int index of last word in the edge's spanlc context distance features to the left of the head (see below for a de-scription of the context data-type).rc context distance features to the right of the headstop boolean TRUE if the edge has received its stop probabilitiesprob double log probability of the edgechildren linked list list of the children of the edge (in left to right order)Table B.1: Variables in the edge data-typeVariable Type Descriptionadj boolean (adjacency) TRUE if the head has taken no modi�ersverb boolean TRUE if one of the modi�ers to the head dominates a verbTable B.2: Variables in the context data-typepoint (�rst word in their span), their end point (last word in their span), and their non-terminal label. So chart[start; end; label] is a set of all edges in the chart spanning wordsstart to end inclusive, with non-terminal label.There are two important functions associated with edge, pseudo-code is shown in �g-ure B.3. edges equal(edge e1; edge e2) returns TRUE if edges e1 and e2 are the same forthe purposes of the dynamic programming algorithm. add edge(edge e; int start; int end)adds e to the set chart[start; end; e:label] if it passes the dynamic programming conditions.B.2 Subroutines that Create New EdgesThere are four operations that create new edges:join 2 edges follow(e1,e2) Figure B.4. Takes as input two edges, e1 and e2, and formsa new edge, e3. e1 and e2 are adjacent in the chart, with e2 following e11. e2 is amodi�er to e1, so e3 gets its headword from e1.1i.e., if e1 spans words i:::j, e2 spans words k:::l, then k = j + 1.242

S(fell)NP(horse)NPB(horse)DTthe NNhorse VP(raced)VBNraced PPpast the barn
VP(fell)VBfell

Variable Valuetype 1label Sheadlabel VPheadword fellheadtag VBlc.adj FALSElc.verb TRUErc.adj TRUErc.verb FALSEFigure B.1: An example constituent, and the values for its edge representation

VBNraced
Variable Valuetype 0label VBNheadlabel |headword racedheadtag VBNstop TRUElc.adj TRUElc.verb FALSErc.adj TRUErc.verb FALSEFigure B.2: An example leaf-node constituent, and the values for its edge representation.
243

boolean edges_equal(edge e1,edge e2){ if(e1.type != e2.type ORe1.label != e2.label ORe1.headlabel != e2.headlabel ORe1.headword != e2.headword ORe1.headtag != e2.headtag ORe1.lc != e2.lc ORe1.rc != e2.rc ORe1.stop != e2.stop)return FALSE;return TRUE;}void add_edge(edge e, int start, int end){ foreach edge x in chart[start,end,e.label]if(equal_edge(e,x)){ if(e.prob > x.prob)replace x with e;return;}add e to the set chart[start,end,e.label]}Figure B.3: Two functions associated with the edge data-type. edges equal compares twoedges for the purposes of the dynamic programming algorithm. add edge adds an edge tothe chart if it passes the dynamic programming condition.
244

join 2 edges precede(e1,e2) Figure B.5. Same as join 2 edges follow, except e1 is amodi�er to e2, so e3 gets its headword from e2.add singles(e) Figure B.6. Takes as input a single edge, e, and adds all possible edgescontaining a unary rule with e as the head-child.add stops(e) Figure B.7. Takes as input a single edge, e, which has not yet includedstop probabilities. Creates a new edge in the chart with the stop probabilities added.B.3 Subroutines that Complete Entire Spans of the Chartadd singles stops(start,end) Figure B.8. This creates all new edges for span startto end in the chart which are created through add singles or add stops. It is asubroutine that is used by both initialize and complete.initialize() Figure B.9. This initializes the chart, adding an edge for each possible(word,tag) pair.complete(int start,int end) Figure B.10. This adds all edges to the chart that spanwords start to end inclusive. (Assumes that end� start > 0, as initialize has alreadycreated all the single word constituents.)parse() Figure B.11. Parses the entire sentence.

245

(a) P.. H R1 .. + Ri) P.. H R1 .. RiProb = X Prob = Y Prob = X � Y � PR(Ri(ri) j P;H; :::)edge e1 edge e2 edge e3(b)void join_2_edges_follow(edge e1,edge e2){ edge e3;e3.type = 1;e3.label = e1.label;e3.headlabel = e1.headlabel;e3.headword = e1.headword;e3.headtag = e1.headtag;e3.stop = FALSE;e3.lc = e1.lc;e3.rc.adj = FALSE;e3.rc.verb = e1.rc.verb ORe2.lc.verb ORe2.rc.verb ORe2.headtag is a verb;e3.start = e1.start;e3.end = e2.end;e3.children = e1.children + e2;e3.prob = e1.prob + e2.prob +log P_r(e2.label,e2.headtag,e2.headword |parent-label == e1.label,headchild-label == e1.headlabel,headword == e1.headword,headtag == e1.headtag,distance.adjacency == e1.rc.adj,distance.verb == e1.rc.verb);add_edge(e3,e1.start,e2.end);}Figure B.4: join 2 edges follow(edge e1,edge e2) joins two edges e1 and e2 to form anew edge e3. (a) illustrates the process. (b) gives pseudocode.246

(a) Li + P.. L1 H ..) PLi .. L1 H ..Prob = X Prob = Y Prob = X � Y � PL(Li(li) j P;H; :::)edge e1 edge e2 edge e3(b)void join_2_edges_precede(edge e1,edge e2){ edge e3;e3.type = 1;e3.label = e2.label;e3.headlabel = e2.headlabel;e3.headword = e2.headword;e3.headtag = e2.headtag;e3.stop = FALSE;e3.rc = e2.rc;e3.lc.adj = FALSE;e3.lc.verb = e2.lc.verb ORe1.lc.verb ORe1.rc.verb ORe1.headtag is a verb;e3.start = e1.start;e3.end = e2.end;e3.children = e1 + e2.children;e3.prob = e1.prob + e2.prob +log P_l(e1.label,e1.headtag,e1.headword |parent-label == e2.label,headchild-label == e2.headlabel,headword == e2.headword,headtag == e2.headtag,distance.adjacency == e2.lc.adj,distance.verb == e2.lc.verb);add_edge(e3,e1.start,e2.end);}Figure B.5: join 2 edges precede(edge e1,edge e2) joins two edges e1 and e2 to forma new edge e3. (a) illustrates the process. (b) gives pseudocode.247

(a) H. . . .) PH. . . .Prob = X Prob = X �PH(H j P; :::)(b)void add_singles(edge e){ edge e3;e3.type = 1;e3.headlabel = e.label;e3.headword = e.headword;e3.headtag = e.headtag;e3.stop = FALSE;e3.lc.adj = TRUE;e3.lc.verb = FALSE;e3.rc.adj = TRUE;e3.rc.verb = FALSE;e3.start = e.start;e3.end = e.end;e3.children = e;foreach X in the set of non-terminals{ e3.label = X;e3.prob = e.prob +log P_h(e.label |parent-label == X,headword == e.headword,headtag == e.headtag);add_edge(e3,e.start,e.end);}}Figure B.6: add singles(edge e) adds edges with a unary rule re-writing to edge e. (a)illustrates the process. (b) gives pseudocode.248

(a) P(-). . . .) P(+). . . .Prob = X Prob = X �PL(STOP j ::::)�PR(STOP j ::::)(b)void add_stops(edge e){ edge e3;e3.type = 1;e3.label = e.label;e3.headlabel = e.headlabel;e3.headword = e.headword;e3.headtag = e.headtag;e3.stop = TRUE;e3.lc = e.lc;e3.rc = e.rc;e3.start = e.start;e3.end = e.end;e3.children = e.children;e3.prob = e.prob +log P_r(STOP |parent-label == e.label,headchild-label == e.headlabel,headword == e.headword,headtag == e.headtag,distance.adjacency == e.rc.adj,distance.verb == e.rc.verb) +log P_l(STOP |parent-label == e.label,headchild-label == e.headlabel,headword == e.headword,headtag == e.headtag,distance.adjacency == e.lc.adj,distance.verb == e.lc.verb);add_edge(e3,e.start,e.end);}Figure B.7: add stops(edge e) forms a new edge by adding stop probabilities to edge e.(a) illustrates the process. P(-) has stop == FALSE, P(+) has stop == TRUE. (b) givespseudocode. 249

void add_singles_stops(int start,int end){ //MAXUNARY is the maximum number of unary productions allowed//in a row#define MAXUNARY 5foreach edge X in chart[start,end] such that X.stop == FALSEadd_stops(X)for i = 1 to MAXUNARY{ foreach edge Y created by last set of calls to add_stopsadd_singles(Y)foreach edge Y created by last set of calls to add_singlesadd_stops(Y)}}Figure B.8: add singles stops(int start, int end) adds all stop probabilities, and edgeswhich are created by unary rules, for the chart entries spanning words start-end. The codemakes the approximation that there can never be more than MAXUNARY unary rulesbuilding directly on top of each other.

250

void initialize(){ edge e;//n is the number of words in the input sentencefor i = 1 to n{ if(word_i is an ``unknown'' word)set X = {POS tag from tagger for word_i}elseset X = {set of all tags seen for word_i in training data}foreach POS-tag T in X{ e.type = 0;e.label = T;e.headword = word_i;e.headtag = T;e.stop = TRUE;e.lc.adj = TRUE;e.lc.verb = FALSE;e.rc.adj = TRUE;e.rc.verb = FALSE;e.start = i;e.end = i;e.prob = 0;add_edge(e,i,i);add_singles_stops(i,i);}}} Figure B.9: initialize() initializes the chart.
251

void complete(int start,int end){ //split is the split pointfor split = start to end-1{ foreach edge e1 in chart[start,split] such that e1.stop == FALSEforeach edge e2 in chart[split+1,end] such that e2.stop == TRUEjoin_2_edges_follow(e1,e2);foreach edge e1 in chart[start,split] such that e1.stop == TRUEforeach edge e2 in chart[split+1,end] such that e2.stop == FALSEjoin_2_edges_precede(e1,e2);}add_singles_stops(start,end);}Figure B.10: complete(int start,int end) completes all edges in the chart spanningwords start to end.edge parse(){ initialize();//assume n is the number of words in the sentencefor span = 2 to nfor start = 1 to n-span+1{ end = start + span -1;complete(start,end);}//assume TOP is the start symbol (must be at the top of the tree)X = edge in chart[1,n,TOP] with highest probability;return X;}Figure B.11: parse() parses a sentence, returning the edge pointing to the top of thehighest probability tree. 252

Appendix C
The Parsing Algorithm for Model2 of Chapter 7
Model 2 introduces subcategorization features, and requires some (relatively minor) mod-i�cations to the parsing algorithm for model 1 described in appendix B. The changesare:� The context data-type is extended to include a subcat frame, i.e. a bag specifyingthe complements that an edge still requires. Hence the lc and rc variables in the edgedata-type now contain the left and right subcategorization frames for the edge, as wellas the distance features. See table C.1.� add singles is modi�ed to add subcategorization frames and probabilities. See �g-ure C.1.� join 2 edges follow, join 2 edges precede, and add stops are modi�ed to keeptrack of the subcategorization frame, and to condition the probabilities on the subcatframe. See �gures C.2, C.3 and C.4.� initialize() is modi�ed to start leaf-nodes with empty subcat frames. See �gure C.5.

253

void add_singles(edge e){ edge e3;e3.type = 1;e3.headlabel = e.label;e3.headword = e.headword;e3.headtag = e.headtag;e3.stop = FALSE;e3.lc.adj = TRUE;e3.lc.verb = FALSE;e3.rc.adj = TRUE;e3.rc.verb = FALSE;e3.start = e.start;e3.end = e.end;e3.children = e;foreach X in the set of non-terminalsforeach Y in the set of possible left subcat framesforeach Z in the set of possible right subcat frames{ e3.label = X;e3.lc.subcat = Y;e3.rc.subcat = Z;e3.prob = e.prob +log P_h(e.label |parent-label == X,headword == e.headword,headtag == e.headtag) +log P_lc(Y |parent-label == X,head-label == e.label,headword == e.headword,headtag == e.headtag) +log P_rc(Z |parent-label == X,head-label == e.label,headword == e.headword,headtag == e.headtag);add_edge(e3,e.start,e.end);}}Figure C.1: add singles(edge e) adds edges with a unary rule re-writing to edge e. Model2 additionally has loops over left and right subcat frames.254

void join_2_edges_follow(edge e1,edge e2){ edge e3;e3.type = 1;e3.label = e1.label;e3.headlabel = e1.headlabel;e3.headword = e1.headword;e3.headtag = e1.headtag;e3.stop = FALSE;e3.lc = e1.lc;e3.rc.adj = FALSE;e3.rc.verb = e1.rc.verb ORe2.lc.verb ORe2.rc.verb ORe2.headtag is a verb;e3.start = e1.start;e3.end = e2.end;e3.children = e1.children + e2;e3.lc.subcat = e1.lc.subcat;e3.rc.subcat = e2.lc.subcat;if e2.label is a complemente3.rc.subcat = e3.rc.subcat - e2.label;e3.prob = e1.prob + e2.prob +log P_r(e2.label,e2.headtag,e2.headword |parent-label == e1.label,headchild-label == e1.headlabel,headword == e1.headword,headtag == e1.headtag,distance.adjacency == e1.rc.adj,distance.verb == e1.rc.verb,subcat == e1.rc.subcat);add_edge(e3,e1.start,e2.end);}Figure C.2: join 2 edges follow(edge e1,edge e2) joins two edges e1 and e2 to form anew edge e3. Model 2 has modi�cations to calculate the subcat frames for the new edge,and add the subcat frame to the conditioning context.255

void join_2_edges_precede(edge e1,edge e2){ edge e3;e3.type = 1;e3.label = e2.label;e3.headlabel = e2.headlabel;e3.headword = e2.headword;e3.headtag = e2.headtag;e3.stop = FALSE;e3.rc = e2.rc;e3.lc.adj = FALSE;e3.lc.verb = e2.lc.verb ORe1.lc.verb ORe1.rc.verb ORe1.headtag is a verb;e3.start = e1.start;e3.end = e2.end;e3.children = e1 + e2.children;e3.lc.subcat = e2.lc.subcat;e3.rc.subcat = e2.rc.subcat;if e1.label is a complemente3.lc.subcat = e3.lc.subcat - e1.label;e3.prob = e1.prob + e2.prob +log P_l(e1.label,e1.headtag,e1.headword |parent-label == e2.label,headchild-label == e2.headlabel,headword == e2.headword,headtag == e2.headtag,distance.adjacency == e2.lc.adj,distance.verb == e2.lc.verb,subcat == e2.lc.subcat);add_edge(e3,e1.start,e2.end);}Figure C.3: join 2 edges precede(edge e1,edge e2) joins two edges e1 and e2 to forma new edge e3. Model 2 has modi�cations to calculate the subcat frames for the new edge,and add the subcat frame to the conditioning context.256

void add_stops(edge e){ edge e3;e3.type = 1;e3.label = e.label;e3.headlabel = e.headlabel;e3.headword = e.headword;e3.headtag = e.headtag;e3.stop = TRUE;e3.lc = e.lc;e3.rc = e.rc;e3.start = e.start;e3.end = e.end;e3.children = e.children;e3.prob = e.prob +log P_r(STOP |parent-label == e.label,headchild-label == e.headlabel,headword == e.headword,headtag == e.headtag,distance.adjacency == e.rc.adj,distance.verb == e.rc.verb,subcat == e.rc.subcat) +log P_l(STOP |parent-label == e.label,headchild-label == e.headlabel,headword == e.headword,headtag == e.headtag,distance.adjacency == e.lc.adj,distance.verb == e.lc.verb,subcat == e.lc.subcat);add_edge(e3,e.start,e.end);}Figure C.4: add stops(edge e) forms a new edge by adding stop probabilities to edge e.Model 2 additionally conditions on the subcat frame variable (the probability of stoppingwill in fact be 0 if this frame is not empty).
257

Variable Type Descriptionadj boolean (adjacency) TRUE if the head has taken no modi�ersverb boolean TRUE if one of the modi�ers to the head dominates a verbsubcat bag speci�es the complements still required by the edgeTable C.1: Variables in the context data-typevoid initialize(){ edge e;//n is the number of words in the input sentencefor i = 1 to n{ if(word_i is an ``unknown'' word)set X = {POS tag from tagger for word_i}elseset X = {set of all tags seen for word_i in training data}foreach POS-tag T in X{ e.type = 0;e.label = T;e.headword = word_i;e.headtag = T;e.stop = TRUE;e.lc.adj = TRUE;e.lc.verb = FALSE;e.lc.subcat = empty;e.rc.adj = TRUE;e.rc.verb = FALSE;e.rc.subcat = empty;e.start = i;e.end = i;e.prob = 0;add_edge(e,i,i);add_singles_stops(i,i);}}}Figure C.5: initialize() initializes the chart. Model 2 additionally sets the subcat framesto be empty. 258

Appendix D
An Analysis of Parsing Complexityfor the Models of Chapter 7
In this section we derive an upper bound for the parsing complexity of the algorithms inAppendix B and C, sketched in �gure 7.13. Note, however, that the beam search methodmeans that the parsing algorithm is almost certainly more e�cient in practice. (In fact, ourfeeling is that the running time of the algorithm depends much more on the e�ectivenessof the pruning method, rather than the asymptotic complexity of the algorithm.)Calls to the functions join 2 edges follow, join 2 edges precede, add single andadd stops take O(1) time. The calls to join 2 edges follow and join 2 edges precededominate the complexity of the algorithm, as they are most deeply nested (within 5for/foreach loops). We can now analyse the number of calls to join 2 edges follow.(The analysis for join 2 edges precede is similar, and gives the same complexity.)join 2 edges follow is buried within 5 loops, shown in the table below:Complexity LoopO(n) for span = 2 to nO(n) for start = 1 to n-span+1O(n) for split = start to end-1O(D1) foreach edge e1 in chart[start,split] such that e1.stop == FALSEO(D2) foreach edge e2 in chart[split+1,end] such that e2.stop == TRUED1 is an upper bound on the number of edges which do not have their STOP probabilities,259

for a given cell in the chart. D2 is a similar bound for the number of edges with STOPprobabilities. The running time is O(n3D1D2), where D1 and D2 are to be determined.D.1 A First Analysis of D1 and D2D1 and D2 are related to the edge representation, and in particular the features taken intoaccount for dynamic programming: i.e., the features compared when deciding whether twoedges are equivalent, in that the lower probability edge can be safely discarded. Table B.1describes the representation of edges; �gure B.3 describes the comparison function for thetwo edges.Assuming that an edge is a non-terminal, rather than a leaf-node (word/POS-tag pair),the following factors are taken into account:� The head-word of the constituent. This has O(n) possibilities.� The head-tag of the constituent. This has O(T) possibilities, where T is the maximumnumber of di�erent tags seen with any word in the vocabulary.� The label of the constituent. This has O(N) possibilities, where N is the number ofnon-terminals in the grammar, excluding POS tags.� The head-label of the constituent. This is the label of the non-terminal that is thehead of the constituent. It has O(N) possibilities (to be exact, N + 1 possibilities;it can be any one of the non-terminals in the grammar, or it can be the same as thehead-tag of the constituent).� The left-distance variable. We de�ne this to have O(D) possibilities (D=3 for themodels of chapter 7, as there are ags for adjacency and the presence of a verb).� The right-distance variable. This also has O(D) possibilities.� The left-subcategorization state. We de�ne this to have O(L) possibilities. (L isthe number of distinct left-subcategorization states seen in conditioning contexts intraining data.)� The right-subcategorization state. We de�ne this to have O(R) possibilities. (R isthe number of distinct right-subcategorization states seen in conditioning contexts intraining data.) 260

If an edge is a leaf (a POS-tag/word pair), their are O(nT) possible values (only theword and its part-of-speech need to be speci�ed). For other edges, there are O(nTN2D2LR)possible values. If we assume O(D1) = O(D2) = O(nTN2D2LR), then the overall parsingcomplexity is O(n3D1D2) = O(n5T 2N4D4L2R2).D.2 A Second Analysis of D1 and D2The complexity of the algorithm can be reduced by noting that once a constituent has itsstop probabilities, some features become irrelevant for the dynamic programming compar-ison. Speci�cally,� The head-label is not relevant.� The distance variables can be collapsed from O(D2) to some lower bound O(�D). Forexample, in models 1, 2 and 3, �D = 2, as a single ag | whether or not an edgecontains a verb | is the only distance feature required for a stopped edge.� The left and right subcategorization frames are irrelevant (and will always be empty).With these assumptions, O(D1) (the number of unstopped edges) remains asO(nTN2D2LR),but O(D2) = O(nNT �D). The running time of the entire algorithm is O(n3D1D2) =O(n5T 2N3D2 �DLR).D.3 A Third Analysis of D1 and D2The next thing to note is that the analysis of O(D1) has been rather pessimistic. It assumesthat all triples hparent non-terminal, head non-terminal, left-subcat statei or hparent non-terminal, head non-terminal, right-subcat statei are possible. In reality, many of thesecombinations will receive 0 probability under the model and will never be observed whendecoding. This leads to an O(N2LR) factor in the complexity which can be reduced.Assume the following de�nition of the set X :X = fhX,Y,L,Ri j hParent = X, Head-label = Y, left-subcat = Li andhParent = X, Head-label = Y, right-subcat = Riare both seen as conditioning contexts in training datag261

(D.1)In the worst case, X = N2LR, but in practice X may be much smaller than N2LR. TheO(N2LR) factor is then reduced to O(jX j); O(D1) becomes O(nT jX jD2); and the overallparsing complexity is O(n5jX jT 2ND2 �D).

262

Appendix E
E�ciency Considerations whenParsing
E.1 Beam SearchTo improve e�ciency it is important to \prune" constituents in the chart that are relativelylow in probability, and are therefore unlikely to be part of the highest probability parse fora sentence. [Caraballo and Charniak 98, Goodman 97b] have discussed pruning strategiesquite extensively; this appendix describes the method used in the parsers in chapter 7.E.1.1 The Figure of MeritThe �rst thing to consider is what \score" or probability should be used to rank edges in thechart. An obvious choice is the probability stored with each edge in the chart: the \inside"probability, or P (subtree j label, head-tag, head-word), the conditional probability of theedge's subtree, given its non-terminal label, head-word, and head-tag.However, as has been argued in [Caraballo and Charniak 98, Goodman 97b], the in-side probability alone is a poor measure of how likely an edge is to be part of the high-est probability tree. The problem is that the measure takes no account of the priorprobability of seeing a constituent with the particular (label, head-tag, head-word) triple.

263

For example, an extremely unlikely constituent, such as a VP headed by the preposi-tion of, might easily get a high inside probability because the conditional probabilityP (subtree j VP, Preposition, of) of seeing the subtree once the (VP,preposition,of) triplewas generated could be high.For this reason an additional \prior" probability of seeing the (label, head-tag, head-word)triple is taken into account ([Goodman 97b] also describes the use of a prior;[Caraballo and Charniak 98] describe rather more sophisticated ways of calculating theprior). So the measure used to rank edges (or \�gure of merit", as named in[Caraballo and Charniak 98]) isPinside(subtree j label, head-tag, head-word)� Pprior(label, head-tag, head-word) (E.1)where we decompose Pprior asPprior(label, head-tag, head-word) = P (head-tag, head-word)�P (label j head-tag, head-word)(E.2)and the second probability term is smoothed through linear interpolation. The counts arecollected from all events where a (label, head-tag, head-word) triple is generated: eitheras part of a dependency or unary event.E.1.2 The BeamHaving de�ned the �gure of merit for each edge, the beam strategy is relatively sim-ple. Given that the highest score for any constituent in span start:::end of the chart isbestprob[start; end], then any other constituent in this span of the chart must have prob-ability > � bestprob[start; end]. � is the beam width. For the experiments in chapter 7,� = 110000 was used.E.2 Temporary Caching of ProbabilitiesThe calls to the probability functions Pl, Pr, Ph, Plc, and Prc are expensive. Each proba-bility calculation typically requires look up of several hashed counts, and several oatingpoint additions/multiplications. 264

It turns out that for a particular sentence being parsed, there are often many repeatedcalls to these functions calculating exactly the same parameter values. To reduce theamount of repeated computation, a temporary cache of complete probability values isstored for each sentence being parsed. When making a call to calculate a probability thistemporary hash table is �rst consulted to see if that probability has been calculated before| if so the value is recovered immediately and returned. Otherwise, the probability iscalculated using the full set of hash look ups and oating point operations, and is storedin the temporary cache before being returned.

265

Bibliography
[Abney 97] S. Abney. 1997. Stochastic Attribute-Value Grammars. Computational Lin-guistics, 23(4):597-618.[Allen 87] J. Allen. 1987. Natural Language Understanding. Benjamin/Cummings Publish-ing.[Alshawi 96] H. Alshawi. 1996. Head Automata and Bilingual Tiling: Translation withMinimal Representations. Proceedings of the 34th Annual Meeting of the Asso-ciation for Computational Linguistics, pages 167-176.[Alshawi and Carter 94] H. Alshawi and D. Carter. Training and Scaling Preference Func-tions for Disambiguation. Computational Linguistics, 20(4):635-648.[Appelt et al. 93] D. Appelt, J. Hobbs, J. Bear, D. J. Israel, and M. Tyson. 1993. FAS-TUS: a �nite-state processor for information extraction from real-world text. InProceedings of IJCAI-93, (Chambery, France), September 1993.[Baker 79] J. K. Baker. 1979. Trainable Grammars for Speech Recognition. In Jared J.Wolf and Dennis H. Klatt, editors, Speech Communication Papers Presented atthe 97th Meeting of the Acoustical Society of America, MIT, Cambridge, MA.[Baum 71] Baum, L.E. (1971). An Inequality and Associated Maximization Techniquein Statistical Estimation for Probabilistic Functions of Markov Processes. InInequalities, III: Proceedings of a Symposium. (Shish, Qved ed.). New York:Academic Press.[BD 77] Bickel and Docksum (1977). Mathematical Statistics: Basic Ideas and SelectedTopics. Prentice Hall, Englewood Cli�s, New Jersey.266

[Bikel et al. 97] D. M. Bikel, S. Miller, R. Schwartz, and R. Weischedel. 1997. Nymble: aHigh-Performance Learning Name-�nder. In Proceedings of the Fifth Conferenceon Applied Natural Language Processing, pages 194-201.[Black et al. 91] E. Black et al. 1991. A Procedure for Quantitatively Comparing the Syn-tactic Coverage of English Grammars. In Proceedings of the February 1991DARPA Speech and Natural Language Workshop.[Black et al. 92a] E. Black, J. La�erty and S. Roukos. 1992. Development and Evalua-tion of a Broad-Coverage Probabilistic Grammar of English-Language Com-puter Manuals. In Proceedings of the 30th Annual Meeting of the Associationfor Computational Linguistics, pages 185-192.[Black et al. 92b] E. Black, F. Jelinek, J. La�erty, D. Magerman, R. Mercer and S. Roukos.1992. Towards History-Based Grammars: Using Richer Models for Probabilis-tic Parsing. In Proceedings of the 5th DARPA Speech and Natural LanguageWorkshop, Harriman, NY.[Black et al. 93] E. Black, R. Garside and G. Leech. 1993. Statistically-Driven Com-puter Grammars of English: The IBM/Lancaster Approach. Rodopi B.V.,Amsterdam{Atlanta, GA.[Bod 93] R. Bod. 1993. Using an Annotated Corpus as a Stochastic Grammar. In Pro-ceedings of the Sixth Conference of the European Chapter of the ACL, pages37-44.[Booth and Thompson 73] T. L. Booth and R. A. Thompson. 1973. Applying ProbabilityMeasures to Abstract Languages. IEEE Transactions on Computers, C-22(5),pages 442-450.[Brew 95] C. Brew. (1995). Stochastic HPSG. In Proceedings of the 7th Conference ofthe European Chapter of the Association for Computational Linguistics, pages83-89, Dublin, Ireland. University College.[Brill 93] E. Brill. 1993. Automatic Grammar Induction and Parsing Free Text: ATransformation-Based Approach. In Proceedings of the 21st Annual Meetingof the Association for Computational Linguistics.267

[Brill 95] E. Brill. 1995. Transformation-Based Error-Driven Learning and Natural Lan-guage Processing: A Case Study in Part of Speech Tagging. ComputationalLinguistics, 21(4):543-565.[Brill and Resnik 94] E. Brill and P. Resnik. A Rule-Based Approach to PrepositionalPhrase Attachment Disambiguation. In Proceedings of the �fteenth internationalconference on computational linguistics (COLING-1994), 1994.[Briscoe and Carroll 93] T. Briscoe and J. Carroll. 1993. Generalized LR Parsing of Natu-ral Language (Corpora) with Uni�cation-Based Grammars. Computational Lin-guistics, 19(1):25-60.[Brown et al. 1992] P. F. Brown, V. Della Pietra, P. V. deSouza, J. C. Lai, and R. L. Mer-cer. 1992. \Class-based n-gram models of natural language." ComputationalLinguistics, 18(4), pages 467{479.[Carroll and Briscoe 95] J. Carroll and T. Briscoe. 1995. Apportioning Development E�ortin a Probabilistic LR Parsing System through Evaluation. In Proceedings of theConference on Empirical Methods in Natural Language Processing, Universityof Pennsylvania, May 1996.[Charniak 93] E. Charniak. 1993. Statistical language learning. Cambridge, Mass.: MITPress.[Charniak et al. 93] E. Charniak, C. Hendrickson, N. Jacobson and M. Perkowitz. 1993.Equations for Part-of-Speech Tagging. In Proceedings of the Eleventh NationalConference on Arti�cial Intelligence (AAAI-93).[Charniak and Carroll 94] E. Charniak and G. Carroll. 1994. Context-Sensitive StatisticsFor Improved Grammatical Language Models. In Proceedings of the 12th Na-tional Conference on Arti�cial Intelligence, AAAI Press, Seattle, WA. pages742{747.[Charniak 96] E. Charniak. 1996. Tree-Bank Grammars. In Proceedings of the ThirteenthNational Conference on Arti�cial Intelligence and Eighth Innovative Applica-tions of Arti�cial Intelligence Conference, AAAI 96, IAAI 96, August 4-8, 1996,Portland, Oregon. pages 1031{1036.268

[Charniak 97] E. Charniak. 1997. Statistical parsing with a context-free grammar andword statistics. Proceedings of the Fourteenth National Conference on Arti�cialIntelligence, AAAI Press/MIT Press, Menlo Park (1997).[Caraballo and Charniak 98] S. Caraballo and E. Charniak. 1998. New �gures of merit forbest-�rst probabilistic chart parsing. Computational Linguistics, 24(2), pages275{298.[Chelba and Jelinek 98] C. Chelba and F. Jelinek. 1998. Exploiting Syntactic Structurefor Language Modeling. In Proceedings of COLING-ACL 1998, Montreal.[Chen and Goodman 96] S. Chen and J. Goodman. An Empirical Study of SmoothingTechniques for Language Modeling. In Proceedings of the 34th Annual Meetingof the Association for Computational Linguistics, pages 310{318.[Chitrao and Grishman 90] M. Chitrao and R. Grishman. 1990. Statistical Parsing of Mes-sages. In Proceedings Speech and Natural Language Workshop, Hidden Valley,PA, pages 263{266, Morgan Kaufman Publishers.[Chomsky 57] N. Chomsky. 1957. Syntactic Structures, Mouton, The Hague.[Chomsky 95] N. Chomsky. 1995. The Minimalist Program. Cambridge, Mass.: The MITPress.[Church and Patil 82] K. Church and R. Patil. 1982. Coping with Syntactic Ambiguity orHow to Put the Block in the Box on the Table. American Journal of Computa-tional Linguistics, 8(3-4):139{149.[Church 88] K. Church. 1988. A Stochastic Parts Program and Noun Phrase Parser forUnrestricted Text. Second Conference on Applied Natural Language Processing,ACL.[Collins and Brooks 95] M. Collins and J. Brooks. 1995. Prepositional Phrase Attachmentthrough a Backed-o� Model. Proceedings of the Third Workshop on Very LargeCorpora, pages 27-38.[Collins 96] M. Collins. 1996. A New Statistical Parser Based on Bigram Lexical Depen-dencies. Proceedings of the 34th Annual Meeting of the Association for Compu-tational Linguistics, pages 184-191.269

[Collins 97] M. Collins. 1997. Three Generative, Lexicalised Models for Statistical Parsing.In Proceedings of the 35th Annual Meeting of the Association for ComputationalLinguistics and 8th Conference of the European Chapter of the Association forComputational Linguistics, pages 16-23.[Collins and Miller 98] M. Collins and S. Miller. 1998. Semantic Tagging using a Proba-bilistic Context Free Grammar. In Proceedings of the Sixth Workshop on VeryLarge Corpora.[Dempster, Laird and Rubin 77] Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977).Maximum Likelihood from Incomplete Data Via the EM Algorithm, Journal ofthe Royal Statistical Society, Ser B, 39, 1-38.[Dowding et al. 93] J. Dowding, J. M. Gawron, D. Appelt, J. Bear, L. Cherny, R. Moore,D. Moran. 1993. GEMINI: A Natural Language System for Spoken-LanguageUnderstanding. In Proceedings of the 31st Annual Meeting of the Associationfor Computational Linguistics, Columbus, Ohio, pp. 54{61.[Eisner 96] J. Eisner. 1996. Three New Probabilistic Models for Dependency Parsing: AnExploration. Proceedings of COLING-96, pages 340-345.[Eisner 96b] J. Eisner. 1996. An Empirical Comparison of Probability Models for Depen-dency Grammar. Technical report IRCS-96-11, Institute for Research in Cogni-tive Science, University of Pennsylvania.[Frank 92] R. Frank. 1992. Syntactic Locality and Tree Adjoining Grammar: Grammati-cal, Acquisition and Processing Perspectives. Ph.D. Thesis, University of Penn-sylvania.[Gale and Church 90] W. Gale and K. Church. Poor Estimates of Context are Worse thanNone. In Proceedings of the June 1990 DARPA Speech and Natural LanguageWorkshop, Hidden Valley, Pennsylvania.[Gazdar et al. 95] G. Gazdar, E.H. Klein, G.K. Pullum, I.A. Sag. 1985. Generalized PhraseStructure Grammar. Harvard University Press.[Goodman 96] J. Goodman. 1996. E�cient Algorithms for Parsing the DOP Model. InProceedings of the Conference on Empirical Methods in Natural Language Pro-cessing, pages 143-152, May 1996.270

[Goodman 96b] J. Goodman. 1996. Parsing Algorithms and Metrics. In Proceedings of the34th Annual Meeting of the ACL, pages 177-183, Santa Cruz, CA, June 1996.[Goodman 97] J. Goodman. 1997. Probabilistic Feature Grammars. In Proceedings of theFourth International Workshop on Parsing Technologies.[Goodman 97b] J. Goodman. 1997. Global thresholding and multiple-pass parsing. In Pro-ceedings of the Second Conference on Empirical Methods in Natural LanguageProcessing.[Goodman 98] J. Goodman. 1998. Parsing Inside-Out. Ph.D. Thesis, Harvard University.[Grishman 95] R. Grishman. 1995. The NYU System for MUC-6 or Where's the Syntax?In Proceedings of the Sixth Message Understanding Conference, Morgan Kauf-mann.[Hajic 98] J. Hajic. 1998. Building a Syntactically Annotated Corpus: The Prague Depen-dency Treebank. In Issues of Valency and Meaning, pages 106-132, Karolinum,Charles University Press, Prague.[Hajic et al. 98] J. Hajic, E. Brill, M. Collins, B. Hladka, D. Jones, C. Kuo, L. Ramshaw,O. Schwartz, C. Tillmann, and D. Zeman. Core Natural Language ProcessingTechnology Applicable to Multiple Languages. In 1998 Johns Hopkins SummerWorkshop on Language Engineering, Final Report.[Hermjakob and Mooney 97] U. Hermjakob and R. J. Mooney. Learning Parse and Trans-lation Decisions from Examples with Rich Context. In Proceedings of the 35thAnnual Meeting of the Association for Computational Linguistics and 8th Con-ference of the European Chapter of the Association for Computational Linguis-tics, pages 482-489.[Hindle and Rooth 91] D. Hindle and M. Rooth. 1991. Structural Ambiguity and LexicalRelations. In Proceedings of the 29th Annual Meeting of the Association forComputational Linguistics.[Hindle and Rooth 93] D. Hindle and M. Rooth. Structural Ambiguity and Lexical Rela-tions. Computational Linguistics, 19(1):103-120, 1993.[Hopcroft and Ullman 79] J. E. Hopcroft and J. D. Ullman. 1979. Introduction to automatatheory, languages, and computation. Reading, Mass.: Addison-Wesley.271

[Jelinek 90] F. Jelinek. 1990. Self-organized Language Modeling for Speech Recognition. InReadings in Speech Recognition. Edited by Waibel and Lee. Morgan KaufmannPublishers.[Jelinek et al. 94] F. Jelinek, J. La�erty, D. Magerman, R. Mercer, A. Ratnaparkhi, S.Roukos. 1994. Decision Tree Parsing using a Hidden Derivation Model. Pro-ceedings of the 1994 Human Language Technology Workshop, pages 272-277.[Johnson 97] M. Johnson. 1997. The E�ect of Alternative Tree Representations on TreeBank Grammars. In Proceedings of NeMLAP 3.[Jones and Eisner 92a] M. A. Jones and J. M. Eisner. 1992. A probabilistic parser ap-plied to software testing documents. In Proceedings of National Conference onArti�cial Intelligence (AAAI-92), San Jose, pages 322-328.[Jones and Eisner 92b] M. A. Jones and J. M. Eisner. 1992. A probabilistic parser andits application. In Proceedings of the AAAI-92 Workshop on Statistically-BasedNatural Language Processing Techniques, San Jose.[Joshi 87] A. Joshi. 1987. An Introduction to tree adjoining grammars, in A. Manaster-Ramis, editor, Mathematics of Language. John Benjamins, Amsterdam, 1987.[Joshi and Srinivas 94] A. Joshi and B. Srinivas. 1994. Disambiguation of Super Parts ofSpeech (or Supertags): Almost Parsing. In International Conference on Com-putational Linguistics (COLING 94), Kyoto University, Japan, August 1994.[Karp et al. 94] Daniel Karp, Yves Schabes, Martin Zaidel and Dania Egedi. A FreelyAvailable Wide Coverage Morphological Analyzer for English. In Proceedings ofthe 15th International Conference on Computational Linguistics, 1994.[Kaplan and Bresnan 82] R. Kaplan and J. Bresnan. 1982. Lexical-Functional Grammar:A formal system for grammatical representation. In Joan Bresnan, editor, TheMental Representation of Grammatical Relations. The MIT Press, Cambridge,MA, pages 173{281. Reprinted in Mary Dalrymple, Ronald M. Kaplan, JohnMaxwell, and Annie Zaenen, eds., Formal Issues in Lexical-Functional Gram-mar, 29{130. Stanford: Center for the Study of Language and Information.1995. 272

[Katz 87] S. Katz. Estimation of Probabilities from Sparse Data for the Language ModelComponent of a Speech Recogniser. IEEE Transactions on Acoustics, Speech,and Signal Processing, Vol. ASSP-35, No. 3, 1987.[Koller, McAllester and Pfe�er 97] D. Koller, D. McAllester, and A. Pfe�er. 1997. E�ec-tive Bayesian Inference for Stochastic Programs. In Proceedings of the 14th Na-tional Conference on Arti�cial Intelligence (AAAI). Providence, Rhode Island.[La�erty et al. 92] J. La�erty, D. Sleator and, D. Temperley. 1992. Grammatical Trigrams:A Probabilistic Model of Link Grammar. Proceedings of the 1992 AAAI FallSymposium on Probabilistic Approaches to Natural Language.[Lauer 95] M. Lauer. 1995. Corpus Statistics Meet the Noun Compound: Some Empiri-cal Results. In Proceedings of the 33rd Annual Meeting of the Association forComputational Linguistics, Boston, MA., pages 47-54.[McCawley 68] J. McCawley. 1968. The Role of Semantics in Grammar. In Emmon Bachand Robert Harms, editors, Universals in Linguistic Theory, pages 124{169.Holt, Rinehart and Winston.[Magerman and Marcus 91] D. Magerman and M. Marcus. 1991. Pearl: A ProbabilisticChart Parser. Proceedings of the 1991 European ACL Conference, Berlin, Ger-many.[Magerman and Weir 92] D. Magerman and D. Weir. 1992. E�ciency, Robustness, andAccuracy in Picky Chart Parsing. In Proceedings of the 30th Annual Meeting ofthe Association for Computational Linguistics, pages 40{47.[Magerman 95] D. Magerman. 1994. Natural Language Parsing as Statistical PatternRecognition. Ph.D. thesis, Stanford University.[Magerman 95] D. Magerman. 1995. Statistical Decision-Tree Models for Parsing. Proceed-ings of the 33rd Annual Meeting of the Association for Computational Linguis-tics, pages 276-283.[Marcus 90] M. Marcus. 1990. Session Summary (Session 9: Automatic Acquisition ofLinguistic Structure (Special session)). In Proceedings of the June 1990 DARPASpeech and Natural Language Workshop, Hidden Valley, Pennsylvania, pages249{250. 273

[Marcus et al. 93] M. Marcus, B. Santorini and M. Marcinkiewicz. 1993. Building a LargeAnnotated Corpus of English: the Penn Treebank. Computational Linguistics,19(2):313-330.[Marcus et al. 94] M. Marcus, G. Kim, M. A. Marcinkiewicz, R. MacIntyre, A. Bies, M.Ferguson, K. Katz, B. Schasberger. 1994. The Penn Treebank: Annotating Pred-icate Argument Structure. Proceedings of the 1994 Human Language TechnologyWorkshop, pages 110-115.[de Marcken 95] C. de Marcken. 1995. On the Unsupervised Induction of Phrase-StructureGrammars. In Proceedings of the Third Workshop on Very Large Corpora.[Miller et al. 98] S. Miller, M. Crystal, H. Fox, L. Ramshaw, R. Schwartz, R. Stone, R.Weischedel and the Annotation Group. 1998. Algorithms that Learn to ExtractInformation. BBN: Description of the SIFT System as used for MUC-7. InProceedings of the Seventh Message Understanding Conference.[Nederhof et al 98] M-J. Nederhof, A. Sarkar and G. Satta. 1998. Pre�x Probabilities fromProbabilistic Tree Adjoining Grammars. In Proceedings of COLING-ACL 1998,Montreal.[Nederhof et al 1998b] M-J. Nederhof, A. Sarkar and G. Satta. 1998. Pre�x Probabilitiesfrom Linear Indexed Grammars. In Proceedings of the Fourth Workshop on TreeAdjoining Grammars, TAG+ 4, Philadelphia, August 1998.[MUC-6, 1995] Proceedings of the Sixth Message Understanding Conference (MUC-6).Morgan Kaufmann, San Mateo, CA.[Pereira and Warren 80] F. Pereira and D. Warren. 1980. De�nite Clause Grammars forLanguage Analysis | A Survey of the Formalism and a Comparison with Aug-mented Transition Networks. Arti�cial Intelligence, 13:231-278.[Pereira and Schabes 92] F. Pereira and Y. Schabes. 1992. Inside-Outside Reestimationfrom Partially Bracketed Corpora. In Proceedings of the 30th Annual Meetingof the Association for Computational Linguistics, pages 128-135.[Pinker 94] S. Pinker. 1994. The Language Instinct. Penguin Books.[Pollard and Sag 94] C. Pollard and I. Sag. 1994. Head{Driven Phrase Structure Gram-mar. Chicago: University of Chicago Press and Stanford: CSLI Publications.274

[Ramshaw and Marcus 95] L. Ramshaw and M. Marcus. 1995. Text Chunking usingTransformation-Based Learning. In Proceedings of the Third Workshop on VeryLarge Corpora, pages 82-94.[Ratnaparkhi 98] A. Ratnaparkhi. 1998. Unsupervised Statistical Models for PrepositionalPhrase Attachment. In Proceedings of the Seventeenth International Conferenceon Computational Linguistics, Aug. 10-14, 1998. Montreal, Canada.[Ratnaparkhi 97] A. Ratnaparkhi. 1997. A Linear Observed Time Statistical Parser Basedon Maximum Entropy Models. In Proceedings of the Second Conference on Em-pirical Methods in Natural Language Processing, Brown University, Providence,Rhode Island.[Ratnaparkhi 96] A. Ratnaparkhi. 1996. A Maximum Entropy Model for Part-Of-SpeechTagging. Conference on Empirical Methods in Natural Language Processing,May 1996.[Ratnaparkhi et al. 94] A. Ratnaparkhi, J. Reynar and S. Roukos. A Maximum EntropyModel for Prepositional Phrase Attachment. In Proceedings of the ARPA Work-shop on Human Language Technology, Plainsboro, NJ, March 1994.[Resnik 92] P. Resnik. 1992. Probabilistic Tree-Adjoining Grammar as a Framework forStatistical Natural Language Processing. In Proceedings of COLING 92, VolumeII, pages 418{424.[Russell and Norvig 95] S. J. Russell and P. Norvig. 1995. Arti�cial intelligence: a modernapproach. Englewood Cli�s, N.J. : Prentice Hall.[Sarkar 98] A. Sarkar. 1998. Conditions on Consistency of Probabilistic Tree AdjoiningGrammars. In Proceedings of COLING-ACL 1998, Montreal.[Schabes 92] Y. Schabes. 1992. Stochastic Lexicalized Tree-Adjoining Grammars. In Pro-ceedings of COLING 92, Volume II, pages 426{432.[Schabes et al 93] Y. Schabes, M. Roth and R. Osborne. 1993. Parsing the Wall StreetJournal with the Inside-Outside Algorithm. In Proceedings of the Sixth Confer-ence of the European Chapter of the ACL, pages 341{347.[Schabes and Waters 93] Y. Schabes and R. Waters. 1993. Stochastic Lexicalized Context-Free Grammar. In Proceedings of the Third International Workshop on Parsing275

Technologies.[Sekine et al 92] S. Sekine, J. Carroll, S. Ananiadou, and J. Tsujii. 1992. Automatic Learn-ing for Semantic Collocation. In Proceedings of the Third Conference on AppliedNatural Language Processing.[Sekine and Grishman 95] S. Sekine and R. Grishman. 1995. A Corpus-based ProbabilisticGrammar with Only Two Non-terminals. In Proceedings of the Fourth Interna-tional Workshop on Parsing Technology.[Sene� 92] S. Sene�. 1992. TINA: A Natural Language System for Spoken Language Ap-plications. Computational Linguistics, 18(1):61-86.[Sleator and Temperley 91] D. Sleator and D. Temperley. 1991. Parsing English with aLink Grammar. Carnegie Mellon University Computer Science technical reportCMU-CS-91-196, October 1991.[Srinivas 97] B. Srinivas. 1997. Complexity of Lexical Descriptions and its Relevance toPartial Parsing. PhD Dissertation, University of Pennsylvania.[Steedman 96] M. Steedman. 1996. Surface Structure and Interpretation. (Linguistic In-quiry Monograph No.30), MIT Press.[Thomason 86] M. G. Thomason. 1986. Syntactic Pattern Recognition: Stochastic Lan-guages. In T.Y. Young and K-S Fu, editors, Handbook of Pattern Recognitionand Image Processing. Academic Press.[Weischedel et al. 93] R. Weischedel, M. Meteer, R. Schwartz, L. Ramshaw, and J. Pal-mucci. 1993. Coping with Ambiguity and UnknownWords through ProbabilisticModels. Computational Linguistics 19(2): pages 359{382.[Witten and Bell 91] I. T. Witten and T. C. Bell. 1991. The Zero-Frequency Problem:Estimating the Probabilities of Novel Events in Adaptive Text Compression.IEEE Transactions on Information Theory, 37(4):1085{1094, July 1991.[Wood 93] M. M. Wood. 1993. Categorial Grammars, Routledge.[Woods 70] W. A. Woods. 1970. Transition network grammars for natural language anal-ysis. In Grosz, Jones, and Webber, editors, Readings in Natural Language Pro-cessing. 276

