HEAD-DRIVEN STATISTICAL MODELS FOR NATURAL
LANGUAGE PARSING

Michael Collins

A DISSERTATION

n

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

1999

Professor Mitch Marcus
Supervisor of Dissertation

Professor Jean Gallier
Graduate Group Chair

COPYRIGHT
Michael Collins
1999

Acknowledgements

Mitch Marcus was a wonderful advisor. He gave consistently good advice, and allowed an
ideal level of intellectual freedom in pursuing ideas and research topics. I would like to
thank the members of my thesis committee — Aravind Joshi, Mark Liberman, Fernando
Pereira and Mark Steedman — for the remarkable breadth and depth of their feedback.
I had countless impromptu but influential discussions with Jason Eisner, Dan Melamed
and Adwait Ratnaparkhi in the LINC lab. They also provided feedback on many drafts
of papers and thesis chapters. Paola Merlo pushed me to think about many new angles of
the research. Dimitrios Samaras gave invaluable feedback on many portions of the work.
Thanks to James Brooks for his contribution to the work that comprises chapter 5 of this
thesis.

The community of faculty, students and visitors involved with the Institute for Research
in Cognitive Science at Penn provided an intensely varied and stimulating environment.
I would like to thank them collectively. Some deserve special mention for discussions
that contributed quite directly to this research: Breck Baldwin, Srinivas Bangalore, Dan
Bikel, Mickey Chandresekhar, David Chiang, Christy Doran, Kyle Hart, Al Kim, Tony
Kroch, Robert Macintyre, Max Mintz, Tom Morton, Martha Palmer, Jeff Reynar, Joseph
Rosenzweig, Anoop Sarkar, Matthew Stone, Debbie Steinig, Ann Taylor, John Trueswell,
Bonnie Webber, Fei Xia, and David Yarowsky. I would also like to thank Amy Dunn, Mike
Felker and Betsy Norman for making administrative matters run smoothly.

There was also some crucial input from sources outside of Penn. In the summer of 1996
I worked at BBN Technologies: discussions with Scott Miller, Richard Schwartz and Ralph

Weischedel had a deep influence on the research. Manny Rayner and David Carter from

iii

SRI Cambridge supervised my Masters thesis at Cambridge: their technical supervision
was the beginning of this research, and their enthusiasm and support was really what
propelled me into working in computational linguistics.

Finally, and most importantly, thanks to my parents and my sister Sarah, for giving

their unwavering support during and before this work.

v

Abstract

HEAD-DRIVEN STATISTICAL MODELS FOR NATURAL LANGUAGE PARSING
Michael Collins

Supervisor: Professor Mitch Marcus

Statistical models for parsing natural language have recently shown considerable suc-
cess in broad-coverage domains. Ambiguity often leads to an input sentence having many
possible parse trees; statistical approaches assign a probability to each tree, thereby rank-
ing competing trees in order of plausibility. The probability for each candidate tree is
calculated as a product of terms, each term corresponding to some sub-structure within
the tree. The choice of parameterization is the choice of how to break down the tree. There

are two critical questions regarding the parameterization of the problem:

1. What linguistic objects (e.g., context-free rules, parse moves) should the model’s
parameters be associated with? l.e., How should trees be decomposed into smaller

fragments?

2. How can this choice be instantiated in a sound probabilistic model?

This thesis argues that the locality of a lexical head’s influence in a tree should motivate
modeling choices in the parsing problem. In the final parsing models a parse tree is repre-
sented as the sequence of decisions corresponding to a head-centered, top-down derivation
of the tree. Independence assumptions then follow naturally, leading to parameters that
encode the X-bar schema, subcategorization, ordering of complements, placement of ad-
juncts, lexical dependencies, wh-movement, and preferences for close attachment. All of

these preferences are expressed by probabilities conditioned on lexical heads.

The goals of the work are two-fold. First, we aim to advance the state of the art. We
report tests on Wall Street Journal text showing that the models give improved accuracy
over other methods in the literature. The models recover richer representations than pre-
vious approaches, adding the complement/adjunct distinction and information regarding
wh-movement. Second, we aim to increase understanding of statistical parsing models.
Each parameter type is motivated through tree examples where it provides discriminative
information. An empirical study of prepositional phrase attachment ambiguity is used to
investigate the effectiveness of dependency parameters for ambiguity resolution. A number
of parsing models are tested, and we give a breakdown of their performance on different
types of construction. Finally, we give a detailed comparison of the models to others in

the literature.

vi

Contents

Acknowledgements iii
Abstract v
1 Introduction 1
1.1 An Overview of this Chapter 2
1.2 The Practical Motivation for Parsing 3

1.3 A Major Problem: Ambiguity 5
1.4 Previous Approaches L L 7
1.4.1 Rule-Based Approaches, 7

1.4.2 Statistical Methods oo 8

1.5 This Thesis o . . o 9
1.5.1 An Example: Belief Networks and Causality 11

1.5.2 Modeling Parse Structures 13

1.5.3 A Motivation for the Choice of Decomposition: Causality and Locality 16

1.5.4 A Sketch of the Parameter Types 17

1.5.5 Results 26

1.5.6 A Summary of the Argument, 27

1.6 Overviewo 28
1.6.1 Reader’s Guide 30

2 Statistical Models 31
2.1 Imtroduction 31

vil

2.2 Probability Theory e
2.2.1 Maximum Likelihood Estimation
2.2.2 Notatlon e e e

2.2.3 Probabilistic Approaches for Supervised Machine Learning Problems

2.2.4 A Note on the Definition of the Event Space

2.3 Defining Probabilities over Structured Events: Some General Results
2.3.1 Defining the Model Structure: Associating Probabilities with Sub-

Structures L. L

2.3.2 Maximum-Likelihood Estimation in Structured Models

2.3.3 Two Conditions for Model Structures

234 Summary . .o oL e e e e

2.4 Defining Sentence Probabilities Using Markov Processes

2.4.1 The Importance of the STOP Symbol

2.5 Defining Tagged-Sentence Probabilities Using Hidden Markov Processes . .

2.6 Probabilistic Context Free Grammars (PCFGs)

2.6.1 Formal Definitions o oo

2.6.2 Conditions for Consistency

2.6.3 Search for the Highest Probability Tree

2.6.4 Parameter Estimation 0oL

2.7 History-Based Models o

2.7.1 Conditional History-Based Models

2.8 Additional Topics in Statistical Models

2.8.1 Unsupervised Learning through the EM Algorithm

2.9 Estimation

2.9.1 The Sparse Data Problem

2.9.2 Two Sources of Estimation Exrror

2.9.3 Linear Combinations of ML Estimates

2.9.4 Calculating Back-Off Weights

Some Alternative Parameterizations for Statistical Parsing

3.1 A Definition of Parse-Tree Parameterization

viii

34

3.1.1 A Note about Events in this Chapter 71

3.1.2 Parameterization Proposals: a Summary 72
3.2 Parameterization Proposal 1: A Simple PCFG 73
3.2.1 Lack of Seusitivity to Lexical Dependencies 75
3.2.2 Structural Preferences o oo 7
3.3 Dependency Parameterizations 77
3.3.1 Parameterization Proposal 2: Dependencies 7
3.3.2 The Function from Trees to Sets of Dependencies 79
3.3.3 The Motivation for Dependencies as a Representation 82
3.3.4 Parameterization Proposal 3: Dependencies + Direction 83
3.3.5 Parameterization Proposal 4: Dependencies + Direction + Relations 83
3.3.6 Parameterization Proposal 5: Dependencies + Direction + Relations
+ Subcategorization oo 89
3.3.7 Parameterization Proposal 6: Dependencies + Direction + Relations
+ Subcategorization + Distance oo 93
3.3.8 Parameterization Proposal 7: Dependencies + Direction + Relations
+ Subcategorization + Distance + Parts-of-Speech 101
3.4 Summary e e 102
Previous Work 103
4.1 Introduction e 103
4.2 A Brief History of Probabilistic Parsing for Natural Language 103
4.3 Five Categories of Previous Work 109
4.4 Probabilistic Models without Lexical Sensitivity 110
4.4.1 Results for PCFGs on the Penn WSJ Treebank 110
4.4.2 Partially Supervised Training of PCFGs 111
4.4.3 Methods with Increased Structural Sensitivity 112
444 PCFG Parsing Algorithms for Different Evaluation Criteria 115
4.4.5 The Effect of Annotation Style on PCFG Accuracy 115
4.4.6 Representation of PCFG Rules as Markov Processes 116
4.5 Rule-Based Learning Methods 116

1X

4.6 Ranking Parse Trees through Scores Associated with Semantic Tuples . . . 118

4.7 Probabilistic Versions of Lexicalized Grammar Formalisms 119
4.7.1 Stochastic Tree Adjoining Grammars 119
4.7.2 Link Grammarso 121
4.7.3 Lexicalized PCFGs 123
4.74 Head Automata L 123
4.7.5 Stochastic Attribute-Value Grammars 124

4.8 Previous Work on Parsing the Penn WSJ Treebank 125
4.8.1 Formalisms Including Dependency Probabilities 125
4.8.2 History-Based Models 126

Prepositional Phrase Attachment through a Backed-Off Model 130

5.1 Introduction 130

5.2 Background 131
5.2.1 Training and Test Data, 131
5.2.2 Outline of the Problem 131
5.2.3 Lower and Upper Bounds on Performance 132

5.3 Estimation based on Training Data Counts 133
5.3.1 Notation e 133
5.3.2 Maximum-Likelihood (ML) Estimation. 133
5.3.3 Previous Work 134

5.4 The Backed-Off Estimate 135
5.4.1 Description of the Algorithm 137

5.0 Results. o 138
5.5.1 Results with Morphological Analysis 138
5.5.2 Comparison with Other Work 139

5.6 A Closer Look at Backing-Off 140
5.6.1 Low Counts are Important 140
5.6.2 Tuples with Prepositions are Better 140

5.7 Conclusions L e 141

5.8 Further Discussion L 141

5.8.1
5.8.2

Results with Limited Context
Results for Hindle and Rooth’s Method

6 A Statistical Parser Based on Bigram Lexical Dependencies

6.1 Introduction e

6.2 The Statistical Model

6.2.1 The Mapping from Trees to Sets of Dependencies
6.2.2 Calculating Dependency Probabilities
6.2.3 The Distance Measure
6.2.4 Sparse Data
6.2.5 The BaseNP Model
6.2.6 Summary of the Model
6.2.7 Some Further Improvements to the Model
6.3 The Parsing Algorithm
6.4 Results. e
6.4.1 Performance Issues o oL
6.5 Further Discussion
6.5.1 Representational Issues
6.5.2 Mathematical Issueso
6.5.3 Summary
7 Three Generative, Lexicalized Models for Statistical Parsing
7.1 Introduction. L
7.1.1 Probabilistic Context-Free Grammars
7.1.2 Lexicalized PCFGs o
7.2 Model 1 L
7.2.1 The Basic Model

7.2.2
7.2.3

History-Based Models
Adding Distance to the Model

7.3 Model 2: The complement/adjunct distinction and subcategorization

7.4 Model 3: Traces and Wh-Movement

X1

144
144
145
147
149
150
153
155
156
156
158
158
159
160
160
161
161

162
162
164
165
168
168
169
171
172

7.5 Special Cases 178
7.5.1 Non-recursive NPs 178
7.5.2 Coordination 180
7.5.3 Punctuation. 181
7.5.4 Sentences with empty (PRO) subjects 183
7.5.5 The Punctuation Rule 183

7.6 Practical Issues 185
7.6.1 Parameter Estimation L. 185
7.6.2 Dealing with Unknown Words 186
7.6.3 Part of Speech Tagging 186

7.7 The Parsing Algorithm 186
7.7.1 An Analysis of Parsing Complexity 186

7.8 Results. e 190
7.8.1 A Closer look at the Results 191

Discussion 200

8.1 More about the Distance Measure 200
8.1.1 The Impact of the Distance Measure on Accuracy 200
8.1.2 Frequencies in Training Data 202
8.1.3 The Adjacency Condition and Right-Branching Structures 202
8.1.4 The Verb Condition and Right-Branching Structures 205
8.1.5 Structural vs. Semantic Preferences 207

8.2 The Importance of the Choice of Tree Representation 208
8.2.1 Representation Affects Structural, not Lexical, Preferences 210
8.2.2 The Importance of Differentiating Non-recursive vs. Recursive NPs . 211
8.2.3 Summary e e 212

8.3 The Need to Break Down Rules 213
8.3.1 The Penn Treebank Annotation Style Leads to Many Rules 214
8.3.2 Quantifying the Coverage Problem 215
8.3.3 The Impact of Coverage on Accuracy 216
8.3.4 DBreaking Down Rules Improves Estimation 217

xil

8.4 Comparison to Related Work on Parsing the Penn WSJ Treebank

8.4.1
8.4.2
8.4.3
8.4.4

Charniak 97)

Eisner 96, Eisner 96b] oL

[
[Jelinek et al. 94, Magerman 95, Ratnaparkhi 96]
[
[Goodman 97, Goodman 98]

Future Work

9.1 Improving Parsing Accuracy oo

9.2 Recovering Additional Information

9.3 Parsing Languages other than English

10 Conclusions

A

B

A Description of The Head Rules

The Parsing Algorithm for Model 1 of Chapter 7

B.1 The edge data-type

B.2 Subroutines that Create New Edges

B.3 Subroutines that Complete Entire Spans of the Chart

The Parsing Algorithm for Model 2 of Chapter 7

An Analysis of Parsing Complexity for the Models of Chapter 7

D.1 A First Analysisof Dy and Dy oo oo
D.2 A Second Analysisof Dy and Dy
D.3 A Third Analysisof Dy and Do o oo

Efficiency Considerations when Parsing

E.1 Beam Search e
E.1.1 The Figure of Merit o
E12 TheBeam

E.2 Temporary Caching of Probabilities

xiii

230
230
231
233

235

238

241
241
242
245

253

259
260
261
261

List of Tables

6.1
6.2

6.3
6.4
6.5

7.1
7.2
7.3

7.4

7.5

7.6

7.7

8.1

8.2

8.3

Percentage of dependencies vs. distance between the head words involved. . 152

Percentage of dependencies vs. number of verbs between the head words

involved. L e 152
Results on Section 23 of the WSJ Treebank. 157
The contribution of various components of the model. 159
The trade-off between speed and accuracy as the beam-size is varied. 160
The conditioning variables for each level of back-off. 185
Results on Section 23 of the WSJ Treebank. 190

Recall and precision for different constituent types, for section 0 of the
treebank with model 2..o 192
Accuracy of the 25 most frequent dependency types in section 0 of the
treebank, as recovered by model 2. oL oL 196

Accuracy of the 26-50'th most frequent dependency types in section 0 of the

treebank, as recovered by model 2. oL 197
Accuracy for various types/sub-types of dependency (part 1). 198
Accuracy for various types/sub-types of dependency (part 2). 199
Results on Section 0 of the WSJ Treebank. 201

Distribution of non-terminals generated as post-modifiers to an NP (see tree
to the left), at various distances from the head. 203
Distribution of non-terminals generated as post-modifiers to a verb within

a VP (see tree to the left), at various distances from the head. 204

Xiv

8.4

8.5

8.6

8.7

8.8
8.9

Al

B.1
B.2

C.1

Some alternative structures for the same surface sequence of chunks (NPB PP
PP in the first case, NPB PP SBAR in the second case), where the adjacency
condition distinguishes between the two structures. 206
Some alternative structures for the same surface sequence of chunks, where
the verb condition in the distance measure distinguishes between the two
structures. L L L L 206
Statistics for rules taken from sections 2-21 of the treebank, where comple-
ment markings were not included on non-terminals. 216
Statistics for rules taken from sections 2-21 of the treebank, where comple-
ment markings were included on non-terminals. 217
Results on Section 0 of the WSJ Treebank. 217
(a) Distribution over rules with “told” as the head (from sections 2-21 of

the treebank); (b) Distribution over subcategorization frames with “told”

asthehead. L 219
The head-rules used by the parser. 240
Variables in the edge data-type 242
Variables in the contest data-type oL 242
Variables in the contest data-typeo L. 258

XV

List of Figures

1.1
1.2

1.3
1.4

21
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5

A Parse Tree e 3
(a) A parse tree. Head-words for each non-terminal are shown in paren-
theses (for example, told is the head of the constituent S(told)). The -C
tag indicates complements as opposed to adjuncts: him is a complement
(object), yesterday is an adjunct (temporal modifier). (b) The domain of lo-

cality of told in the tree. Only these parts of the tree are directly dependent

on told. 18
Sub-derivations for words other than told in the sentence. 21
Generation of the (NP-C NP SBAR-C) sequence to the right of the VBD. . . . 24
APCFEG e 53
A context-free tree, and its associated probability. 53
Pseudo-code for the CKY algorithm for PCFGs. o6
A stochastic program that generates trees. 99
A stochastic program that generates sequences. 59
A stochastic program that generates sequence pairs. 60
A case of PP attachment ambiguity. 70
Asimple PCFG 74
A case of coordination ambiguity. oL Lo 76
Two possible structures for the same sequence of POS tags. 78
Two possible structures for the same sequence of POS tags. 78

XVl

3.6

3.7

3.8

3.9

3.10

3.11

3.12
3.13

3.14

3.15
3.16

3.17

(a) a lexicalized tree. (b) a list of dependencies that the tree contains. a’) a
lexicalized tree with the PP attaching to the noun, and b’) the dependencies
that it contains. Lo
(a) a lexicalized tree: each non-terminal has an associated headword (shown
in parentheses after the non-terminal). (b) a list of rules in the tree, with
the head for each rule underlined. The definition of the head of each rule
leads to the recovery of headwords: each non-terminal receives its headword
fromitshead child. L

The case of coordination ambiguity revisited, using a dependency represen-

Two tree fragments and their associated dependencies ((b) and (b’) show
the one dependency that differs between the two trees.
(a) a lexicalized tree. (b) a list of dependencies that the tree contains, with
their direction and associated relations.

Two lexicalized trees, (a) and (a’), and the dependencies they contain, (b)

Two trees that contain a dependency (cigarette — filter)..
(a) A lexicalized tree with the complement-adjunct distinction made. Com-
plement non-terminals are marked with a -C suffix. (b) A list of the subcat-
egorization frames associated with the tree (rules with a POS tag on their
left hand side contribute no subcategorization frames, and are excluded from
the table).
Two trees that should have low probability due to unlikely subcategorization
frames.o L
Three trees that contain a dependency (by — acquisition).
Two competing trees which differ by a single dependency, (in — election)
vs. (in — candidate).
Two competing tree fragments which differ by a single dependency, (by —

shot) vs. (by — believed).

XVil

97

3.18

6.1
6.2
6.3

6.4

7.1
7.2
7.3
7.4
7.5
7.6

7.7

7.8
7.9

7.10
7.11

7.12

7.13
7.14

A tree, and the distance measure assigned by the first and second distance

measures: Stringl, Distancel are the features assigned by the first measure;

String2, Distance2 are assigned by the second measure. 100
An overview of the representation used by the model. 146
Parse tree for the reduced sentence in Example 1. 147

Each constituent with n children (in this case n = 3) contributes n — 1

dependencies. L. 148
Diagram showing how two constituents join to form a new constituent. . . . 158
A non-lexicalized parse tree, and a list of the rules it contains. 165
A lexicalized parse tree, and a list of the rules it contains. 166
A partially completed tree derived depth-first. 170
The next child, R3(rs), is generated with probability 172
A tree with the “-C” suffix used to identify complements. 172

Two examples where the assumption that modifiers are generated indepen-

dently of each other leads to errors., 173
A +gap feature can be added to non-terminals to describe wh-movement. . 176
Three examples of structures with baseNPs 178

(a) the generic way of annotating coordination in the treebank. (b) and (c)
show specific examples (with baseNPs added as described in section 7.5.1).
Note that the first item of the conjunct is taken as the head of the phrase. . 180
A parse tree before and after the punctuation transformations 182
(a) the treebank annotates sentences with empty subjects with an empty
-NONE- element under subject position; (b) in training (and for evalua-

tion), this null element is removed; (c) in models 2 and 3 sentences without

subjects are changed to have a non-terminal SG.. 184
Four operations where a new constituent, 0UT, is formed from either two

existing edges, E1 and E2, or a singleedge, E. 188
A sketch of the parsing algorithm. 189
A tree and its associated dependencies.o oL 195

XViil

7.15 Dependency accuracy on Section 0 of the treebank with Model 2. 196

8.1

8.2

8.3

8.4
8.5

8.6

8.7

8.8

8.9

B.1
B.2

Two examples of bad parses produced by model 1 with no distance or sub-
categorization conditions (Modell(No,No) in table 8. 201
Alternative annotation styles for a sentence S with a verb head V, left mod-
iflers X1. . . o . o L 209
Alternative annotation styles for a noun phrase with a noun head N, left
modifiers X1.o 209
BB = binary branching structures; FLAT = Penn treebank style annotations.211
(a) The way the Penn treebank annotates NPs. (a’) Our modification to the
annotation, to differentiate recursive (NP) vs. non-recursive (NPB) noun
phrases. (b) a structure that is never seen in training data, but will receive
much too high probability from a model trained on trees of style (a). 212
Examples of other phrases in the Penn treebank where non-recursive and
recursive phrases are not differentiated. 212
(a) and (b) are two candidate structures for the same sequence of words.
(c) shows the first decision (labeled “?”) where the two structures differ.
The arc above the NP can go either left (for verb attachment of the PP) or
right (for noun attachment of the PP). 224
(a) and (b) are two candidate structures for the same sequence of words.
(c) shows the first decision (labeled “?”) where the two structures differ.
The arc above the NP can go either left (for high attachment (a) of the
coordinated phrase) or right (for low attachment (b) of the coordinated
phrase). 225
(a) and (b) are two candidate structures for the same sequence of words. (c)
shows the first decision (labeled “?”) where the two structures differ. The
arc above the NP can go either left (for high attachment (a) of the appositive

phrase) or right (for noun attachment (b) of the appositive phrase). 226

An example constituent, and the values for its edge representation 243

An example leaf-node constituent, and the values for its edge representation. 243

Xix

B.3 Two functions associated with the edge data-type. 244
B.4 join_2_edges_follow(edge el,edge €2) joins two edges el and e2 to form
anewedgeed. 246
B.5 join_2_edges_precede(edge el,edge e2) joins two edges el and e2 to
formanewedgeed. 247
B.6 add_singles(edge e) adds edges with a unary rule re-writing to edge e. . . 248
B.7 add_stops(edge e) forms a new edge by adding stop probabilities to edge e.249
B.8 add_singles_stops(int start, int end) adds all stop probabilities, and
edges which are created by unary rules, for the chart entries spanning words
start-end. . ..o Lo L L 250
B.9 initialize() initializes the chart., 251
B.10 complete(int start,int end) completes all edges in the chart spanning
words start toend. oL Lo 252
B.11 parse() parses a sentence, returning the edge pointing to the top of the

highest probability tree. o oo 252

C.1 add_singles(edge e) adds edges with a unary rule re-writing to edge e. . . 254
C.2 join_2_edges_follow(edge el,edge €2) joins two edges el and e2 to form
anewedge ed. 255
C.3 join_2_edges_precede(edge el,edge e2) joins two edges el and e2 to
formanewedgeed. 256
C.4 add_stops(edge e) forms a new edge by adding stop probabilities to edge e.257

C.5 initialize() initializes the chart. 258

XX

Chapter 1

Introduction

Parsing is a fundamental problem in language processing for both machines and humans.
Most natural language applications (such as Information Extraction, Machine Transla-
tion, or Speech Recognition) would almost certainly benefit from high-accuracy parsing.
From a scientific standpoint, there is the question of how people interpret language: what
knowledge is used, and exactly how this knowledge is applied in practice.

In its simplest form, the parsing problem involves the definition of an algorithm that
maps any input sentence to its associated syntactic tree structure. This thesis takes a
machine-learning approach to the problem. The sentence — tree function' is induced from
a training set, a set of example sentence—tree pairs. A test set of sentence—tree pairs is
used to evaluate the model’s accuracy.

In common with several other approaches, we adopt a statistical method. The learning
problem then becomes a task of estimating parameter values from training data. This

thesis considers two critical questions regarding the parameterization of the problem:

1. What linguistic objects (e.g., context-free rules, parse moves) should the model’s
parameters be associated with? L.e., How should trees be broken down into smaller

fragments?

2. How can this choice be instantiated in a sound probabilistic model?

"We assume a definition of the parsing problem where each sentence must be mapped to a single
tree structure, even if this requires disambiguation using knowledge sources in addition to the grammar.
This contrasts with another common definition of the parsing problem, where the task is to recover all
syntactically well-formed trees for a sentence, without any disambiguation.

Our goals are two-fold. First, we aim to advance the state of the art, by reporting im-
proved parsing accuracy over previous results. Second, we aim to increase understanding
of the parsing problem, through a detailed analysis of our parsing models, and a detailed

comparison to models proposed elsewhere in the literature.

1.1 An Overview of this Chapter

Section 1.2 gives practical motivation for parsing, describing the information represented
by parse trees, with some example applications as further illustration. Section 1.3 then
describes a major difficulty, ambiguity. There are several pathological factors when pars-
ing in a broad domain: the grammar required for broad coverage is large; sentences are
typically long; and many common types of ambiguity lead to an exponentially growing
(with respect to the sentence length) number of analyses. The end result is that ambiguity
becomes an astonishingly severe problem. Section 1.4 sketches previous work, in rule-based
and statistical approaches to parsing.

Section 1.5 is the major part of this introduction, outlining the approach in this the-
sis. We define the choice of parameterization as the choice of how to break down parse
trees, two questions then arising: (1) what linguistic objects (e.g., context-free rules, parse
moves etc.) should the model’s parameters be associated with?; (2) How can this choice
be instantiated in a sound probabilistic model? We introduce two criteria for a parame-
terization: discriminative power (that the parameters should represent the data well) and
compactness (that the parameters should represent the data concisely).

An example from the belief networks literature is then discussed: it has several impor-
tant lessons for parsing. The causality of physical problems is an important motivation
for the modeling choices in belief networks; reasoning about the causality of the problem
is essential for a compact parameterization. We argue that the analogue of causality in
the parsing case is locality. In particular, the locality of a lexical head’s influence in a
parse tree should be used to motivate modeling choices in statistical parsing models. The
final model in this work has parameters reflecting a head’s local domain of influence in

the tree (i.e., the model has parameters that encode the X-bar schema, subcategorization,

NP A3

VBD NP PP
NP N NP ; acquired Nll\IP e Np
| | |
NNP /\ Lotus o NN
| NP PP |
IBM /\ /\ Wednesday
JJ NN IN NP
| | | |
long-time rival of NNP
|
Microsoft

Figure 1.1: A Parse Tree

ordering of complements, placement of adjuncts, lexical dependencies, preferences for close
attachment, and wh-movement; all preferences being expressed by parameters conditioned

on head-words).

1.2 The Practical Motivation for Parsing

The tree in figure 1.1 represents several levels of information. The non-terminal directly
above each word in the sentence is the part-of-speech for that word: for example, the tree
indicates that “Lotus” is an NNP (proper noun), “acquired” is a VBD (past-tense verb),
“long-time” is a JJ (adjective). The tree describes the hierarchical grouping of words into
phrases: “IBM” is an NP (noun phrase), “IBM, long-time rival of Microsoft” is also an NP;
“acquired Lotus on Wednesday” is a VP (verb phrase); and so on.

Finally, the tree represents grammatical relations between phrases or words. In a rule
(S — NP VP) the NP is the subject of the verb within the VP (by this rule, “IBM , long-time
rival of Microsoft” is the subject of “acquired”). Similarly, (VP — VB NP) represents an
object-verb relationship (“Lotus” is the object of “acquired”) and (VP — VB ... PP)
represents prepositional-phrase modification of a verb (“on Wednesday” modifies “ac-
quired”). These syntactic roles allow us to directly read predicate-argument relations
from the tree: that IBM, by virtue of being the subject, is doing the acquiring (rather

than Microsoft); that Lotus, by virtue of being the object, is the acquiree; and so on.

A number of potential applications — Information Extraction (IE), Information Re-
trieval (IR), Machine Translation (MT), and Speech Recognition — serve to illustrate how
this information could be useful. In an Information Extraction task, an NLP system fills
a database with facts extracted from some group of documents. Given several years or
decades of newswire text, a user might make the query “retrieve all buyer—buyee pairs
where buyer is an acquiring company, and buyee is the company being bought”. A parser
together with a lexicon of verbs of buying/selling? could achieve much of this task.

High precision Information Retrieval is a related task. A query such as “retrieve all
articles where Microsoft bought something” can be implemented, given a set of parsed
articles, as a retrieval of all documents where Microsoft is the subject of verbs such as buy,
acquire or purchase.

Machine translation (MT) is another application. One problem in MT is alignment:
the description of how the word order in one language maps to the word order in another
language. English and Japanese have quite different word orders, as in the following

sentences:

English: IBM bought Lotus
Japanese: IBM Lotus bought

English: Sources said that IBM bought Lotus yesterday
Japanese: Sources yesterday IBM Lotus bought that said

On the surface, the correspondence between the two longer sentences looks quite com-
plex. With parse structure, the mapping can be described by a simple recursive definition,
each rule in the English grammar having a corresponding rule in Japanese. For example,
the rule (VP — VB NP) in English maps to the rule (VP — NP VB) in Japanese (reflect-
ing the fact that the object in English follows the verb, while in Japanese this order is

reversed).

2The lexicon would need to specify for each lexical item its mapping from syntactic to semantic roles,
containing entries such as {verb = acquire/buy/purchase = subject = Buyer, object = Buyee }, {verb =
sell = PP headed by to = Buyer, object = Buyee }.

3Note that this implementation would not retrieve a document including the sentence in figure 1.1; a
search based on simple co-occurrence or proximity of Microsoft and buy/acquire/purchase would retrieve a
false-positive in this case.

Speech recognition is our final example. Current speech recognizers generally use a
“trigram” language model to give a prior probability distribution over strings in a lan-
guage. The prior probability of a sentence is calculated as a product of terms, each term
corresponding to a window of three consecutive words. In the following example of is

mis-recognized as that:

Actual Utterance: He is a resident of the U.S. and of the U.K.
Recognizer output: He is a resident of the U.S. and that the U.K.

In spite of being ungrammatical, the second sentence will receive high prior probability
under a trigram model, as all triples of words that it contains are quite plausible. This
explains the recognition error. The later models in this thesis (chapter 7) are not only
parsing models, but also assign probabilities to strings in a language. In contrast to
trigram models, they will give low probability to ungrammatical strings like the example,
and will also capture statistical dependencies between words that fall outside the three-
word window (for example, the subject—verb relation IBM-acquired in figure 1.1). (Model
2 of chapter 7 of this thesis assigns 78 times higher probability to the correct string in
the above example. In contrast, a bigram model trained on the same data assigns over 10
times greater probability to the incorrect string, primarily because the bigram (and that)

is around 15 times as frequent as (and of).)

1.3 A Major Problem: Ambiguity

Ambiguity is a major problem in parsing, and a primary motivation for statistical methods.

A few causes of syntactic ambiguity (there are many others) are as follows:

e Part-of-speech (POS) ambiguity. For example, the word saw can be either a verb or

a noun.
e Prepositional-Phrase attachment ambiguity. The sentence
The woman saw the man with the telescope

has at least two syntactic trees: one where the PP with the telescope modifies man,

the other where it modifies saw.

e Coordination. In the phrase
a program to promote safety in trucks and vans
vans could be coordinated with trucks, safety or program.

The coordination example deserves further attention. There is clearly only one plausible
interpretation: wans and trucks are coordinated. But there are several other structures
that are syntactically well-formed: vans could be coordinated with safety or program; the
preposition in could modify safety, promote or program. This gives at least 6 parse trees
for the string®. All but one analysis is highly implausible from a semantic standpoint, but
all 6 analyses will be recovered by a parser that is armed with syntactic information alone.

[Church and Patil 82] noted that PP attachment ambiguity leads to an exponential
blow-up in the number of analyses for a sentence. A sequence (VB NP PP*) with n PPs has
Cp1 analyses, where C), ;1 is the (n + 1)’th Catalan number.’ Other types of ambiguity
show similar exponential behaviour. In newswire text, sentences are typically quite long:
the average sentence length in Wall Street Journal (WSJ) is around 23 words, with 26%
of sentences being over 30 words in length, and 7% being over 40 words. Moreover, a
grammar with a very large number of rules is required for coverage of a broad domain.
The combination of a large grammar, long sentences, and exponential factors leads to
ambiguity being an astonishingly severe problem in broad domains such as Wall Street

Journal.

“And there are almost certainly more analyses. a program to promote is an NP (as in a program to
promote is all we need). safety in trucks and vans has two analyses as an NP. A wide-coverage grammar
would need a rule NP — NP NP to cover appositive cases without a comma, as in Suddenly, George Bush
the pro-choice advocate became George Bush the abortionist (an example from the Penn WSJ treebank).
Thus there are two structures of the form [NP [NP a program to promote] [NP safety in trucks and vans],
and still more analyses such as [NP [NP [NP a program to promote] [NP safety || [PP in trucks and vans]].

5The nth Catalan number C,, is—— (2n)

n+1 n

1.4 Previous Approaches

1.4.1 Rule-Based Approaches

A standard approach to the parsing problem (see [Allen 87] for an overview) is as follows.
A grammar is hand-crafted, often in some kind of unification formalism, often with a
large amount of lexically specific information in the form of subcategorization information.
Ambiguity is resolved through selectional restrictions (e.g., a lexicon might (1) specify that
eat must take an object with the feature +food, and (2) specify which nouns in the lexicon
have the +food feature). While perhaps feasible in a limited domain such as database query
tasks (as in LUNAR [Woods 70] or SRI's system for the Air Travel Information System
(ATIS) domain [Dowding et al. 93]), selectional restrictions run into several problems when
scaled to wide-coverage tasks. First, the vocabulary size becomes so large that the sheer
volume of information required becomes daunting®. Second, selectional restrictions have
long been known in linguistics to have theoretical problems (e.g., see [McCawley 68]).
While these problems may not come to light in a restricted domain, they are encountered
frequently in a broad domain. At the very least, this implies that selectional restrictions
should be encoded as soft preferences rather than hard constraints.

Additional problems are the large size of a broad-coverage grammar, and the fact that
structural preferences’ also come into play during disambiguation. Structural preferences
interact in subtle ways with syntactic and semantic information, and are also best encoded
as soft preferences.

It is difficult to find direct evidence of how successful these methods were on broad-
coverage domains, as most systems were built and tested before treebanks became available
to support evaluation. (Although see [Black et al. 93] section 1.2 for some relevant discus-

sion.) We can, however, cite one source of indirect evidence. The Message Understanding

5We counted 24,444 distinct words in 40,000 sentences of WSJ text (a conservative estimate: we only
counted words starting with lower-case letters, thereby excluding numbers and proper nouns). The problem
is further compounded by the need for different entries for each word-sense of a word, increasing the volume
of information required, and leading to difficult distinctions about what exactly constitutes a separate sense
for a word.

"For example, close-attachment. The sentence John was believed to have been shot by Bill has two
semmantically plausible readings: Bill could have done either the shooting or the believing. The strong
preference for the “shooting” reading is almost certainly due to a preference for attachment to the most
recent verb.

Conferences (MUCs) evaluated NLP systems for information extraction from newswire
articles. By the time of MUC-6 [MUC-6, 1995], none of the 5 best-performing systems
(from BBN, Lockheed-Martin, NYU, SRA and SRI) used full parsing. At most, they used
a partial parser, as in BBN’s system; more often they used finite-state pattern-matching
techniques as exemplified in [Appelt et al. 93]. Many of these sites originally attempted
the MUC tasks with a full parser: see [Appelt et al. 93] and [Grishman 95] for descriptions

of how two of the sites moved away from full parsing to finite-state methods.

1.4.2 Statistical Methods

In response to these difficulties, researchers began to investigate machine-learning ap-
proaches to the problem, primarily through statistical methods (with some notable excep-
tions, such as the rule-based learning methods of [Brill 93] or [Hermjakob and Mooney 97]).
A “treebank” — a set of example sentence/parse-tree pairs — is annotated by hand and
used to train a parsing model. Some part of the treebank is reserved as test data, being
used to evaluate the model’s accuracy.

Early work investigated the use of Probabilistic Context Free Grammars (PCFGs), but
with rather disappointing results: as we will see later, a simple PCFG’s failing is its lack
of sensitivity to lexical information and structural preferences. Research then moved in
several directions: towards models that had increased structural sensitivity; to partially
supervised training algorithms; to probabilistic versions of lexicalized grammars; and to
“history-based” models.

[Magerman 95] described the SPATTER parser (an extension of the work described
in [Jelinek et al. 94]) applied to the Penn WSJ treebank [Marcus et al. 93]. This work

represented a maturation of statistical parsing techniques, in several respects:

e It represented a major advance in the scale of the tasks undertaken by statistical
parsers. All sentences up to 40 words in length were parsed, on a domain (WSJ)
that is much less restricted than previously tested domains such as ATIS or the IBM

computer manuals data.

e The parser was trained completely automatically from the treebank, with no require-

ment for a hand-crafted grammar.

e The results represented a major improvement over the accuracy for PCFGs: 84.5/84.0%
precision/recall on section 23 of the Penn WSJ treebank. ([Charniak 97] later re-
ported that a non-lexicalized PCFG scores around 72% averaged precision/recall on

this task.)

e The model had parameters that conditioned heavily on lexical information, presum-

ably accounting for much of its improvement over PCFG-based methods.

The SPATTER parser will serve as a benchmark for the work in this thesis. At its time
of publication, it gave the best accuracy results reported on the Penn WSJ treebank —
representing a substantial improvement over previous work. It embodies a very different
approach from the one taken in this thesis; the contrast between the two methods raises

several interesting issues.

1.5 This Thesis

This thesis considers alternative parameterizations for statistical parsing. By a parameter-
ization we mean something quite explicit. Statistical parsing models assign a probability
Score(T, S) to each Tree-Sentence (T, S) pair in a language®. The most likely tree for an

input sentence S is then defined as
Thest(S) = arg max Score(T, S) (1.1)

Under this view the parsing problem is separated into two components: (1) the model is
a function that defines a probability Score(T, S) for each (T, S) pair; (2) the parser is an
algorithm that implements the search for Tj.s; for any input sentence S.

For the model to have a tractable number of parameters, a (7, S) pair must be broken

down into a set of “events” (Event;...Event,). Score(T,S) is then calculated as a product

8Score(T, S) could be either a joint probability P(T,S) or a conditional P(T|S); we use the term Score
to indicate neutrality between these possibilities.

of terms, each Event having a corresponding probability:

Score(T,S) = H Score(Event;) (1.2)

i=1...n

The choice of parameterization is the choice of how to break down the tree; in other
words, what types of events to associate parameters with. There are many possible ways
of breaking down trees. In a PCFG, parameters are associated with rules in the tree. In
the SPATTER parser, parameters are associated with moves made by a parsing algorithm,
each Event being a (parse-decision, context) pair (context is a set of features encoding
information in the local area of the parse decision).

The choice of parameterization is central to the success of a parsing model. Two criteria

are particularly important:

Discriminative Power The parameters should include the contextual information re-
quired for disambiguation decisions. If a parse tree is implausible because of a par-
ticular part of its structure, this should be reflected in the parameters associated

with that parse tree.

PCFGs (in their simplest form) are an example of a model that fails in this respect.
As we will see later, they are too insensitive to lexical information and structural

preferences to provide a model with adequate discriminative power.

Compactness Given that it has adequate discriminative power, the model should have as
few parameters as possible. The number of parameters in a model roughly determines
the amount of training data required to train the model. Put another way, the
compactness of a model will determine how close it comes to filling its full potential
given the (almost certainly) limited amount of training data, and the consequent

problem of under-training.

As illustration, take a model that associates probabilities with entire trees — each
tree in a language is represented as a single Fvent, the full tree itself. This model
has tremendous discriminative power, being able to model arbitrary properties of the
tree. But it fails badly by the compactness criterion. It is unlikely that we would
ever have enough training data to train a model of this type. Section 1.5.1 will give

further illustration of the idea of compactness.

10

In short, a good parameterization should represent the data well, and it should represent
the data concisely.”
This thesis addresses two questions regarding the parameterization of statistical parsing

models:

1. What linguistic objects (e.g., context-free rules, parse moves etc.) should the model’s
parameters be associated with? L.e., How should trees be broken down into smaller

fragments?
2. How can this choice be instantiated in a sound probabilistic model?

Before going into the details of these questions, we introduce an example from the Belief

Networks literature that has some important lessons for the parsing problem.

1.5.1 An Example: Belief Networks and Causality

[Russell and Norvig 95] describe the following belief networks problem, which they cite as
being originally due to Judea Pearl. A person has a house with a burglar alarm, and is at
work. She has two neighbors, John and Mary, who are fairly reliable at calling her at work
should the alarm go off. There are two possible triggers for the alarm: either a burglary
or an earthquake. The task is to build a model that supports queries such as “Given that
Mary has called, what is the probability that there was a burglary”, or “Given that there
is an earthquake, what is the probability that both John and Mary will call”.

We can use 5 binary-valued random variables to model the problem: A indicates
whether or not the alarm has gone off; F and B indicate whether there was an earth-
quake or burglary respectively; J and M indicate whether John or Mary respectively
have called. To support all possible inferences, we require a model of the joint probabil-
ity P(A,B,E, J,M). Marginal probabilities such as P(B|M) or P(J, M|E) can then be

calculated.

°It is important to realise that we are not merely talking about the familiar trade-off between under
and over-training. Different modeling choices can lead to parameterizations with the same discriminative
power, but quite different compactness properties. Some models fail to capture important generalisations,
unnecessarily fragmenting training data events, thereby being much less compact than they could be.
Consequently, some models will take more training data to achieve the same performance as a more compact
model; or equivalently, they will perform worse given the same amount of training data.

11

In the worst case, this distribution has 32 possible configurations and would require 31

parameters. However, we can build a more compact model using the following procedure:

1. Choose an ordering for the 5 variables — we will choose the order (B, E, A, J, M).

Re-write the joint probability using the chain rule with this ordering:
P(A,B,E,J,M) = P(B)P(E|B)P(A|E,B)P(J|A,E,B)P(M|A,E,B,J) (1.3)
2. For each of the 5 terms in equation 1.3, where possible make independence assump-

tions and thus reduce the number of parameters in the model. We make the following

independence assumptions:

P(E|B) = P(E) (1.4)
P(J|A,E,B) = P(J|A) (1.5)
P(M|A,E,B,J) = P(M|A) (1.6)

The independence assumptions are justified through our knowledge of causality in the
world. For example, it is reasonable to assume that there is no causal link between

earthquakes and burglaries, and therefore that P(E|B) = P(E).
These steps give a final solution to the model:
P(A,B,E,J,M)= P(B)P(E)P(A|E,B)P(J|A)P(M|A) (1.7)

Providing that the independence assumptions are correct, the model fulfills the first crite-
rion of fitting the data well. It also fulfills the second criterion, being quite compact: the
model has 10 parameters as opposed to 31 for the unreduced model'?.

In general, the design of a belief net model is a three step process:

1. Choose the variables involved in the problem. In the previous example, we chose the

variables A, B, F, J and M.

2. Choose an ordering for the variables (in the example, (B, E, A, J, M)) and rewrite
the joint probability using the chain rule.

9T his difference may not seem dramatic, but that is because there are only 5 variables in the example.
Providing that sufficient independence assumptions can be made, there will generally be an exponential
reduction in the number of parameters in a belief net with n nodes, from 2" — 1 to O(n) parameters.

12

3. Make independence assumptions for each of the terms in the chain of probabilities.

An important point is that a good choice of variable ordering (step 2) is critical to a
good parameterization of the problem. To see this imagine we chose a different order, (M,

J, E, B, A). In this case the chain rule gives:
P(A,B,E, J,M) = P(M)P(J|M)P(E|J,M)P(B|J,M,E)P(A|J,M,E,B) (L8)

With equation 1.8, it turns out to be impossible to simplify any of the terms through
reasonable independence assumptions'!. The result is that each of the parameters is not
reduced, and the model requires 31 parameters. The model will represent the same dis-
tribution as the model with 10 parameters (i.e., it has equal discriminative power), but it
is much less compact. Note also that the parameters in the model are now quite counter-
intuitive: it is difficult to judge what terms such as P(A|J, M, E, B) or P(J|M) correspond
to in the world.

Two lessons emerge from this. For a compact parameterization of a problem:

1. The choice of variable ordering is crucial. With a good ordering, independence
assumptions fall out naturally. With a bad ordering, it may be impossible to make

independence assumptions.

2. A general guideline is that the choice of ordering should reflect the causality of the
problem. B and E can both cause an alarm, and should therefore precede A in the
ordering; A can cause John or Mary to call, and should therefore precede J and M
in the ordering. The ordering (B, E, A, J, M) satisfies these constraints (as would
some other orderings such as (E, B, A, M, J)).

These lessons have strong parallels in the parsing case.

1.5.2 Modeling Parse Structures

Most statistical parsing models — including PCFGs, SPATTER, and the models in this

thesis — fall within the framework of history-based models (originally applied to parsing

' As an example, P(J|M) = P(J) is not a good independence assumption, as knowing that Mary has
called increases the chances that the alarm has gone off, thereby increasing the chance that John has called.
Similar arguments apply to the other terms.

13

by [Black et al. 92b]'2). The design of a history-based model involves three steps:

1. Representation. Choose how to represent parse trees. For example, choose the
set of part-of-speech tags and non-terminal labels in the tree; choose whether or not
to have lexical head-words attached to non-terminals; choose whether to represent
words directly, or as their morphological stems, or as bit-strings derived through

clustering techniques.

2. Decomposition. This step involves the definition of a one-to-one mapping between
parse trees T' and decision sequences (d; ...d,). The sequence (d;...d,,) can be thought
of as the sequence of moves that builds 7" in some canonical order. The model defines
either a joint probability P(T,S) over all possible tree-sentence (7,S) pairs, or a
conditional probability P(T'|S) over all candidate trees for a particular sentence.
Given a mapping between trees and decision sequences, the probability of a tree can

be written either as
P(T|S) = P(d;|dy...d;i—1,S) (1.9)
or

P(T,S) = P(di|dy...d; 1) (1.10)

i=1...n

In conditional models, a tree is usually associated with the sequence of decisions
made by a particular parser in recovering the tree. In joint models, the decisions are
usually the steps in some top-down derivation of the tree, for example the sequence

of productions used in a left-most derivation of a context-free grammar.

3. Independence Assumptions. This step involves the definition of a function, @,
which groups decision sequences into equivalence classes, thereby reducing the num-
ber of parameters to manageable proportions. The final model is then one of the
forms

P(T|S) = P (d;|® (dy...d;_1,S)) (1.11)

i=1...n

12 Although the term “history-based” has perhaps recently become strongly associated with conditional
models that define P(T|S), i.e., [Jelinek et al. 94, Magerman 95, Ratnaparkhi 97], they can also be used to
create joint models defining P (7, S). In fact, the paper that originally used this term — [Black et al. 92b]
— described a joint model.

P(T,S) = P (di|® (dy...d;_1)) (1.12)

i=l..n
The choice of ® could either be made by hand, or automatically using a machine-
learning technique such as decision trees (the SPATTER parser uses a conditional
model in step (2), together with decision trees for automatic search for independence

assumptions).

These three steps are highly analogous to the three steps in the design of belief networks.
The choice of representation in parsing corresponds to the choice of variables in belief
networks (A, B, E, J, and M in the alarm example); the choice of decomposition in
parsing corresponds to the choice of variable ordering in belief networks; the choice of
independence assumptions is required in both model types.

We argue that the second step — the choice of decomposition — is critical for a
successful parameterization of the parsing problem. This shouldn’t be a surprise, given
that its analogue in the belief networks case (the choice of variable ordering) was seen to
have a critical effect in that example. With a good choice for step 2, it is easy to make
independence assumptions that lead to a good parameterization of the problem. A bad
choice for step 2 leads to linguistically implausible parameters: i.e., parameters that fail
by either or both of the criteria of discriminative power and compactness.

The SPATTER model can now be evaluated in terms of the three steps. From the
comments in the preface of [Magerman 95], it seems the reasoning behind the model was
as follows. Linguistic expertise would be used in step 1 — a linguistic “expert” would pick
all parse-tree features that might be useful for disambiguation. Decision trees would then
be used for step 3, identifying the features that were actually useful for disambiguation.

On the surface this seems a very plausible approach; but we argue that its weakness is a
lack of appreciation for the importance of step 2. SPATTER chose to represent a parse-tree
as the sequence of decisions made in a bottom-up parse of the tree. The parameters in the
model are then associated with (parse-move, context) pairs. When we analyse the model
in more detail later in this thesis, we will see that in some cases parameters miss important
disambiguating information, and in other cases they unnecessarily fragment training data.

The parameters are deficient in terms of both discriminative power and compactness.

15

Our emphasis of the importance of step 2 leaves us with an important question. In
the belief networks example, causality was used to motivate the choice of variable ordering
and independence assumptions. In the parsing problem there is no physical process, and
therefore no clear notion of causality. So what should motivate the choice of decomposition

in parsing?

1.5.3 A Motivation for the Choice of Decomposition: Causality and Lo-
cality

In the belief networks example, causality was used to motivate the choice of variable
ordering and independence assumptions. But what is the analogue of causality in the
parsing case?

The key is that reasoning about causality in the physical world is closely related to
reasoning about locality. The domain of locality of an event is the region of space-time
that it can affect. By defining the domain of locality for an event we can reason about
the causal influences that it can and can’t exert. In the belief nets example, in making
the independence assumption P(E|B) = P(E) we are reasoning about the locality of the
effects of a burglary: that a burglary’s influence is limited, and that it certainly doesn’t
extend to causing earthquakes. Similarly, in deciding that P(J|M, A, B, E) = P(J|A), we
are reasoning about the domain of locality of events M, A, B, E: that the events M, B, E
are limited in their domain of locality, and do not directly influence the chance of John
calling (for example, we are assuming that Mary does not run into John in the street, tell
him that she’s already called, and thereby dissuade him from calling).

Once we have equated causality with locality, the step to linguistics and parsing is
a small one. Much of the work in linguistics focuses on conditions on structural local-
ity. In particular, highly lexicalized formalisms such as LFG [Kaplan and Bresnan 82],
TAG [Joshi 87], CCG [Steedman 96], HPSG [Pollard and Sag 94] and Minimalism/GB
[Chomsky 95] stress the locality of the influence of lexical heads in a parse tree. Each
word in a sentence affects a limited domain within the tree. TAG is a clear example — a
lexical head has an associated elementary tree that directly represents any constraints as-

sociated with that head ([Frank 92] discusses these constraints extensively). Lexical entries

16

in LFG, CCG and HPSG are also rich representations of the constraints associated with a
head word. Chomsky’s discussion of X-bar theory within Minimalism ([Chomsky 95] page

172) contains the following passage:

An X-bar structure is composed of projections of heads selected from the lexi-
con. Basic relations, then, will involve the head as one term. Furthermore, the

basic relations are typically “local”.

Now take the example tree in figure 1.2(a). In our final models, the probability for
this tree will be calculated as a product of terms, each term being a probability that is
conditioned on one of the lexical items in the sentence. Thus each word in the sentence
will have an associated set of probabilities. Take the parameters associated with told as an
example. We will see in the next section that these parameters reflect the local influence of
told in the parse tree. Figure 1.2(b) shows a sub-tree associated with told; we will take this
to be the domain of locality for told. told will be responsible for the spine of this sub-tree, S
— VP — VBD; for its subject, its object, an NP adjunct and the SBAR complement; and for
the head-words of these counstituents, IBM, him, yesterday, and that. To flip the analogy,
we can think of told as having caused, or generated, all and only these parts of the tree
in 1.2(a).

Our aim, then, should be to choose an order of decomposition that allows a param-
eterization that reflects the local influence of lexical heads. This leads to an immediate
constraint on the decomposition of the tree: a lexical head must be generated before all
structure that is dependent upon it. For example, told must be generated before the tree
structure and other lexical items in the tree of figure 1.2(b). This constraint leads us to
a head-centered derivation of the tree. Given this choice of decomposition, independence

assumptions reflecting the domain of locality of each lexical head fall out naturally.

1.5.4 A Sketch of the Parameter Types

We now describe the different types of parameters in the final models of this thesis. (Chap-
ter 7 gives an exact definition of the parameters; this section gives more of a sketch, omit-

ting some details for the sake of conciseness. Chapter 3 gives detailed motivation for each

17

(a) S(told)

NP-C{IBM) VP(told)
Nll\TP
IBlM
VBD NP-C{(him) NP (yesterday) SBAR-_C(that)
tolld Pflip NlN
him yestarday IN $-C(Bought)
hat /\
NP-C{they) VP (bought)
PRP
VED NP-C(Lotus)
B ol NAP
Lotus
(b) S(told)
NP-C(IBM) VP (told)
VBD NP-C(him) NP (yesterday) SBAR-C(that)
t0|1d

Figure 1.2: (a) A parse tree. Head-words for each non-terminal are shown in parentheses
(for example, told is the head of the constituent S(told)). The -C tag indicates com-
plements as opposed to adjuncts: him is a complement (object), yesterday is an adjunct

(temporal modifier). (b) The domain of locality of told in the tree. Only these parts of
the tree are directly dependent on told.

18

of these parameters in terms of their discriminative power.) For illustration, we will sketch
the parameters associated with told in the tree of figure 1.2(a).

The model uses a history-based approach; a parse-tree is represented as the sequence
of decisions in a canonical top-down, head-centered derivation of the tree. Each decision
has an associated probability. The first decision in the derivation is a special move that

chooses the top node of the tree. In the example, S(told) is generated:

INPUT: START OUTPUT: S(told)

This decision has probability P(S(told) | START).

The next part of the derivation — a sub-sequence of decisions — will contribute the
probabilities conditioned on told. The input to this sub-derivation is the S(told) non-
terminal that has just been generated. The output of the sub-derivation is a sub-tree with

S(told) at its root:

INPUT: S(told) OUTPUT: S(told)
NP-C(IBM) VP(told)
VBD NP-C(him) NP (yesterday) SBAR-C(that)

|
told

The output is built incrementally in a series of stages. Each stage contributes a different
parameter type, namely probabilities corresponding to: (1) a choice of the X-bar spine of
the sub-tree; (2) a choice of subcategorization frames; (3) a choice of the relative order
of the complements, and the placement of adjuncts; (4) a choice of head words for the
complements and adjuncts. Next, we will describe the stages of the derivation, and explain
the probabilities that result from each stage.

Note that once the sub-derivation has generated the sub-tree associated with told, the

19

non-terminals NP-C(IBM), NP-C(him), NP(yesterday) and SBAR-C(that) will recursively
generate their own sub-trees, thereby contributing probabilities conditioned on IBM, him,
yesterday and that respectively. Figure 1.3 shows the sub-derivations associated with other
words in the sentence. We will now describe how the sub-derivation associated with told

is broken down into a sequence of decisions.

Head Projection Parameters

INPUT: S(told) OUTPUT: S(told)

|
VP (told)

|
VBD

|
told
There are two decisions in this example involving the generation of the X-bar spine of

the tree. The probability of each decision is given by a parameter specific to the headword
told. P(VP|S,told) is the probability of an S node with told as its head-word taking a VP
node as its head. P(VBD|VP,told) is the probability of a VP node with told as its head-word
taking a VBD node as its head. The spine is then complete because VBD (unlike VP and S)
is a part-of-speech tag.

Once their values are learned, these parameters encode the X-bar schema — that a
verb projects upwards to a VP which in turn projects to an S, or that a noun projects up

to an NP, and so on.

Subcategorization Parameters

INPUT: S(told) OUTPUT: S(told)
| |
VP(told) {NP—C}VP (told) {
| |
VBD {yVBD(NP-C,SBAR-C}
| |
told told

20

NP-C(IBM) = NP-C(IBM)

|
NNP(IBM)

|
IBM

NP-C(him) = NP-C(him)
|

PRP (him)
|

him

NP (yesterday) = NP (yesterday)

NNP(yesterday)
|

yesterday

SBAR-C(that) = SBAR-C(that)

IN(that) S-C(bought)
|

that
S-C(bought) = S-C(bought)
NP-C(they) VP (bought)

VBD(bought) NP-C(Lotus)
|
bought

NP-C(they) = NP-C(they)

|
PRP(they)
|

they

NP-C(Lotus) = NP-C(Lotus)
|
NNP(Lotus)

Lotus

Figure 1.3: Sub-derivations for words other than told in the sentence. Each sub-derivation
will contribute a set of probabilities conditioned on the lexical item that is the input to
the sub-derivation.

21

In the next stage, subcategorization decisions are made. Left and right subcategoriza-
tion frames are chosen to be added at each level of the tree. Thus there are four decisions to

be made at this stage for the example. Again, each decision has an associated probability:

e P({NP-C}|parent=S,child=VP,told,LEFT) is the probability that told takes a single
NP complement to its left, at the level where the parent non-terminal is S and the

head-child non-terminal is VP (i.e., it is the probability of told taking a single subject).

e P({}|parent=S,child=VP,told,RIGHT) is the probability that told takes no com-
plements to its right at the S/VP level.

e P({}|parent=VP,child=VBD,told,LEFT) is the probability that told takes no com-

plements to its left at the VP/VBD level.

e P({NP-C,SBAR-C}|parent=VP,child=VBD,told,RIGHT) is the probability that told
takes both an NP and an SBAR complement to its right at the VP/VBD level. (Note that
the subcategorization frame is an unordered multiset, so at this stage the relative

order of the two complements is unspecified.)

These parameters allow the model to learn a probability distribution over possible subcate-
gorization frames for each entry in the lexicon: for example, the probability that any given
verb will take a single subject (presumably a probability equal to 1); the probability of told

taking NP and SBAR complements; or the probability of give taking two NP complements.

Placement of Complements and Adjuncts

INPUT: S(told) OUTPUT: S(told)

| /\
{NP—C}VP(FOId){} NP-C VP(told)
VBD T
i} |{NP'CvSBAR‘C} VBD NP-C NP SBAR-C
|
told told

Having chosen the subcategorization frames, decisions are made regarding the relative

order of the different complements, and about whether the head takes any adjuncts. In

22

the example, four sequences of modifier non-terminals are generated: the sequence (NP-C)
to the left of the VP; a null sequence to the right of the VP; a null sequence to the left of the
VBD; and the sequence (NP-C NP SBAR-C) to the right of the VBD. Each of these sequences
is generated in a sequence of steps, each step having an associated probability.

As an example, figure 1.4 shows how the (NP-C NP SBAR-C) sequence is generated.
The sequence is generated from inside to outside (i.e., the NP-C is generated first, the
SBAR-C is generated last). At each point either a non-terminal or the STOP symbol, which
terminates the sequence, is chosen with some probability. The probability is conditioned
on the parent and child non-terminals (VP and VBD in figure 1.4), the head-word (told)
and the direction relative to the head (RIGHT). The probability is also conditioned on the
subcategorization frame, which keeps track of which subcategorization requirements have
not yet been fulfilled. Initially this frame is {NP-C,SBAR-C}; by the end of the sequence
all requirements are fulfilled and the frame is empty.

There are additional parameters associated with the three other sequences:

e P(NP-C|S,VP,{NP-C},t0ld,LEFT). The probability of generating a (subject) NP-C
to the left of the head at the S/VP level, given that this requirement hasn’t yet been
fulfilled (the {NP-C} conditioning variable indicates that the subject is still required).

e P(STOP|S,VP,{},told,LEFT). The probability of terminating the sequence to the
left of the head at the S/VP level, given that there are no requirements left in the
subcategorization frame. (Note that adjuncts could also be generated at this point,

extending the sequence.)

e P(STOP|VP,VBD,{},told,LEFT). The probability of terminating the sequence to the
left of the head at the VP/VBD level, given that there are no requirements left in the

subcategorization frame. (Note that adjuncts could also be generated at this point.)

e P(STOP|VP,VBD,{},told,RIGHT). The probability of terminating the sequence to
the right of the head at the VP/VBD level, given that there are no requirements left
in the subcategorization frame. (Note that adjuncts could also be generated at this

point.)

23

VP
|
VBD(NP-C,SBAR-C}

|
told

| P(NP-C|VP, VBD, {NP-C,SBAR-C}, told, RIGHT)

vp

|
told

| P(NP|VP, VBD, {SBAR-C}, told, RIGHT)

VP

VBD{SBAR—C} NP-C NP

|
told

| P(SBAR-C|VP, VBD, {SBAR-C}, told, RIGHT)

VP

VBD{} NP-C NP SBAR-C

|
told

| P(STOP|VP, VBD, {}, told, RIGHT)

vp

VBM’\

|
told NP-C NP SBAR-C STOP

Figure 1.4: Generation of the (NP-C NP SBAR-C) sequence to the right of the VBD.

24

Thus these parameters encode the relative ordering of the complements (for example,
that the NP-C object is closer to told than the SBAR-C complement); and they also encode

the decision to take adjuncts, such as the NP between the NP-C and SBAR-C complements.

Dependency Parameters

INPUT: S(told)
NP-C VP (told)
VBD NP-C NP SBAR-C
|
told
OUTPUT: S(told)
NP-C(IBM) VP (told)
VBD NP-C(him) NP (yesterday) SBAR-C(that)

|
told

Finally, a head-word is chosen for each modifier. P(IBM|told,S,VP,NP-C) is the
probability of seeing IBM as the head-word of the NP-C in subject position (the triple
(S, VP,NP-C) signifies the subject-verb relationship involved between the two words). There
are similar parameters for the probability of seeing him as the head-word of the object,
yesterday as the head-word of the NP adjunct, and that as the head-word of the SBAR-C
complement.

[Hindle and Rooth 91] showed that dependency parameters could be a powerful source
of disambiguating evidence for PP attachment ambiguities; this is one motive for generaliz-
ing this result to other relationships in the tree. Dependency parameters can be considered

to be a probabilistic counterpart of selectional restrictions.

Surface Distance Parameters

The parameters can be modified to allow the model to learn that the dependent words for

a particular head (e.g., {IBM, him, yesterday, that} for told) are likely to be placed close

25

13 is a direct reflection of a head-word’s

to the head in the surface string. This preference
domain of locality in the surface ordering.

From a parsing point of view, these preferences mean that the shot by Bill analysis
should get much higher probability than the believed by Bill analysis in the following

example:
John was believed to have been shot by Bill

In a language production sense, these preferences reflect facts such as the following:
John was believed by Bill to have been shot

is much more likely to be uttered than
John was believed to have been shot by Bill

(given that the believed by Bill interpretation is intended in both cases).
For reasons of brevity we do not describe here how these preferences are represented
in the parameterization of the parsing problem, merely noting that they are important.

Precise details are given in the models of chapters 6 and 7.

1.5.5 Results

Thus far the motivation for our approach has been quite abstract. Our eventual goal is
to build a parser of high accuracy. Empirical results should then be the central test of a
model, and they also have the advantage of objectivity.

The results in chapter 7 show that the parser recovers constituents in section 23 of
the Penn WSJ treebank with 88.3/88.0% precision/recall. At the time of writing, these
were the best published results on this task. They represent a 25% relative error reduction
over the results for SPATTER when trained and tested on the same data. The model
achieves these results using quite simple (interpolated) estimation techniques, leading to
a substantial reduction in training time over the SPATTER model. An implication is

that the approach in this thesis is quite orthogonal to that of SPATTER, and a promising

13We mean a statistical preference, rather than a hard grammatical constraint. Analysis in chapters 6
and 7 of this thesis shows that dependent words are very likely to be placed close to the head they modify,
at least in WSJ English.

26

area of future research would be to combine the strengths of the two methods, through
a motivated choice of parse-tree decomposition (as in this thesis) together with more
powerful estimation techniques (such as decision trees or maximum-entropy models, as
used in [Ratnaparkhi 97]). We would argue that a further advantage of our models is that
the parameters are linguistically intuitive, and therefore that it is easier to understand why
the models work: this is important for future work in improving parse accuracy, and for the
understanding of how the models fit with other areas of research such as psycholinguistics

or linguistics.

1.5.6 A Summary of the Argument

We now briefly summarize the arguments of this section:

e Two criteria dictate the success of a parameterization of the parsing problem: dis-

criminative power and compactness.

e We take a belief networks example. In belief networks there are three stages in
the design of a model: (1) a choice of variables (or representation); (2) a choice of
ordering of the variables, with a consequent expression of the chain rule; (3) a choice

of independence assumptions, where terms in the chain rule are simplified.

e In the belief networks example, the second step (the choice of variable ordering) is
crucial. With a good ordering, reasonable independence assumptions and a compact
parameterization follow naturally. With a bad ordering, it may be impossible to

make good independence assumptions.

e A general guideline is that the choice of variable ordering should reflect the causality
of the problem; the resulting parameters also reflect the causality of the system being

modeled.

e History-based models are a generalization of most statistical parsing models, and
their design can also be considered to be a three stage process: (1) a choice of
parse tree representation; (2) a choice of parse tree decomposition; (3) independence

assumptions. These three stages are highly analogous to the belief networks problem.

27

e We argue that Step 2 in the design of a history-based model is critical for a good
parameterization of the parsing problem. This leaves an open question: if causality
is used to motivate step 2 in the belief networks problem, what motivates step 2 in

the parsing problem?

e Reasoning about causality in the physical world is equivalent to reasoning about the
locality of the effects of an event. Thus causality is directly related to locality. Many
linguistic theories emphasize structural locality: in particular, lexicalized formalisms
emphasize the locality of a head’s influence in a parse tree. The locality of a lexical
head’s influence should be used to motivate the choice of decomposition in the parsing

problem.

e The result is a head-centered decomposition of the parse tree. Independence assump-
tions then follow naturally, with the parameters reflecting a head’s local domain of
influence in the tree (i.e., the model has parameters that encode the X-bar schema,
subcategorization, ordering of complements, placement of adjuncts, lexical depen-
dencies, and preferences for close attachment; all preferences being expressed by

parameters conditioned on head-words).

1.6 Overview

Chapter 2 gives mathematical results that will be used throughout the thesis. It con-
centrates on two topics. First, the chapter discusses methods for defining probabilities
over structured events such as sentences, sentence/tagged-sequence pairs, or parse trees.
Second, it discusses estimation of parameter values from training data counts.

Chapter 3 considers a series of alternative parameterizations for the parsing problem,
in terms of their discriminative power. We begin with arguments for why PCFGs make
poor models for statistical parsing: their failing is a lack of sensitivity to lexical information
and structural preferences. We then give examples motivating the use of dependency
parameters, features encoding the grammatical relations between words, subcategorization
parameters, parameters encoding the preference for close-attachment, and the use of part-

of-speech tags as word-class information.

28

Chapter 4 considers previous work on statistical parsing.

Chapter 5 considers a statistical method for the resolution of a specific (and relatively
difficult) case of syntactic ambiguity, PP-attachment ambiguity. The method illustrates
the power of dependency parameters for disambiguation: a method that considers the
head-words involved in PP-attachment decisions resolves ambiguous cases with over 84%
accuracy. (The major part of this chapter is joint work with James Brooks, having been
originally described in [Collins and Brooks 95].)

Chapter 6 describes a first attempt at building a full statistical parser that embodies
many of the parameter types described in Chapter 3. It can be considered a direct attempt
to generalize the PP-attachment model of Chapter 5 to the case of full parsing. Results are
promising: the model recovers constituents with 85.7/85.3% precision and recall. There
are, however, some mathematical problems with the model, that almost certainly impact
performance, and also lead to problems with extending the model to include additional
parameter types or to recover additional information. These problems lead us to the
parsing models of the next chapter. (Much of the work in this chapter was originally
described in [Collins 96].)

Chapter 7 describes three models for statistical parsing: moving from a more mathe-
matically motivated model with (almost) the same parameter types as the parser of chapter
6 (model 1); to a model that makes the argument/adjunct distinction and has subcate-
gorization parameters (model 2); to a model that includes a treatment of wh-movement
(model 3). Models 2 and 3 recover constituents with 88.3%/88.0% precision/recall. The
chapter takes a closer look at the strengths and weaknesses of the parser by considering
its accuracy on various different types of dependencies. (Much of the work in this chapter
was originally described in [Collins 97].)

Chapter 8 discusses the parser of chapter 7 in more detail. It takes a closer look at
the close-attachment preferences; it considers the implicit assumptions about tree repre-
sentation that the models make; and it gives a closer comparison of the models to other
work on parsing the Penn WSJ treebank.

Chapter 9 gives some thoughts on future work, while Chapter 10 gives conclusions.

29

1.6.1 Reader’s Guide

Chapter 7 describes the final parsing models of this work, Chapter 8 gives supporting
discussion. These chapters should be quite self-contained; readers who are already familiar
with previous work on statistical parsing may wish to skip straight to these chapters, and
later refer to the earlier chapters for more detail.

Chapters 2 to 6 give background material supporting the final models. Specifically:

e Chapter 2 is intended for readers who have some background in probability /statistics
and theory of automata, but who may not be so familiar with stochastic automata
and their application to machine-learning problems. (Most of the work should, for
example, be very familiar to readers from a speech recognition background, with
the possible exceptions of the sections on probabilistic context-free grammars and

history-based models.)

e Much of Chapter 3 should be familiar to readers who are well grounded in syn-
tax/linguistics. Note, however, that the goals of statistical parsing (finding the single
most likely parse for a sentence) lead to a slightly different emphasis in some cases.
For example, many of the examples that are used to motivate different choices of rep-
resentation involve syntactic ambiguity: these examples lead to a need to deal with
some phenomena (e.g., close-attachment preferences) that are usually considered to

be outside of the grammar.
e Chapter 4 aims to give a comprehensive literature review.

e Chapter 5 should be a good introduction to machine-learning approaches to ambi-
guity resolution in natural language. It also gives several useful experimental results
concerning the use of dependency parameters. Chapter 6 gives further development

of many of the intuitions behind the use of dependency parameters.

30

Chapter 2

Statistical Models

2.1 Introduction

This chapter gives mathematical background that is used throughout this thesis. Readers
who are familiar with statistical approaches to machine learning may wish to move straight
to the later sections, for example section 2.6 (Probabilistic Context Free Grammars) and
section 2.7 (history-based models).

The first two sections contain introductory material:

e Section 2.2 gives some basic definitions from probability theory and mathematical
statistics, and describes how supervised machine learning problems can be treated

within a probabilistic framework.

e Section 2.3 gives a general discussion of the application of probabilistic methods to
natural language problems. It first gives a general strategy for modeling structured
events. It next gives a general solution of the maximum-likelihood parameter esti-
mates for a class of models that is general enough to include almost all of the models

[43

described in this chapter. It finally gives two conditions for a model to be “well-

formed”. These conditions will be used to motivate many of the modeling choices

proposed later in the chapter.

We then describe some specific techniques for modeling structured events:

31

e Sections 2.4, 2.5, 2.6 and 2.7 describe a number of model types, in increasing or-
der of generality: Markov models for the definition of probabilities over sequences;
Hidden Markov Models for probabilities over sequence/state-sequence pairs; Proba-
bilistic Context-Free Grammars for probabilities over sentence-tree pairs; and finally
“history-based” models as a generalization of the previous model types. In each case
we prove that the model is “well-formed” under the definition in section 2.3.3, and

we derive the maximum-likelihood estimates, using the result in section 2.3.2.

e Section 2.9 describes a variety of estimation methods that are refinements of maximum-
likelihood estimators. Effective models for natural language tasks often have a very
large number of parameters, leading to problems with extreme sparseness of the
counts that are the basis of the parameter estimates. This section describes estima-

tion methods that deal robustly with sparse data problems.

2.2 Probability Theory

We assume some standard definitions from probability theory (see, for example, [BD 77]
for a comprehensive review). If the set (is a discrete event space, and P is a probability
distribution over this space, then: (1) 0 < P(A) <1forall A € ¢; (2) X acc P(A) = 1.

In most examples the probability measure will be parameterized: i.e., P will also be a
function of some vector of parameters ©. We write the probability of event A given some
parameter setting © as P(A | ©). The parameter space 2 is then the space {© | P(A | ©)
is a probability measure over (}.

As an example, take the case of tossing a coin that can appear as either heads (H) or

tails (T), where the probability of it landing as heads is p. In this case:
e The event space (is the set {H, T}.
e The parameter vector © has a single component, p.
e The probability measure P(A | ©) is defined aspif A=H, 1 —pif A=T.

e The parameter space € is the set [0,1] (p must take some real value between 0 and

1 for P(A | ©) to be a probability measure).

32

2.2.1 Maximum Likelihood Estimation

Now assume we have a sample, a sequence of n events X = (X, X5...X,,), drawn from (.
For example, we might toss the coin 5 times and see X = (H,T,T,H,T). Given this sample,
how do we calculate an estimate of ©, which we will call ©7
A very general method is to use maximum likelihood estimation ([BD 77] chapter 3
introduces ML estimation; chapter 4 describes many of its properties). Assuming that the
events are independent of each other, the likelihood function, L, is defined as
Lx|e)= [Pxi|e) (2.1)
i=1..n
The maximum likelihood estimate © y;;, is the value of © (in the parameter space Q) that

maximizes this likelihood function:
Oumrp = L(X |6 2.2
mi = argmax L(X | ©) (2.2)
In the coin example, the likelihood of the sample X = (H,T,T,H,T) is

L((H,T,TH,T) | ©) = p(1 —p)(1 - p)p(1 = p) = p*(1 - p)’ (23)
and the maximum likelihood estimate of p in this case is
purr, = arg max p°(1 —p)® = 2 (2.4)
pe[0,1] 5

In general, for a sample of size n with h heads, it can be shown that py;r = %

2.2.2 Notation

Before describing how probability theory can be used in a machine-learning context, we
introduce some notation. In this chapter, P is generally used to denote a probability distri-
bution, for example P(y|z) denotes the conditional probability of y given z, P(y,) denotes
the joint probability of y and z. If the event spaces for x and y are X and) respectively,
the implication is that Vo € X 3° oy P(ylr) = 1, and that -, c v ey Py, 7) = 1.

We will also use Score(z,y) to denote a probability associated with a pair (z,y). The
term Score(x,y) can denote any one of the distributions P(z,y), P(y|z) or P(z|y) — it

is a neutral term, which will be useful when the exact nature of a model’s parameters

33

is underspecified. If Score includes conditional probability notation, all variables to the
right of “|” must be conditioned upon. For example, Score(z,y|©) could be any one of

P(z,y]0), P(y|z,), or P(z]y,0).

2.2.3 Probabilistic Approaches for Supervised Machine Learning Prob-

lems

The supervised machine-learning problems considered in this thesis take the following form.
We assume the task is to learn a function f : X —), where X is a set of possible inputs,)
is a set of possible outputs. Training data is a set of n input-output pairs, (z1,y1)...(Zn, Yn)
where z; € X, y; € Y, and y; = f(z;).

As an example, take the part-of-speech (POS) tagging problem (e.g., see [Church 88)):

e Define V to be a vocabulary, a set of possible words in a language. A sentence in the
language is a sequence (wi, wsy...wy,) where m > 0 and w; € V. The input space X

is then the set of all possible sentences in the language.

e Define T to be a set of possible part-of-speech tags. A tag sequence is a sequence
(t1,t9...ty,) where m > 0 and ¢; € 7. The output space) is then the set of all

possible tag sequences.
e Training data is n examples drawn from X x), i.e. n sentence/tag-sequence pairs.

e The learning task is then to induce a function from word sequences to tag sequences,

f:Xx—=).

In probabilistic approaches the problem is transformed from directly learning a function

f: X = Y, to learning a probability function Score : X x Y — [0,1]. Score(z,y) is either

a conditional probability P(y|z) or a joint probability P(x,y). Having defined Score, f(z)
can be defined as the most likely member of) under this probability distribution:

f(z) = arg r;leaj)}c Score(x,y) (2.5)

Thus every candidate output for the input z will have an associated score; the candidate

sequences can be ranked in order of probability, moreover the candidate with the highest

34

score can be chosen as the single most likely output (assuming that there is only one
candidate with this highest score).

In a parameterized model a parameter vector © is an additional argument to the Score
function; the Score function is now written as Score(x,y|©). This function, the model
structure, is fixed, with all possible variation being described by the parameter space {2,
the space of possible values for ©. In this framework the learning problem becomes a
problem of setting the parameter estimates, 6 e Q,! from the set of training examples.

In summary, within this framework the modeling task divides into 3 problems:

1. Defining the model structure, a function Score(z,y|©) with an associated parameter

space 2.

2. Defining a parameter estimation method, i.e. a function from training samples
(£1,y1)...(pn, yn) to parameter estimates, ©. This function is usually strongly re-
lated to Score(z,y|©): for example, maximum likelihood estimation specifies that

~

© = argmaxecq [[;—1._, Score(x;, yi|©).

3. Defining a search method: an algorithm that for any input = will find the most likely

output, Ypes = arg maxycy Score(z, y|©).

2.2.4 A Note on the Definition of the Event Space

For simplicity we have assumed that the input and output spaces X and) can be defined
separately. The result is that X x) will include some members (z,y) that are ill-formed
because z and y do not “match”. For example, in the POS tagging case, some members
of X x)Y will be word/tag sequences with different lengths. In general, Score will not
be defined for these cases: from here on we will simply assume that for ill-formed inputs,

Score(z,y) = 0.

Tn general if ¢ is a parameter, we will write § to denote an estimate of that parameter’s value.

35

2.3 Defining Probabilities over Structured Events: Some

General Results

In the previous section we saw that a probabilistic approach to the machine learning
problem can be reduced to 3 sub-problems: (1) defining the model structure; (2) defining
an estimation method; and (3) designing a search algorithm. This section gives some
very general methods and results for steps (1) and (2) in natural language problems. The
following sections then describe specific approaches for probabilistic modeling of sequences,
tagged sequences, and parse trees.

A major difficulty in probabilistic modeling of the NLP problems addressed in this
chapter is the complexity of the event space. The event space in the coin-tossing example
was relatively simple: it was a finite set, having only two members; and each event in the
set was atomic. In NLP problems both the input space X and the output space) can
be of high dimensionality, with the members of these sets being complex structures (e.g.

word or tag sequences, or tree structures). As illustration, take the following 3 examples:

Sentences Suppose there is a vocabulary ¥, a set of possible words in a language. Each
event in a sample is a sentence drawn from the vocabulary ¥, i.e. a sequence of
words (w1, ws...wy,) such that n > 0 and w; € ¥. The event space (is then the set
Y* (where ¥* is as defined in formal language theory, see [Hopcroft and Ullman 79]
page 2).

This is the language modeling problem for speech recognition (e.g., see [Jelinek 90]).

Tagged Sentences Suppose that there is a set of possible words in a language, V, and

a set of possible tags, 7. Each event is a (sentence, tag-sequence) pair, i.e. a pair

((wy, wo...wy,), (t1, ta...t,)) such that n >0, w; € V, and t; € T.

Parsed Sentences Suppose that a context-free grammar G defines a set of well-formed
(sentence, tree) pairs in some language. The event space is then this set of (sentence,

tree) pairs.

The complexity of the event space in these cases leads to a requirement for quite

complicated parameterizations. The coin-tossing example involved a single parameter, p,

36

with a simple function from events to probabilities (P(H|p) = p, P(T|p) =1 —p). In
the three previous examples we must define a probability measure over an infinite set of
events. We must define this distribution using a finite number of parameters, moreover
only as many parameters as can be reliably estimated from the training sample.

In the following sections we first describe a general strategy for modeling structured
events: the idea of associating probabilities with sub-structures within individual events —
for example associating probabilities with tag sub-sequences in the POS tagging problem,
or with rules in the parsing problem. Next we give a general solution for the maximum-
likelihood estimates for a class of models that includes practically all of the models proposed
in this chapter. Finally, we give two conditions for a model to be “well-formed”: (1) that
a model Score(z,y|®) must either define a conditional or joint probability distribution;
(2) that the maximum-likelihood estimates for the model should be derivable in closed
form, or by some iterative solution (EM estimation and Maximum Entropy models both

use iterative re-estimation techniques).

2.3.1 Defining the Model Structure: Associating Probabilities with Sub-

Structures

This section addresses the problem of defining model structure, i.e. defining the function
Score(z,y|©). As a straw man we first consider the simplest possible model. We choose a
conditional probability model, so that Score(z,y|®) = P(y|z,0). The parameter vector
© lists a probability for each member of the set X x), thus © is a vector with |X| x |}
elements. The parameters of the model are estimated from training data using maximum-

likelihood estimation, which gives parameter estimates © such that

Count(x,y)

Score(:r,y|@) = P(y|a;,@) = Count(z)

(2.6)

(Count(x,y) is the number of times (x,y) is seen in the training sample, and Count(x) =
> yey Count(z,y) is the number of times z is seen in the training sample). With this
model, finding the most likely output ypes: for an input x amounts to a table look-up,
simply choosing the output that has been seen with x the most frequently in training

data, i.e. defining f(z) = arg max,cy Count(z,y).

37

Unfortunately this model will fail for all but the most trivial problems, due to the vast
number (|X| x |Y|) of parameters. At the very least, the model presupposes that every
input x seen in test data will have been seen at least once in training data: for inputs
not seen in training data Count(z,y) = Count(z) = 0, and P(y|z,®) is undefined. In
problems such as POS tagging or parsing, the proportion of sentences in test data that
have also been seen in the training sample is typically extremely low, and the method will
fail badly.

A model with far fewer parameters can be defined by associating parameters with
sub-structures within the training and test events, rather than with entire events sampled
from the set A x Y. The score for an entire structure is then calculated as a product of
probabilities: one probability for each sub-structure within the entire structure. In the
parsing problem, where the output y is a context-free tree, a natural step is to associate
a probability with each rule in the grammar, rather than with each possible tree. In POS
tagging, the commonly used HMM model (see [Church 88]) has two types of parameters:
first, probabilities associated with tag subsequences (single tags, or pairs or triples of tags);
second, probabilities associated with word-tag pairs. A trigram HMM would calculate the
score for a sentence/tag-sequence pair as something similar to?

Score((wy...wp), (t1...t,)) = H Score(t;, ti_1,ti—2) H Score(w;, t;) (2.7)
i=l..n i=l..n
This choice of representation reflects two linguistic assumptions: first, that some sequences
of tags are much more frequent than others — i.e. that the parameters Score(t;,t;—1,ti—2)
carry useful information; second, that individual words have strong preferences for some
tags over others — i.e., that Score(w;,t;) also carries useful information.

Having chosen how to break down the structure, the next step is to precisely specify the
parameters. In the POS tagging case there are a number of possibilities: Score(w,t) could
be a joint probability P(w,t), or one of the conditional probabilities P(wl|t) or P(t|w).
Score(ti,t;—1,ti—2) could be anything from a joint probability P(¢;,t;—1,t;—2) to one of the
conditionals P(t;|t;—1,ti—2), P(ti—1|ti,ti—2), or P(t;—a|ti, ti—1).

2to and t_, are defined as some special START tokens, padding the start of the sentence. We will see
soon that an additional term, P(STOP|tn—1,t,) is also required for the model to be well-formed.

38

When choosing between these different possibilities, the constraints described in sec-
tion 2.3.3 (that the model should sum to one, and that the ML estimates should either be
derivable in closed form, or by some iterative solution) eliminate many of the alternatives.

A standard model is as follows:
e Score(z,y|©) is a joint distribution, with

SCOT€(<U)1...wn>, (tltn>|®) == P(STOP|tn,tn_1) H P(ti|ti_1,ti_2) ' H P(wi|ti)

i=1...n i=1...n

(2.8)
Note there is an additional tag (the STOP symbol) and an associated probability
of generating it (we will see later that this extra term is required for Score to be a

well-formed distribution).

Providing that the parameter values define conditional probability distributions, this model
defines a joint distribution that sums to one. More formally,

Iff
1. Vig,t3 € T ZtleTUSTOP P(t1|t2,t3) =1
2V ET Yoy Plwlt) =1

Then > ¢y ey Score(z,y|O©) =1

These results follow from a derivation of the equivalence of this model to a particular
Hidden Markov Model (HMM). (See section 2.5.)

The next question is how the parameters should be estimated. We will see in sec-
tion 2.3.2 that maximum-likelihood estimation gives

Count(tl, t2, t3)

Pti]te,ts) = Count(ts, t3) (2.9)
Pluwlt) = % (2.10)

(Where Count(z) is the number of times z is seen in the training sample.)

2.3.2 Maximum-Likelihood Estimation in Structured Models

Having discussed the design of model structure, we now move on to parameter estimation.

Practically all the models described in this chapter have a special form that leads to a

39

simple solution for the maximum-likelihood parameter estimates. These models satisfy

two criteria:

1. Say ® = {p1,p2,...pn} is the combination of m multinomial distributions €2, Q9, .., .
Each €2; is a subset of the integers {1,2,...,n} such that the Qs form a partition of

{1,2,3..n}. {pili € Q;} are the parameters of the jth multinomial, so that

> opi=1 (2.11)

’iEQj
Let Q° be the multinomial that contains p;.

2. The likelihood of the data can be written

Lx|®) = [I» % I1 pf .. IT %% (2.12)
1€ 1€Q2 1EQm

where C(i, X) is the count of the event which corresponds to p; in a sample X.

If these conditions are satisfied, maximizing 2.12 subject to the constraints in 2.11 gives

maximume-likelihood estimates for each p; as

A C(i,X)
. = 2.13
PimL > jeqi Count(j, X) ()
Proof of 2.13
We first define the log-likelihood function, L':
n , n
L'(X|0) = log L(X|0) = log [[»{ ™ = 3" C (i, X) log p; (2.14)

i=1 i=1
Maximizing 2.14 is equivalent to maximizing 2.12, and turns out to be more convenient.
The maximization of 2.14 subject to the constraints in 2.11 can be transformed into an un-
constrained maximization problem using Lagrange multipliers. We associate m Lagrange
multipliers Aj...\,, with the m constraints in 2.11. The unconstrained problem is then to

maximize
n

Y O6X)logpi— Y. A D pk (2.15)

i=1 j=1l.m kel

40

Setting the partial derivatives of 2.15 with respect to each p; equal to zero gives n simul-

taneous equations:
C(i, X)

Di

where A; is the Lagrange multiplier associated with the multinomial Q! that contains p;.

— =0 (2.16)

Equivalently,
C(i, X)
Aj

Finally, A; can be eliminated by restating the constraints in 2.11:

S opp=1

ket
C(k,X)
Aj

pi = (2.17)

=1

ke
= A= CkX) (2.18)
keqi

From 2.17 and 2.18
C(i,X)

=) 2.19
" Ciea 06X (21

Example

As an example, the HMM POS tagging model is of this special model form:

1. The parameter vector © consists of two types of parameters: P(t1|t2,t3) where ¢; €
T USTOP and tg,t3 € TUSTART; and P(w|t) where t € T and w € W. Thus ©
can be separated into m = (|T] + 1)? 4+ |T| subsets: (]T|+ 1)? corresponding to the

multinomials P(-|t2,t3) and |7 | corresponding to the multinomials P(-|t).

2. Say the training sample is n word-sequence/tag-sequence pairs, where the jth se-
quence is of length [; and is written (wj1...w;q,)), (tj1.-¢;;))- The likelihood of the
jth sequence is

P(STOP|tj, tj, 1) T[Pjiltja-v),tia-2) [1 Plwjilts) (2.20)
i=1...j; i=1...j;
The likelihood of the training sample is

11 (P(STOP|tjl7tjl1) II Pltj1)tje—2) 1] P(U’jil%‘z‘))
n

j=1... i=1...j; i=1...j,

41

= 11 Pty |ta, tg) Comtttrtzts) T P(uft)Comntw)
t1€TUSTOP, t2,ts€ TUSTART 1T, wey
(2.21)

Count(ty,ts,t3) is the number of times the parameter P(t;|t2,%3) is seen in the first
product, i.e. the number of times the sequence (t1,ts,%3) is seen in training data.
Count(w,t) is the number of times the pair P(w|t) is seen in the first product, i.e.

the number of times (w, t) is seen in training data.

The general result in 2.13 can now be applied to give the familiar maximum-likelihood

solutions for the parameter values:

P (t |t ¢) _ Count(tl,tg,tg) _ Count(tl,tg,t3) (2 22)
MLAMLI"2, 3 > erusrop Count(ty, ta, t3) Count(ts, t3) '

- B Count(w,t) Count(w,t)
Paz(wlt) = S wey Count(w,t) — Count(t) (223)

2.3.3 Two Conditions for Model Structures

In the POS tagging example we suggested the following model (equation 2.8, repeated
here):

Score((wy..wn), (t..tn)) = P(STOP|ty, ta1) [[Pltilti-1, ti2) J[Plwilt:) (2.24)

i=l..n i=l..n
In defining the parameters, and thereby the model structure, we hinted that 2.24 was one
of the few possibilities. But why, for example, couldn’t we instead choose a model such as
the following?
Score((wy..wn), (t..tn)) = P(STOP|ty, tn1) [[Pltilti-1,ti2) [[Pltilwi) (2.25)
i=l..n i=l..n
In a sense, the parameter type P(¢;|w;) is more intuitive than P(w;|t;). In fact, one of the
earliest papers on Markov taggers [Church 88] used 2.25 rather than 2.24.
As one criterion for the choice between competing models, we specify two conditions

“

for a model structure to be “well-formed”:

42

1. The model structure Score(z,y|©) for all values © € 2 should be either a conditional
probability P(y|z) (satisfying the constraint Vo € X' 37, o, Score(y, z) = 1) or a joint
probability P(z,y) (satisfying the constraint }° ¢y cy Score(z,y) = 1).

2. The maximum-likelihood estimates for the model should be derivable in closed form,
or by some iterative solution (EM estimation and Maximum Entropy models both
use iterative re-estimation techniques). Often this means that the model is of the

form described in section 2.3.2, with the maximum likelihood estimate of P(a|b) then

Count(a,b)
Count(b) -

being
This second point is important because MLE’s will be central to the estimation
methods that we use. Even if we don’t directly use MLE’s, instead using one of the
more robust methods described in section 2.9, the parameter estimates will generally

be derived as a refinement of maximum-likelihood estimates.

Condition 1 alone is trivial to satisfy. Say, for example, we would like to define a joint
distribution, and that we have a function Score(z,y|©) that is unfortunately not a distri-
bution, i.e. 3, cy ey Score(y,z|O) # 1. Tt is straightforward to define a function Score’
that is a distribution: if we define a normalization factor Z(©) = 3>,y ,cy Score(y, z|©)

_ Score(z,y|®)

then Score'(z,y|®) = Z(e) 15 a distribution?.

The problem with normalizing distributions in this way comes from condition 2. The
maximum-likelihood estimate for a training sample (z1,y1)...(Zn, yn) is defined as

Score(i, yi|©)

Z6) (2.26)

O, = arg max izll—[) Score (z;,y;|©) = arg ma ._11_[

Z(©) must be taken into account when maximizing this product, and may greatly compli-
cate the process, often blocking a closed-form solution for the ML estimates. The addition
of Z(©) means that the model is not of the type defined in section 2.3.2, and that the

familiar relative frequency estimate P(a|b) = %TW

will most likely not be a maximum-
likelihood estimate.
We can now return to the choice between 2.24 and 2.25 as models for POS tagging.

Model form 2.24 sums to 1 as it stands, is of the form described in section 2.3.2, and

3When searching for the most likely output ypcs¢ for some input & under the distribution Score’, Z(0)
will not complicate the process as it is a constant that can be ignored when ranking alternatives, and thus
it does not need to be explicitly calculated.

43

therefore has ML estimates of the form P(alb) = %ﬁg'&;?). Model form 2.25 does not
sum to 1 without a normalizing factor: with the normalizing factor the ML estimates are
very difficult to derive (and probably don’t even exist in closed form). The method in
[Church 88] — the use of model form 2.25 with estimates derived from relative frequency
estimates — cannot be justified as maximum-likelihood estimation. These theoretical
deficiencies have been shown to give decreased performance of the model on real tasks:

[Charniak et al. 93] reports accuracies of 96% vs. 95% for models 2.24 and 2.25 respectively
on a POS tagging task.

2.3.4 Summary

In summary:

e The first task when designing a model is to choose how to break the members of the
input-output space X x Y into smaller sub-events. For example, in the case of POS

tagging, we chose to associate parameters with tag trigrams and word-tag pairs.

e The second task is to exactly specify the parameters in the model. In the POS
tagging case, the parameters were P(t;|t;—1,t;i—2) and P(w|t). When making this
choice there are two guiding constraints: (1) that the overall model should define
either a joint or conditional probability distribution over the space X x J 4; (2) that
the maximume-likelihood estimates should be derivable in closed form, or by some

iterative solution.

Defining models that satisfy these criteria for complex event spaces is difficult, and
is the major concern of this chapter. We will describe a number of techniques, in
increasing order of generality, that can be applied to this type of problem: Markov
models for probabilities over sequences; Hidden Markov Models for probabilities over
sequence/state-sequence pairs (as in POS tagging); Probabilistic Context-Free Gram-
mars for probabilities over sentence-tree pairs; and finally “history-based” models as

a generalization of the previous model types.

%i.e. that the Score associated with each member of X' x) gives either a joint distribution satisfying

> wcx Score(z,y) = 1, or a conditional distribution satisfying V& € X Zyey Score(x,y) = 1.
yey

44

e The third task is that of estimation: given a training example and a model struc-
ture, how to calculate parameter values. For each of the model types described in
this chapter we derive the maximum-likelihood estimate of the parameters. Sec-
tion 2.9 describes more sophisticated estimation methods that smooth higher-order

maximum-likelihood estimates with lower-order estimates.

2.4 Defining Sentence Probabilities Using Markov Processes

This section describes Markov models as a method for defining probabilities over sequences
of symbols. These models are used in the parser of chapter 7, so we will discuss them quite
extensively here. They are also the basis of Hidden Markov Models, described in the next

section. Consider the following situation:
e V is a vocabulary, a set of words in a language.

e A sentence drawn from this vocabulary is a sequence W = (w1, wo...w,) where n > 0,

and w; € V.
e We name the (infinite) set of all possible sentences ¢ (this is the event space).

We would like to define a distribution P over the event space . A simple way to define
this probability distribution is to assume that the sentences of the language are generated
by a Markov process. Our first step is to add a special ST OP symbol to the vocabulary,
and to define w,41 in any sentence W as this STOP symbol (section 2.4.1 explains why
this is necessary). The probability of any sentence can then be written using the chain
rule of probabilities:

i=1..n+1

The next step is to make an mth order Markov assumption: that the probability of a
symbol depends only on the previous m symbols (wy and w_; are taken to be some special

START symbol):

P(wz | wl...wi_l) = P(wl | wi_m...wi_l) (228)
Pw) =] Plwilwim-.wi1) (2.29)
i=1..n+1

45

For example, in the standard trigram model used in speech recognition [Jelinek 90], a 2nd

order Markov assumption is used:

P(w; | wy..wj—1) = Pw;| wj_g..w;_1) (2.30)
Pw) =] Plwilwis.wi) (2.31)
i=1...n+1

An mth order Markov model requires |V|"!

parameters. Providing that the parameters
of the Markov process give well defined distributions, this model defines a probability
distribution over the possible sentences in the language. More formally:

(V:p,y eV Z Pw|z,y) = 1) = Z PW)=1 (2.32)

weVUSTOP Weg

(This is a slight simplification. There are actually further constraints on the parameter
values for the model to sum to 1. Some parameter settings can lead to probability mass
being lost to infinite length sequences. For example, a self-looping probability P(ala) = 1
in a first order Markov chain will mean that there is some probability of never generating
the STOP symbol. See for example [Thomason 86] pages 126-128 for conditions that

exclude parameter values that lead to these problems.)

2.4.1 The Importance of the STOP Symbol

At first glance the addition of the ST OP symbol seems rather unnatural. This section gives
justification for its inclusion. The suspicion that the STOP symbol might be extraneous
is compounded by many, perhaps a majority, of the references in language modeling for
speech recognition omitting it>. The usual derivation in these descriptions of language
modeling goes as follows. First, rewrite the probability of a word sequence using the chain
rule of probabilities:

P(wy, we, ws...wy,) = H P(wj|w;.. w;—1) (2.33)

i=1...n

Second, make Markov independence assumptions:

i=1...n i=1...n

®Maybe with good reason: either to considerably simplify the description at the cost of a small decrease
in accuracy; or because they assume that the speech stream will not be decoded sentence by sentence, but
instead as a continuous stream of potentially infinite length.

46

So what is the problem with this derivation?

The key point is that n, the sentence length, is variable. Equation 2.33 would be correct
if the event space under consideration was the space of n-dimensional vectors V": but the
event space is instead the set of all strings in the language, V*. Writing the probability
under consideration as P(w1, ws, w3...wy) implies that V™ is the event space. To avoid this
confusion we will write the probability of a sequence (wy,ws,...w,) as P((w1, ws, ...wy)):
the angled braces imply that (w;,ws,...w,) is a sequence of variable length rather than an
n-dimensional vector.

This criticism may seem pedantic, particularly in the case of speech recognition, where
n is often large and the ST OP probabilities may not be too significant. (In fact, if speech
is not decoded sentence by sentence but is instead decoded as one steady stream then n
may become very large and the ST OP probabilities will become irrelevant: the language
model becomes a Markov process that has zero probability of halting.) However, in our
use of Markov processes in chapter 7 the sequences under consideration are typically of
length 0, 1 or 2, and the ST OP probabilities are certainly important.

It is easy to give an example that illustrates the failings of equation 2.34:

e Assume V = {a,b}, and therefore that (is {¢, a, b, aa, bb, ab, bb ...}.

e Assume that we will model the probability over { with a 0’th order Markov process,

with parameters P(a) = P(b) = 0.5.

We can now calculate the probability of several strings using the formula in equation 2.34:
P({a)) = 0.5, P({b)) = 0.5, P({aa)) = 0.5? = 0.25, P((bb)) = 0.25 and so on. We already
see from these 4 probabilities that the sum over the event space will be greater than 1:
P((a)) + P((b)) + P({aa)) + P({(bb)) = 1.5! An additional problem is that the probability
of the empty string, P(()), where n = 0, is undefined.

Now assume that we add the stop symbol, with the parameters of the Markov process
modified to include this: e.g., P(a) = P(b) = 0.25, P(STOP) = 0.5. In this case we have
P((STOP)) = 0.5, P((aSTOP)) = 0.25 % 0.5 = 0.125, P((bSTOP)) = 0.25 %« 0.5 = 0.125,
P((aaSTOP)) = 0.25%2 % 0.5 = 0.03125, P((bbSTOP)) = 0.03125 and so on. Thus far

the sum of probabilities does not exceed 1, and the distribution is looking much better

47

behaved. We can prove that the sum over all sequences is 1 by noting that the probability
of any sequence of length n is 0.25" % 0.5, and that there are 2" sequences of length n,
giving:

o.9]
Y PW) = > 2"%0.25" %05
we(n=0

=) 05"x05
n;l] 1
= 0.5"F

S
= > 05"
n=1

=1 (2.35)

In a 0’th order Markov process the distribution over lengths of strings is related directly
to P(STOP) — the probability of a string having length n is the probability of generating
n non-STOP symbols followed by the STOP symbol:

P(length =n) = (1 — P(STOP))" x P(STOP) (2.36)

With higher order Markov processes, where the probability is conditioned on previously
generated symbols, the conditional probability P(STOP | w;—p,...w;—1) encodes the prefer-
ence for certain symbols or sequences of symbols to end or not to end a sentence. For exam-
ple, if we were building a bigram (1st order Markov) model of English we would expect the
word the to end a sentence very rarely, and the corresponding parameter P(STOP | the)
to be very low. Without the STOP symbol these kind of facts will not be encoded in
the parameters. So we see that the ST'OP symbol not only ensures that the probability

distributions are well defined, but that it can also have a useful interpretation.

2.5 Defining Tagged-Sentence Probabilities Using Hidden

Markov Processes

This section considers the definition of probability distributions over pairs of sequences.

In general:

48

e The input space X is a set of sequences (w;...w,) where each w; is drawn from a set

of “words” V (we refer to these sequences as word sequences, or sentences).

e The output space) is a set of sequences (ti...t,) where each ¢; is drawn from a set

of “tags” T (we refer to these as tag sequences).

e In order to define the mapping f : X — Y we define a distribution Score : X x Y —
[0,1]. Hidden Markov Models (HMMs), the topic of this section, can be used to
define a joint probability P(z,y|©) over X x).

As a first step in defining P(z,y|©), we break the probability into two terms:
P((wl,wg...wn>, <t1,t2...tn>) = P((tl, t2...tn>) X P((wl, ’U)Q’U)n> | (tl, tg...tn>) (237)

(This step is exact, being a direct consequence of the definition of conditional probabil-
ity.) The two terms are then modeled separately. The probability distribution over tag
sequences is defined using an mth order Markov model:
P((t1,ty...ty)) = P(STOP |ty my1-tn) [[Pltiltiom-.ti—1) (2.38)
i=1...n
From the results in the previous section 2.38 defines a well-formed distribution over tag
sequences providing that Véi...4m € T Yycrursropy Pt tm) = 1.
The second term is simplified by first using the chain rule, then by making the inde-

pendence assumption that each word depends only on its corresponding tag:

P((wl,wg...wn) | (tl,tg...tn>) = H P(wl | (U)l,’wg...wz',l%<t1,t2...tn>)
i=1...n
=]I Plwilty) (2.39)
i=1...n

Substituting 2.38 and 2.39 in 2.37 gives the equation for an mth order HMM.:

P((wy, wa...wn), (t1, to...tn)) = P(STOP | ty_mi1.tn) [[Pliltim--tict) [[Plws|t:)
i=1l...n i=1...n
(2.40)
The property that this definition sums to 1 over the space X x) comes directly from the
fact that 2.38 and 2.39 sum to 1 over their respective event spaces (i.e., 2.38 sums to 1

over), 2.39 sums to 1 over X'). The trigram tagger in 2.8 is a 2nd order HMM, so we have

49

finally proved that it is a model that sums to 1 over its event space. Section 2.3.2 showed
that the maximum-likelihood parameter estimates are

Count(t,t1...tm,)
Count(ty...ty,)
Count(w,t)

Py (wlt) = “Count(t) (2.41)

Pup(tlty.ty) =

An efficient algorithm for search for the highest probability tag sequence for a particular

sentence — the Viterbi algorithm — exists for HMMs (e.g., see [Charniak 93]).

2.6 Probabilistic Context Free Grammars (PCFGs)

We now describe the use of Probabilistic Context Free Grammars (PCFGs) for modeling
distributions over sentence/parse-tree pairs. The theory behind PCFGs will be important
for the parsing models in chapter 7, so this section describes them in some detail: first
giving basic definitions, next defining search algorithms, and finally deriving expressions
for maximum-likelihood parameter estimates.

Probabilistic learning for parsing can be defined as follows:

e The input space X is a set of sequences (w;...w,) where each w; is drawn from a set

of “words” V (we refer to these sequences as word sequences, or sentences).

e The output space) is a set of parse trees generated by some context-free grammar.
Each parse tree spans a member of V* (i.e., each tree in) has a member of X as its

sequence of terminal symbols).

e In order to define the mapping f : X — YV we will define a distribution Score :
X x)Y — [0,1]. PCFGs can be used to define a joint probability P(z,y|©) over the
space of possible sentence/parse-tree pairs.

2.6.1 Formal Definitions

A context-free grammar (e.g., see [Hopcroft and Ullman 79]) is usually defined as a 4-tuple

G=(N, X, P, S) where
e N is a finite set of non-terminal symbols.

50

e) is a finite set of terminal symbols.

e P is a finite set of productions or rewriting rules. The rules in P take the form o« — 3

where « € N and § € {N UX}*.
e S € N is the starting symbol.

A probabilistic context-free grammar (PCFG) additionally has a probability associated
with each rule in the grammar. We will write the probability associated with rule @« — 3
as P(a — f|a). It is interpreted as the conditional probability of choosing the rule a — £,
given that « is the non-terminal being rewritten in a derivation. If D is a function assigning
a probability to each member of P, a PCFG is a 5-tuple G = (N, X, P, S, D).

Given a PCFG, the probability for any context-free tree in the language is the product
of probabilities for the rules that it contains. That is, if T" is a context-free derivation that
involves n rules of the form «a; — ;,

P(T) = [[Plai— Bilew) (2.42)
i=1..n
A PCFG also defines a probability distribution over strings. If 7(S) is the set of trees
whose surface string is S, then
P(S)= > P(T) (2.43)
TeT(S)
Perhaps more importantly, given that we are attempting to define parsing models, a PCFG
also defines the most likely tree for each string S, Thes:(S):

Tyeu(S) = axg max P(T) (2.44)

2.6.2 Conditions for Consistency

If T is the set of all possible trees in the context-free language underlying the PCFG, and
S is the set of strings in the context-free language, then a PCFG should define probability

distributions over the sets of possible trees and strings. That is,

VI eT P(T) >0 (2.45)

ol

YP(T) = 1 (2.46)

TeT

VSeS P(S) >0 (2.47)
Y PS) =1 (2.48)
Ses

Note that conditions 2.46 and 2.48 are equivalent ([Booth and Thompson 73] give condi-
tions for 2.48 to be true, which we will take to also imply that 2.46 is true):

PO = > PIT)=> PO (2.49)
)

SeS SeESTeT(S TeT

Conditions 2.45 and 2.47 follow from all rule probabilities P(a — (|cr) being > 0.
[Booth and Thompson 73] prove that two conditions are required for what they call con-

sistency (i.e., condition 2.48, and by implication 2.46):

1. For all non-terminals a € N,
> Pla—Bla)=1 (2.50)
(a—pB)eP
Thus consistency is the motivation for the probability associated with o — 3 being

P(a — B|ar), rather than another possibility such as a joint P(«a — (), or the other
conditional P(a — 3|3).

[Booth and Thompson 73] called PCFGs fulfilling this condition proper.

2. [Booth and Thompson 73] section V gives further conditions on the parameter values
for counsistency. This rules out problematic PCFGs such as a grammar that has a
self-looping rule NP — NP with probability 1. In this case the self-loop means that
some probability mass is lost to derivations that never terminate. Surprisingly, even
grammars without self-loops can lose some probability mass to derivations that never
terminate: for example, a PCFG with two rules S — S S (probability = 0.6) and S
— a (probability = 0.4) has this problem.

Figure 2.1 gives an example PCFG, which is proper (and consistent). Figure 2.2 gives an

example tree with its associated probabilities.

52

N = {TOP, S, NP, VP, VB, NNP}

Y = {gave, saw, U.S., IBM, yesterday}

S =TOP
Rules P Probabilities D
TOP = S 1.0
S = NP VP 0.8
S = NP NP VP 0.2
VP = VB NP 0.6
VP = VB NP NP 0.4
NP = N 1.0
VB = gave 0.6
VB = bought 0.4
N = Lotus 0.8
N = IBM 0.1
N = yesterday 0.1
Figure 2.1: A PCFG
TOP
|
S
NP NP VP
N 1\|T VB NP
| |
yesterday IBM bought N
|
Lotus
Probability = P(TOP — S|TOP) x P(N — yesterday|N)
xP(S — NP NP VP|S) x P(N — IBM|N)
x P(VP — VB NP|VP) X P(V — bought|V)
x P(NP — N|NP) x P(N — Lotus|N)
x P(NP — N|NP)
x P(NP — N|NP)

Figure 2.2: A context-free tree, and its associated probability.

93

2.6.3 Search for the Highest Probability Tree

The search problem is to find the most likely tree, Thes:(.5), for an input string S, where

Thest(S) = arg RS P(T) (2.51)
One of the simplest methods is an extension of the CKY algorithm [Hopcroft and Ullman 79]
— originally developed for context-free grammars — to PCFGs. The CKY algorithm as-

sumes that the input grammar is in Chomsky Normal Form (CNF). In a CNF grammar

every rule takes one of two forms:
e A — B C, where A, B, C are in N.
e A — a, where A isin NV, a is in X.

For now we will assume that the PCFGs under consideration are in CNF.
The CKY algorithm for PCFGs is a dynamic programming algorithm that runs in
O(n3|N|?) time where n is the number of words in the input sentence, |N| is the number

of non-terminals in the grammar. We assume the following data structures:
e Input: n words wy...w,

e We assume that the | V| non-terminals in the grammar have indices 1,2, ...|N|. With-

out loss of generality we take the first non-terminal to be the starting symbol.

e The central data structure is a dynamic programming array: l[i,J, k] holds the

maximum probability for a constituent with label k spanning words i...J.

e The goal of the search is then to find n[l,n,1] (the maximum probability for any
tree spanning the whole sentence, rooted in the starting symbol). Back-pointers in
the dynamic programming array can be used to store the path leading to this goal

(the highest probability tree).

The basis of the CKY algorithm is a recursive definition of the dynamic programming

array:

e Base case:

o4

fori =1..n,k =1...|N|,
if K — w; is a rule in the grammar =i, i, k] = P(k — w;|k)

else w[i,i,k] =0

e Recursive case:
w[i, 7, k] = max{n[i,m, k1]« w[m + 1,7, ko] * P(k — k1 k2|k)}

where the maximum is taken over m such that ¢+ < m < j — 1 and k1, k2 such that

k — k1 k2 is in the grammar

Figure 2.3 gives pseudo code for an implementation of the algorithm. The only sub-
tle point in the implementation is that when building a constituent of length [, all sub-
constituents of length less than [must have already been built. The variable s (for span)

in the pseudo-code ensures that constituents of length 2, 3, 4 ... n are built in that order.

2.6.4 Parameter Estimation

The next question is how to estimate the rule probabilities P(a — (|a), given a training
corpus. Assume that the training corpus consists of n trees, T7...7,,. Assume that each T;
contains r; context-free rules, a;; — 3;; for 1 < j < r;. The likelihood of the corpus can

be written as

L(corpus) = H P(T)

= JI Pla— Blayceniles) (2.52)

(Count(a — f3) is the number of times the rule & — [is seen in the first product: Le., the
number of times the rule is seen in training data.) This likelihood function shows that the
model is of the general form described in section 2.3.2. If §(«) is the set {8 | (« —) € P}

then it follows that the maximum-likelihood parameter estimates are

_ Count(a —) _ Count(a — B)
Pla= flo) = > epa) Count(a =) Count(e) (259

95

#initialisation
for all i,j,k
pli,j,k] =0

#base case
fori=1 ... n
for k=1...G
if k¥ > wi is in grammar

pli,i,k] = P(k -> wi)

#irecursive case

for s =2 ... n

for i =1 ... n-s+l

j = it+s-1

form=1 ... j-1
for k=1 ... G
for k1 = .. G
for k2 = . G

prob = pli,m,ki] * plm+l,j,k2] * P(k -> ki1 k2)
if (prob > pli,j,k])

pli,j,k] = prob
B[i,j,k] = {m,k1,k2}

Figure 2.3: Pseudo-code for the CKY algorithm for PCFGs. p is the dynamic programming
array. B is an array of back-pointers allowing recovery of the highest probability tree.

56

2.7 History-Based Models

[Black et al. 92b] introduced what they called “history-based” models to natural lan-
guage processing; later work such as [Jelinek et al. 94, Magerman 95, Ratnaparkhi 96,
Ratnaparkhi 97] used this for parsing and tagging problems. The idea is to define a one-
to-one mapping that maps each member of X x) to a sequence of decisions (d1, ds...dy,).
The joint probability of a member (z,y) of X x) is then written using the chain rule of
probabilities as

P(z,y) = P({dy,ds...dn)) = [[P(dildy...di-1) (2.54)

i=1...n

The conditioning context for each d;, (di,ds...d;—1), is referred to as the “history”, and is
equivalent to some partially built structure.

The mapping between events in X x) and decision sequences is achieved by defin-
ing a stochastic program that generates events in X x). A stochastic program is an
algorithm which at certain points makes a random choice between alternative decisions,
according to some probability distribution [Koller, McAllester and Pfeffer 97]. The trace
of the program can be represented as the sequence of decisions that is made; the prob-
ability of this decision sequence is the product of probabilities of the different decisions.
If the program’s probability of halting is 1,5 then the program defines a distribution over
decision sequences, and — given that there is one-to-one mapping from members of X x Y
to decision sequences — it defines a distribution over X x Y.

As it stands, associating a parameter P(d;|d;...d;—1) with each possible prefix (dy, ds...d;)
would lead to a vast number of parameters. [Black et al. 92b] describe the use of a function
® to group histories into equivalence classes, giving

P(z,y) = P((d1,ds...dy)) = H P (d;|®(dy...di—1)) (2.55)
i=l..n

As an example, figure 2.4 gives pseudo-code for a stochastic program that generates
tree-sentence pairs. In this case the stochastic program generates left-most derivations of
parse trees: a tree is represented as a sequence of decisions where each decision is the

rule used to expand the left-most non-terminal at the current point in the derivation.

SNote that this property can often be quite difficult to prove.

o7

For example, [S [NP [N I]] [VP [VB saw] [NP [N her]]]] would be represented as
{S— NP VP, NP - N, N— I, VP — VB NP, VB — saw, NP — N, N — her}.

If ®(d;...dji—1)) = «, where « is the left-most non-terminal in the partial tree defined
by (d;...d;_1), then the stochastic program is equivalent to a PCFG, in that it generates
trees with the distribution defined by a PCFG with parameters P(a — (|a). On the
other hand, ® could be extended to include arbitrary additional context in the partial tree
defined by d;...d;_; (for example, the parent of « in the tree, the symbol directly to the
left of « in the tree, and so on). [Black et al. 92b] describe a method that uses decision
trees to search for values of @ that include additional context. So we see that while this
history-based model includes PCFGs, it is also powerful enough to extend them in many
ways.

For completeness, figures 2.5 and 2.6 give pseudocode for stochastic programs that gen-
erate sequences and sequence pairs, and states conditions for their equivalence to Markov

and Hidden Markov Models respectively.

2.7.1 Conditional History-Based Models

History-based models can also be used to define conditional distributions P(y|z) for y € Y
and z € X. [Ratnaparkhi 97, Magerman 95, Jelinek et al. 94] describe conditional models
for parsing; [Ratnaparkhi 96] describes such a model for POS tagging. In conditional
models the pair z,y is again represented as a sequence of decisions, but the input z is a
conditioning variable:

P(ylz) = P({dy, do-dp)la) = [Pl ®(dyodior,) (2.56)

i=l..n

For example, in [Ratnaparkhi 96], d;...d,, are the n POS tags for a sentence of length n,
and ®(d;...d;_1,z) picks out the previous two tags, d;_; and d;_9, as well as the words
w;_9...w;+2. Chapter 4 describes the use of conditional history-based models for parsing

[Magerman 95, Ratnaparkhi 97, Jelinek et al. 94] in some detail.

o8

#d_i is the i’th decision made by the program —- each decision is the choice
#to use some rewrite rule from the grammar

#s_i is the i’th sentential form derived in a left-recursive derivation of
#the tree. s_0 is START (START is the starting symbol in the grammar);
#s_i can be derived from s_0 and d_1 ... d_n

so = START;
i=0;

while(s; contains at least one non-terminal)

{

« = left-most non-terminal in s;;
d; = choose a rewrite rule & — from the distribution P(a — £|®(d;...d;—1));

Si+1 = §; with « replaced by (;
1++;

}

return;

Figure 2.4: A stochastic program that generates trees. If ®(d;...d;—1) = « then this is
equivalent to a PCFG.

#d_i is the i’th decision made by the program —- each decision is the choice
#to generate either a symbol from the vocabulary V, or the STOP symbol

i=1;

while(TRUE)
{

d; = a word drawn from the distribution P(word|®(d;...d;—1));
if(d; == STOP) return;
1++;

Figure 2.5: A stochastic program that generates sequences. If ®(d;...d;—1) = dj—m...d;i—1
then this program is equivalent to an mth order Markov model.

99

#d_1i is the i’th decision made by the program —- each decision for odd
#values of i is to either choose a tag from the set of tags T or the STOP
#symbol; for even values of i it is to choose a word from the vocabulary

i=1;

while(TRUE)
{

d; = a tag drawn from the distribution P(tag|®(d;...d;—1));
if(d; == STOP) return;

di+1 = a word drawn from the distribution P(word|®2(d;...d;));
i+=2;

Figure 2.6: A stochastic program that generates sequence pairs. If ®y(d;...d;—1) =
di—om+1, di—2m+3---di—1 and ®a(dy...d;) = d; then this program is equivalent to an mth
order Hidden Markov model.

2.8 Additional Topics in Statistical Models

2.8.1 Unsupervised Learning through the EM Algorithm

Model structures that define joint probability distributions P(z,y|©) can be trained in an
unsupervised fashion using the expectation-maximization (EM) algorithm

[Dempster, Laird and Rubin 77]. In unsupervised training the training data is a sequence
of events X = z1...xz, drawn from X'. [Baker 79] describes an efficient algorithm for EM

training of PCFGs; [Baum 71] describes the forward-backward algorithm for HMMs.

2.9 Estimation

We now consider estimation of multinomial parameters when data is sparse, through
“smoothing” of maximum-likelihood (ML) estimates. This section is not intended to be a
comprehensive review of smoothing techniques: there is a large amount of relevant litera-
ture on this subject (for example, see [Jelinek 90] and [Chen and Goodman 96]). Instead,

the section first gives some general motivation for the need for smoothing; second, gives

60

details of the specific techniques used later in this thesis.

2.9.1 The Sparse Data Problem

Practically all of the models in this chapter require estimation of multinomial parameters.
In general, then, we assume that there is some set of parameters P(Y|X, X»,...X,,) for
which we require estimates. Y is a random variable that can take any value from a set of
possibilities V. X1, Xs...X,, are the conditioning variables, and are members of the sets
X1, As, ... A&, respectively. For conciseness we use X to denote the context Xp, Xs5...Xy;
X is a member of the set X = A} x Ay x ... X &;. In the models in this chapter, the
maximum-likelihood (ML) estimate of P has taken the form:

Count(Y, X)

Prrn(Y1X) = Count(X)

(2.57)

There are usually some severe problems with this estimate. In high-dimensional parameter
spaces Count(X) may be very low, or even 0, leaving 2.57 inaccurate or even undefined.
This is the sparse data problem. For example, take the problem of estimating probabilities
in a 2nd order Markov model where the size of the vocabulary V is 20,000 words. In this
case there are 20,000% = 8 x 10'? parameter values to be estimated, so we might expect to
need a corpus of at least 8 * 10'? words to estimate the parameters with any accuracy. To
expect to have a corpus of this size is unrealistic.

A general strategy for dealing with this problem is to use ML estimates computed for
lower order distributions. Lower order parameters are multinomials that are conditioned
on sub-contexts of X, rather than the entire context of conditioning variables. For example,
if n = 3 then there are 7 lower order distributions: P(Y'|X1), P(Y|X2), P(Y|X1, X2), P(Y)
and so on. The utility of lower order estimates can be motivated if we consider the nature

of estimation error more carefully.

2.9.2 Two Sources of Estimation Error

The analysis in this section is for binomial distributions, the special case where |Y| = 2;
however, the same principles apply to the estimation of multinomial parameters where

V| > 2.

61

Say p" is an estimate of p, based on a sample size of size n. We define the expected

error of an estimate p" as follows:

Err (5") = E, |(5" —»)’] (2.58)

The E, operator refers to expected value with respect to the underlying probability p. (p"
is a random variable whose distribution depends on p: to see this note that p defines a
distribution over the set of possible samples of size n, and that each of these samples maps
to a different value for p". Hence we can calculate the expected value w.r.t. p of functions
of p".)

For the purposes of this section we assume that the goal of an estimation method is
to minimize the above definition of Err (this is a common criteria for estimation in the
mathematical statistics literature, as in [BD 77| chapter 4). There may be arguments for
the use of other measures of estimation error (such as Kullback-Liebler distance), but the
major intuition of this section — that there is a trade-off between bias and variance as two
sources of error — will most likely apply to those cases also, even if the formal definitions
and analysis differ.

We now note that Err(p) is the sum of two components. We define p" as E,[p"]. Then

there are two sources of error:
Errl (p") = (5" - p)” (2.59)
Brr2 (5") = By (0" —)] (2.60)
It can be shown ([BD 77| pg. 117) that
Err (p") = Errl (p") + Err2 (p") (2.61)

p" —p is the bias of the estimate; Errl is this value squared. Err2 is a measure of sampling
error: with small sample sizes, the estimate p™ will with some probability vary from its
average value p". As n increases Err2 will decrease: and Err2 goes to 0 as the sample

size n goes to o0o.

62

A Compromise Between the Two Sources of Error

With these results in mind, we now return to the analysis of estimates of P(Y|X) based
on sub-contexts of X. One result [BD 77] is that the ML estimate Pz (Y|X) has a value
of 0 for Errl. Unfortunately though, the sample size for this estimate may be very small,
so the Err2 component of its error may be very large. In contrast, imagine that we define
P(Y|X) = Py(Y), an ML estimate of ¥ based on the empty sub-context of X. This
estimate will almost certainly have Errl > 0, but its Err2 component will be much lower
than that for Py7,(Y|X), as the sample size on which it is based is much larger.

Between these two extremes are estimates based on non-empty sub-contexts of X,
which will in general have decreasing Err2 but increasing Errl as the conditioning subset
gets smaller. We could imagine an estimation strategy where we simply chose a particular
sub-context of X, ®(X), as the basis of the estimate, so that P(Y|X) = Py (Y|®(X)). A
sensible method would be to choose the ®(X) that lead to the best compromise between
Errl and Err2 problems, thereby minimizing the expected error of the estimate. It turns
out, however, that taking a weighted average of different ML estimates is better than

simply picking a single ML estimate. This is the topic of the next section.

2.9.3 Linear Combinations of ML Estimates

Say we are defining an estimate of P(Y|X). We define an n-level back-off strategy ® =

®,...®,, as follows:

e Each ®; is a function that maps X to some sub-context of X. We write this sub-
context as ®;(X). Thus each ®; can be represented as a subset of the set of integers

{1,2,...n}, and can take 2" possible values.
e The ith level estimate P;(Y|X) is defined as Py, (Y |®;(X)) = %&%{X)))).

We stipulate a couple of constraints on possible forms for ®:

1. ®,(X) is sufficiently small for P (Y|X) to be defined in all cases;
ie, VX € X Count(®1(X)) > 0. (Often this means that ®;(X) is the empty set.)

2. If i < j then ®;(X) C ®,(X).

63

IE’i for 1 <14 < n now defines a sequence of estimates, with Err1 for each estimate decreasing
with increasing ¢, and Err2 increasing with increasing ¢. So as we move through the
estimates Pl...Pn there is a trade-off between Errl and Err2.

A linear combination of these estimates can be defined using a weight A; associated

with each back-off level. We define the ith level smoothed estimate P; recursively:

P = MNP+ (1-XM\)P, forl<i<n (2.62)

The final estimate will be]5n, which incorporates all estimates P,...P, that are well defined.
Each \; must take a value between 0 and 1 for each IBl to define a distribution over). The
value of \; can be interpreted as an indication of how much we trust]5Z rather than the
(i — 1)th level smoothed estimate: a value of 1 means that we trust it completely, a value

of 0 means we don’t trust it at all. The next question is how)\; should be calculated.

2.9.4 Calculating Back-Off Weights

Once the back-off strategy ® = ®;...®,, has been defined, the remaining question is how
to pick each of the weights X;. At the very least, A; should be 0 if Count(®;(X)) =0, in
which case P; is undefined (otherwise the final estimate P, will be undefined). Beyond this
constraint there are a couple of methods that we will discuss: optimizing the likelihood of
held-out data, and direct calculation of the value of \; from various characteristics of the
sample.

A theme that is common to both of these techniques is to make \; dependent on
Count(®;(X)), the sample size on which P; is based. If Count(®;(X)) = 0, then P
is undefined and \; must be 0. As Count(®;(X)) increases, we would expect P; to be
become more reliable, and to reflect this \; should move towards its maximum possible

value of 1.

Method 1: Optimizing the Likelihood of Held-out Data

[Jelinek 90] describes how the values for ; can be calculated with the use of held-out data.

The basic idea is to split the training data into two sub-sets: the first is used to calculate

64

the different maximum-likelihood estimates]5Z~; A; then is chosen to optimize the likelihood
of the second set of held-out data. [Jelinek 90] describes methods for optimization of the
weights A;.

The dependence of A\; on Count(®;(X)) is achieved through “bucketing”. In the most
extreme case, this means training a different value of \; for each value of Count(®;(X)).
More likely, a different); is trained for each range of counts: for example, a different
value might be trained for Count(®;(X)) =0, 1,2, [3 —5],[6 — 10], [11 —20], [21 — 30], [30 —
50],[50 — 100], [100 — co]. The boundaries of these ranges are usually chosen so that there
are as many buckets as possible, subject to the constraint that each bucket contains some
minimum number of events required to estimate \; robustly.

A method that makes more efficient use of training data is to rotate the held-out data:
for example partitioning the training data into 10 equally size subsets, then estimating A;
values with each of the 10 subsets held-out, calculating the final value of \; as the average

of these 10 values.

Method 2: Direct Calculation of);

Another method is to define A; in terms of Count(®;(X)):

Ai=0 If Count(®;(X)) =0
(X
A = % If Count(®;(X)) > 0 (2.63)

C; is a constant that can be optimized using held-out data. This definition satisfies the
intuition that A; should go to 1 as Count(®;(X)) goes to co. The value for C; dictates
the rate at which this asymptote is approached: the higher C;’s value, the slower the
convergence towards 1.

While this method has some of the properties we would expect, it does seem rather
ad-hoc. However, there are a number of methods in the smoothing literature that justify
this relationship between \; and Count(®;(X)), both theoretically [Witten and Bell 91]

and empirically [Chen and Goodman 96].

65

An approach that we will use in the parser in chapter 7 is to calculate C; as a func-
tion of what we call the diversity of ®;(X)), D (®;(X)). The method is borrowed from
[Bikel et al. 97], and has further motivation in [Witten and Bell 91]. The diversity is de-
fined as

D (®i(X)) = [¥(®i(X))| (2.64)

where
V(®i(X)) = {y | Count(y, ®i(X)) > 0} (2.65)
The diversity is the number of different outcomes that have been seen with the context

®;(X) in the training sample. 2.63 is then modified to be:

Ai=0 If Count(®;(X)) =0

_ Count(®;(X)) ,
>\Z B C’ount(fbi(X))+C><D(<I>i(X)) If COU’n,t((I)l(X)) >0 (266)

C is a constant that can also be optimized on held-out data. \; is now sensitive to the
diversity as well as the count of ®;(X). As the diversity increases, A; decreases, and less
trust is put in the estimate)\;. The motivation behind this is that the diversity is a measure
of how likely a new outcome is to appear in a test sample: the higher the diversity the
more likely a novel event is to occur, and the less P; should be trusted (Pz estimates the
probability of any novel event as 0). Take an example where the sample size is 10: if out
of those 10 events in the sample the same outcome was seen every time (i.e. D = 1), then
we should be reasonably sure that novel events are unlikely to occur in test data, and A;
should be high. In contrast, if a different outcome was seen every time (D = 10), then
we should be reasonably sure that novel events are likely to be seen in test data, and A;
should be correspondingly lower.

Empirical justification for this model comes from [Chen and Goodman 96]: they report
very good performance for a method that is quite similar to 2.63. They define a function
OneCount

OneCount (2;(X)) = |V (®:(X))| (2.67)

where

YV(®i(X)) = {y | Count(y, ®;(X)) = 1} (2.68)

66

A; is then defined as

Ai=0 If Count(®;(X)) =0

o Count(®;(X)))
Ai = C’ount(@i(X))+B+C><OneCount(€I>i(X)) If Count(@z(X)) >0 (269)

So their measure of diversity, OneCount, is quite similar to ours, and will most likely be
highly correlated; they also have an additional constant B that can be optimized on a

held-out data set.

67

Chapter 3

Some Alternative
Parameterizations for Statistical

Parsing

The previous chapter described some mathematical techniques for statistical modeling of
natural language problems. This chapter gives additional background, considering alter-
native parameterizations for parsing. We give a sequence of proposals in increasing order
of sophistication; each refinement is motivated through examples where the old parame-
terization fails, and the new method fixes the perceived deficiency.

We assume that designing a model structure is a two stage process. The first step is the
choice of parameterization (the subject of this chapter). The second step in a realization of
this representational choice in a precise mathematical model (using techniques described in
the previous chapter). Of course, this is an idealization. The desire for a mathematically
sound formulation will sometimes alter the parameterization (often in interesting ways).
The model of chapter 6 is a first attempt to implement the parameter types of this chapter;

chapter 7 gives final models with all of the parameter types.

68

3.1 A Definition of Parse-Tree Parameterization

We first define what we mean by the “parameterization” of a parse tree for probabilistic
parsing. In the models in this thesis, the probability of a parse tree is defined as the
product of several terms, each term being associated with an “event” in the parse tree (an
event is some fragment of the parse tree):
P(T,S) = H Score(Event;) (3.1)
i=l..n
For example, in the case of a PCFG, Event; is the i’th context free rule in the tree.

The parameterization of a parse tree is the choice of Fvent;...Event, — in the case of a
PCFG, the n context-free rules in the tree. In other words, the choice of parameterization is
the choice of how to break down trees: what linguistic objects to associate the parameters
with.

The Score for each event will be an estimate of some conditional probability, and
in general will be directly related to the number of times the event has been seen in
training data, Count(Event;). Typically, Event; will be split into two parts: Context;
and Prediction;, with Score(Event;) = P(Prediction;|Context;) (P is an estimate of P).
In the case of PCFGs, if Event; is the rule a; — §; then Contexrt; = «;, Prediction; = (;
and Score(Event;) = P(fi]a;). [Booth and Thompson 73] showed that this choice of
Prediction; and Contexzt; for PCFGs leads to a consistent model; in general, the choice

43

of Prediction; and Context; will be motivated by the desire for a “well-formed” model,

“well-formed” model is defined in section 2.3.3.

where the idea of a

In this chapter, however, we will ignore the precise definition of the Score for each
Event. The crucial point is that the utility of a particular parameterization can be in-
vestigated through its ability to discriminate between different trees. This discriminative
ability is independent of the exact formula used to calculate the Score. For example, by
noting that the two trees in figure 3.1 differ only by rules that make no mention of lexical
information, we can see that a simple PCFG ignores lexical information when making PP
attachment decisions. This ignorance holds regardless of how the score for the rules in the

tree is calculated.

The first change, a shift from simple PCFGs to dependencies, is the most radical. From

69

(a) S

N

NP VP
|
NNS /\
| VP PP
workers /\
VBD NP IN NP

| | |
dumped NNS into DT/\NN

sacks a bin

Rules

S - NP VP
NP — NNS
VP —» VP PP
VP — VBD NP
NP — NNS

PP — IN NP
NP — DT NN
NNS — workers
VBD — dumped
NNS — sacks
IN — into

DT — a

NN — bin

Figure 3.1: A case of PP attachment ambiguity. (a) Verb attachment, the correct tree.
(b) Noun attachment. Note that the trees share exactly the same set of rules, except (a)

(b) S
Np/\vp

|
NNS

| VBD NP

workers | /\
NP PP
| /\
NNS IN NP

sacks

dumped

N PN
into DT NN
| |

a bin

Rules

S - NP VP
NP — NNS
NP — NP PP
VP — VBD NP
NP — NNS

PP — IN NP
NP — DT NN
NNS — workers
VBD — dumped
NNS — sacks
IN — into

DT — a

NN — bin

has a rule VP — VP PP, (b) has a rule NP — NP PP.

70

there we add progressively more features, motivating each additional piece of information
through example trees where the previous parameterization can be seen to be problematic.

For convenience, throughout this chapter we will use the terms “parameterization”
and “representation” interchangeably. This differs from our definition of representation in

chapter 1, repeated here:

e Representation. Choose how to represent parse trees. For example, choose the
set of part-of-speech tags and non-terminal labels in the tree; choose whether or not
to have lexical head-words attached to non-terminals; choose whether to represent
words directly, or as their morphological stems, or as bit-strings derived through

clustering techniques.

By chapter 1’s definition, the parsers of [Ratnaparkhi 97, Charniak 97, Goodman 97] and
this thesis all use the same representation. By the definition of this chapter, they differ
to varying degrees in their choice of parameterization, or representation. The stricter
definition of representation, as used in this chapter, reflects our emphasis on the parameters
of the model: that it is not sufficient to simply include features that may be useful for
disambiguation, it is also crucial to consider how they are linked together in the final

parameters of the model.

3.1.1 A Note about Events in this Chapter

In this chapter, for conciseness, we do not consider how the various parameters may in-
teract — for example, the choice of subcategorization frame for a head will influence the
dependencies that it takes.

Eventually, the models of chapter 7 will give a fully specified model where such inter-
actions are captured. The parameterization is formed using a history—based model, where
each event corresponds to a decision in a top-down derivation of the tree. The condition-
ing context for each decision is chosen so that interactions are modeled properly. In some
cases this will result in the model conditioning on context that is not included in the events
of this chapter. The specification of events in this chapter should therefore be taken as
the “core”, essential subset of information; the final parameters of chapter 7 will include

additional context in some cases.

71

3.1.2 Parameterization Proposals: a Summary
The following sections will consider a sequence of proposals, summarized here:

A simple PCFG Each “simple” context-free rule in a parse-tree has an associated prob-
ability. Section 3.2 defines a simple PCFG as containing two types of rules: (1) rules
X — Y where X is a POS tag and Y is a lexical item; (2) rules X — Y;...Y, where

each X and Y; are drawn from a simple set of non-terminals such as VP, NP, or SBAR.

Dependencies A dependency is defined to be a relation between two words in a sentence
(a modifier and a head), written (modifier — head). A tree for a sentence with
n words contains n dependencies between pairs of words; each dependency has an
associated probability. Thus this proposal introduces probabilities associated with

pairs of words in the sentence.

Dependencies + Direction A tree is represented as n dependency relations (modifier —
head, direction). direction specifies the relative order of the modifier and head in

the sentence.

Dependencies + Direction 4+ Relations A tree is represented as n dependency rela-
tions (modifier — head, direction, relation). relation specifies the grammatical re-
lation between the two words. It is formed by a triple of non-terminals taken from the
tree. As an example, a dependency might be (IBM — acquired, LEFT, (NP,S,VP)),
signifying a relationship where: IBM is the modifier; acquired is the head; IBM
appears to the left of acquired; and the relationship is (NP,S,VP) (a triple of non-

terminals representing a subject-verb relationship).

Dependencies 4+ Direction 4+ Relations + Subcategorization A tree is represented
by m subcategorization probabilities, in addition to the n dependencies defined be-
fore. Subcategorization probabilities correspond to events of the form “What is the
probability that give takes two NP complements to its right?”, or “What is the prob-

ability that give takes a single subject NP to its left?”.

Dependencies + Direction 4+ Relations + Subcategorization + Distance The de-

pendency events are extended to include a distance variable, some measure of the

72

distance between the modifier and head. The distance is measured either over the
surface string between the two words, or with some reference to the tree structure.
It allows the model to differentiate dependencies between “close” vs. “distant” pairs

of words; this is important for the model to learn preferences for close-attachment.

Dependencies + Direction 4+ Relations + Subcategorization + Distance + Parts-
of-Speech All events including lexical items are extended to include the POS tag
associated with that lexical item. Statistics based on lexical items may be sparse;

statistics based on POS tags can be used as a fall-back in cases of sparse data.

3.2 Parameterization Proposal 1: A Simple PCFG

Parameterization Proposal 1. (A simple PCFG) A parse tree is represented as n events
FEvent,...Event,,, where Event; is the 1’th context-free rule in the tree, and the rules are

“simple” (the idea of a “simple” rule is defined below).

Much of the early work on statistical parsing of natural language focused on PCFGs
as a formalism. Results, however, were rather disappointing — for example [Charniak 97]
reports accuracy of 70.6/74.8% recall/precision! for a PCFG trained and tested on the
Penn Wall Street Journal treebank [Marcus et al. 93]. In comparison, the models in this
thesis reach over 88% precision and recall on the same task.

Inducing a PCFG directly from the Penn WSJ treebank, as in the non-lexicalized
(rather than the lexicalized) model of [Charniak 97], leads to a grammar with the following

properties:

e Each rule in the grammar is either of the form

1. X — Y:...Y,, where X and Y7...Y), are non-terminals, and n > 1.

2. X — z, where X is a non-terminal part of speech, and z is a lexical item.

e The non-terminals in the grammar are a very simple, restricted set of labels NP, VP,

S, SBAR, PP etc.

'Recall and precision are defined in section 6.4 of this work; informally, they refer to the accuracy in
recovering constituents in a parse tree. A constituent is defined by its non-terminal, and the words it spans
in the sentence.

73

N = {TOP, S, NP, VP, VB, NNP}

Y. = {gave, saw, U.S., IBM, yesterday}

S =TOP

| Rules P | Probabilities D ||
TOP = S 1.0
S = NP VP 0.8
S = NP NP VP 0.2
VP = VB NP 0.6
VP = VB NP NP 0.4
NP = N 1.0
VB = gave 0.6
VB = bought 0.4
N = Lotus 0.8
N = IBM 0.1
N = yesterday 0.1

Figure 3.2: A simple PCFG

e The part-of-speech tags are also relatively restricted, distinguishing major category
(noun, verb, preposition etc.), and some simple sub-categories (singular/plural /proper
nouns, different verb inflections etc.). The part-of-speech tags do not make subcate-

gorization distinctions for verbs (for example transitive vs. intransitive).

From here on we will refer to a PCFG that satisfies these properties as a “simple”
PCFG. The grammar in figure 2.1, repeated in figure 3.2, is an example of a simple PCFG.
In an attempt to account for the poor parsing accuracy of simple PCFGs, we identify

two major weaknesses in this parse tree representation:

1. Lack of sensitivity to lexical dependencies.

2. Lack of seunsitivity to structural preferences such as preferences for right-branching

or left-branching structures.

74

3.2.1 Lack of Sensitivity to Lexical Dependencies
Some Examples

A major weakness of simple PCFGs is their lack of sensitivity to lexical information. To
illustrate this, first take the example of prepositional phrase attachment ambiguity shown
in figure 3.1. The important point is that the trees for the two analyses differ by only one
rule: in the verb attachment case the tree has a rule VP — VP PP, in the noun attachment
case the differing rule is NP — NP PP. Given that a PCFG assigns the probability for
an entire tree as a product of rule probabilities, the attachment decision hinges on the
probability for these two rules. If P(VP — VP PP) > P(NP — NP PP) then the verb-
attachment tree will have higher probability. If P(NP — NP PP) > P(VP — VP PP) then
the noun-attachment tree will have higher probability.

By this argument, the decision between the two structures depends only on the two
rule probabilities, and has no dependence on the lexical items themselves. In fact, any
sentence with the part-of-speech sequence (NNS VBD NNS IN DT NN) will be assigned a
verb-attachment if P(VP — VP PP) > P(NP — NP PP), a noun-attachment otherwise.
This is problematic in that the attachment clearly depends on the words involved: as an
example, workers sold sacks of a chemical has the same POS sequence as workers dumped
sacks into a bin, but involves a noun-phrase attachment.

Looking at statistics from the Penn treebank we can see how bad this non-lexical
strategy is. Inspection of the training set of PP attachment ambiguities originally used in
[Ratnaparkhi et al. 94] shows that 52% of attachments were to the noun. On this basis,
we would expect the purely structural preference made by a PCFG to achieve an accuracy
barely above chance. In contrast, methods which look at the 4 head-words involved in the
pp-attachment ambiguity (e.g., dumped sacks into bin) can achieve up to 84% accuracy?
(see the results in chapter 5). The lack of lexical sensitivity in PCFGs is decreasing accuracy

by over 30% in this case.

2Even a method that looks at the preposition alone, making the most frequent attachment for each
preposition, scores around 72% accuracy. In the example into can attach to both nouns and verbs, but is
seen attached to verbs 92% of the time in [Ratnaparkhi et al. 94]’s training set.

7

(a) NP (b) NP 1

/’\ Np/\pp
N

NP C|C N|P | < P
NN IN/\NP cats NlP clc N|P
dolgs ilu NIl\IS Nll\IS and NIl\IS
houses houses cats
Rules Rules
NP — NP CC NP NP — NP CC NP
NP — NP PP NP — NP PP
NP — NNS NP — NNS
PP — IN NP PP — IN NP
NP — NNS NP — NNS
NP — NNS NP — NNS
NNS — dogs NNS — dogs
IN —» in IN —- in
NNS — houses NNS — houses
CC — and CC = and
NNS — cats NNS — cats

Figure 3.3: A case of coordination ambiguity. Both analyses contain exactly the same set
of rules, and will therefore receive equal probability.

There are many other cases of ambiguity that exhibit a similar sensitivity to lexi-
cal information. Examples are coordination, relative clause attachment, and noun-noun
compounds. ([Lauer 95] describes a method that uses dependency information for disam-
biguation within noun-noun compounds.) Figure 3.3 shows an example of coordination.
This case is even more extreme: the two possible analyses contain the same set of rules,
and therefore receive equal probability under a simple PCFG. Again, lexical dependencies

seem crucial: dogs and cats are far more likely to be coordinated than houses and cats.

A General Result

The only lexical sensitivity that the simple PCFG has is to part-of-speech frequencies for
different words, through the parameters P(tag — word | tag)?.
To see this, suppose we make the simplifying assumption that each word in the vocab-

ulary has only one possible part of speech tag, i.e. one tag where P(tag — word | tag) > 0.

3For example, the word saw is seen 84 times in the Penn treebank: 4 times tagged as NN, 80 times tagged
as VBD. NN is seen 163935 times in total, VBD is seen 37493 times. So the parameters P(saw | VBD) and

. . VBD
P(saw | NN) will be vastly different: P;?Sa;ku NN)) = ho x 102935 — 874,

76

We define the function tag(word) to be the one possible tag for a particular word. Given a
sentence (wy...wy), all trees for this sentence which have probability greater than zero must
then have the POS sequence tag(w)...tag(wy). Furthermore, all of these trees will have
the same product of probabilities involving lexical items: [],—; ,, P(w; | tag(w;)). When
comparing different possible trees for an input sentence w;...wy, the lexical probabilities
will be irrelevant and the ranking will be done solely on the basis of the rules in the tree.
In conclusion, if any two sentences have the same tag sequence, they will have to receive

the same highest-probability analysis.

3.2.2 Structural Preferences

A second weakness of simple PCFGs is their lack of sensitivity to structural informa-
tion. Statistics in the Penn WSJ treebank show that there is a definite preference for
right-branching structures, in that adverbials tend to attach to the most recent possible
attachment site. Figures 3.4 and 3.5 show examples involving PP attachment to nouns and
verbs respectively. In both cases the right-branching structure is seen around two-thirds
of the time, but the competing structures contain identical rules so the simple PCFG fails
to capture this preference. [Briscoe and Carroll 93] used similar examples to motivate the

move from a simple PCFG to a probabilistic LR parser.

3.3 Dependency Parameterizations

The second representation proposal, a shift to dependencies, is a radical move from the
simple PCFG. It is largely motivated by a desire for increased sensitivity to lexical infor-
madtion.

3.3.1 Parameterization Proposal 2: Dependencies

Parameterization Proposal 2. (Dependencies) A parse tree is represented as n events
Event,...Event,, where Event; is the dependency w; — h;. w; is the i’th word in the

sentence, h; can be any other word in the sentence or the START symbol.

Note that a sentence with n words leads to a parse tree with n dependencies. In a

7

(a)

NP
/\
NP PP
| /\
NN IN NP
D

(b)

NP

NP PP

TN K Np

NP PP |
NN

PP NlN IN/\NP
NlN IN/\NP NlN
NlN

Rules Rules
NP — NP PP NP — NP PP
NP — NN NP — NN
PP — IN NP PP — IN NP
NP — NP PP NP — NP PP
NP — NN NP — NN
PP — IN NP PP — IN NP
NP — NN NP — NN

Figure 3.4: Two possible structures for the same sequence of POS tags. (a) is a right
branching structure: the second prepositional phrase attaches to the closest noun. In (b)
the second prepositional phrase attaches to the furthest noun. In Penn Wall Street Journal
text structure (a) appears 68% of the time, (b) appears 32% of the time. However, both
structures contain exactly the same set of rules, so the simple PCFG fails to distinguish
between them.

(a) VP (b) VP
/\ /[\
A% NP
NP VP A% NP PP
PN
Rules Rules
VP - V NP VP —» V NP
NP — NP VP NP — NP VP
VP — V NP PP VP — V NP PP

Figure 3.5: Two possible structures for the same sequence of POS tags. (a) is a right
branching structure: the second prepositional phrase attaches to the closest verb. In (b)
the second prepositional phrase attaches to the furthest verb. In Penn Wall Street Journal
text structure (a) appears 67% of the time, (b) appears 33% of the time. However, both
structures contain exactly the same set of rules, so the simple PCFG fails to distinguish
between them.

78

dependency w; — h; we will describe w; as the modifier, h; as the head. As an example,

figure 3.6 gives two trees with their associated dependencies.

3.3.2 The Function from Trees to Sets of Dependencies

This section defines the function from a tree to its associated dependencies. There are
two stages involved: first, the lexicalization of trees (i.e., the addition of a word to each
non-terminal label in the tree); second, the derivation of (n — 1) dependencies from each

rule with n children.

Step 1: Lexicalization of Parse Trees

[Black et al. 92b, Jelinek et al. 94, Magerman 95] introduced lezicalization of non-terminals
as a way of improving parsing accuracy. Each non-terminal in the tree is modified to also
include a head-word, one of the words in the sentence. Headwords are assigned through a
function that identifies the “head” of each rule in the grammar. The head is one of the
child non-terminals in the rule. More precisely, the function head(X — Y7...Y}) returns a
value 1 < h < n, where h is the index of the head (i.e. Yhead(x—vi...y,) 1s the head of the
phrase). (Appendix A defines the function used in this thesis.)

For example, in the rule S — NP VP the VP would, by linguistic arguments, be the head
of the phrase. In this case head(S — NP VP) = 2.

The headword for each non-terminal can then be defined recursively:

base case If a non-terminal X is on the left-hand-side of a rule X — z, where: 1) X is

a non-terminal part of speech; and 2) x is a lexical item; then headword(X) = x.

recursive case If (1) a non-terminal X is on the left-hand-side of a rule X — Y;...Y,,,
where Y]...Y,, are non-terminals; and (2) h = head(X — Y;...Y},); then headword(X) =
headword(Yy).

For example, take the rule S — NP VP in figure 3.7. The VP is the head of the phrase, and
headword(S) = headword(VP) = dumped.

79

(a) S(dumped)
NP(WO/\VP(CIUIDPECU
NNS(workers)
workers
VBD(dumped) NP(sa.Cks) PP(into)
dumped NNS(saCks)
| IN(into) NP (bin)
sacks
into DI(a) NN(bin)
éL, b!n
a’) S(dumped)
NP(workers)/\VP(dumped)
NNS(wlorkers) /\
workers VBD(dumped) NP (sacks)
dunlped /\
NP (sacks) PP(into)
NNS(lsaCks)
| IN(into) NP(bin)
sacks
it p1fa) NN(bin)
éL, b!n

Figure 3.6: (a) a lexicalized tree.

G

Dependencies

workers — dumped
dumped — START
sacks — dumped

into - dumped

a — bin
bin — into

Dependencies |

workers — dumped
dumped — START
sacks — dumped

into — sacks

a — bin
bin — into

(b) a list of dependencies that the tree contains.

a’)

a lexicalized tree with the PP attaching to the noun, and b’) the dependencies that it

contains.

(a) S(dumped) (b) RuleS

S NP VP
NP — NNS
NP (workers) VP(dumped) VP — @ NP PP
NNS(Wlorkers) NP —» N_l\IS
workers PP — IN NP
NP —- DT NN

VBD(dumped) NP (sacks) PP(into)

| |
dumped NNS(sacks)

| IN(into) NP (bin)
sacks |

into DT{a) NN(bin)
|

a bin

Figure 3.7: (a) a lexicalized tree: each non-terminal has an associated headword (shown in
parentheses after the non-terminal). (b) a list of rules in the tree, with the head for each
rule underlined. The definition of the head of each rule leads to the recovery of headwords:
each non-terminal receives its headword from its head child.

Step 2: Derivation of Dependencies from Lexicalized Trees

Having defined the headword for each non-terminal in the tree, the next step is to identify
a set of dependencies between words in the sentence. A dependency is a relationship
between two word-tokens* in a sentence, a modifier and its head, which we will write as

modi fier — head. The dependencies for a given tree are derived in two ways:

e Take each rule X — Y7...Y,, such that: 1) ¥7..Y,, are non-terminals; 2) n > 2;
3) h = head(X — Y;..Y,). Each rule contributes (n — 1) dependencies, namely
headword(Y;) — headword(Yy) for 1 <i < n,i # h.

e If X is the root non-terminal in the tree, and x is its headword, then z — START is

a dependency.

For example, in the top tree in figure 3.6, the rule VP — VBD NP PP contributes two

dependencies. In this case n = 3, h = 1, and the dependencies are (headword(Y2) —

“From here on we use the term word to mean word-token, at least when there is no danger of confusion.

81

(a) NP (b) NP 1

/’\ Np/\pp
N

NP cc NP
| | doIgs N NP
NP PP and Nll\ls iln
| N % NP cc NP
NNS N NP cats | | |
| I | NNS and NNS
dogs in NNS | |
houses cats
houses
Dependencies | Dependencies |
in — dogs in — dogs
houses — in houses — in
and — dogs and — houses
cats — dogs cats — houses

Figure 3.8: The case of coordination ambiguity revisited, using a dependency representa-
tion.

headword(Y1)) = (sacks — dumped) and (headword(Ys) — headword(Y1)) = (into —

dumped). Figure 3.6 lists the entire set of dependencies in the tree.

3.3.3 The Motivation for Dependencies as a Representation

Representing trees as sets of dependencies rather than as a set of simple PCFG rules leads
to very direct use of lexical information. This is the major strength of the dependency
representation.

This point is best illustrated by a couple of examples. First, take the two trees in
figure 3.6. The two trees differ by only one dependency: the decision between them will
depend on the values of Score(into — dumped) and Score(into — sacks). Whereas in
the simple PCFG the decision between the two structures hinged on rule probabilities that
paid no attention to lexical items, the decision now depends on the three lexical items
dumped, sacks, and into.

Figure 3.8 shows the dependency structures for the coordination example, originally
shown in figure 3.3. The two trees differ by a couple of dependencies, but most importantly
one has a dependency cats — dogs, whereas the other has a dependency cats — houses.
(See Appendix A for a description of the head-rules used in this work, and how they deal
with coordination. The first coordinated phrase is taken as the head of the entire phrase,

with the second conjunct standing in a special coordination relationship to this head.)

82

3.3.4 Parameterization Proposal 3: Dependencies + Direction

Parameterization Proposal 3. (Dependencies + Direction) A parse tree is represented
as n events Event;...Event,, where Event; is the tuple (w; — h;, direction;). w; — h; is
the i’th dependency, as before. direction; is L (for left) if w; precedes h; in the sentence,

R (for right) if w; follows h;.

The need for a feature describing the relative order of the modifier and head is not
surprising: especially in English, which has strong word order. Most dependencies are
much more likely to occur in one direction than the other: a subject modifier is almost
always seen to the left of the head it modifies, an NP complement to a preposition is always
seen to the right of the preposition. The addition of the direction variable allows the
model to take these facts into account.

Figure 3.9 gives an extreme example of the utility of the direction feature. Without
the direction feature parse 3.9(a) and parse 3.9(b) both contain plausible dependencies,
and would receive roughly equal probability. With the direction feature the model will
give much higher probability to parse 3.9(a), as (of — CEO, R) should get much higher
probability than (of — shares, L) (prepositional phrases will virtually always be seen as

post-modifiers to NPs in training data).

3.3.5 Parameterization Proposal 4: Dependencies 4+ Direction + Rela-

tions

Parameterization Proposal 4. (Dependencies + Direction + Relations) A parse tree is
represented as n events Eventy...Event,, where Event; is a (w; — h;, direction;, relation;)
tuple. w; — h; is the i’th dependency. direction; indicates the relative order of w; and
hi, as before. relation; is the grammatical relation associated with the dependency: it is a

triple of non-terminals, (modi fier;, parent;, head;).

Thus far we have ignored the non-terminals in the context-free tree when defining the
dependency representation. This section introduces non-terminal information through a
relation associated with each dependency. A relation is a triple of non-terminals defined

in the following way:

83

(a) VP(gave) (b) | Dependency | Direction |
[of > CEO [R |

VBD NP(CEO) NP(shares)
|
gave
NP(GEO) PP(of) ch Nll\IS
PN N 1,000,000 shares
DT NN IN NP(IBM)
| |
the CEO Olf Nll\IP
|
IBM
(a”) VP (gave) (b’) [Dependency | Direction |
| of — shares | L |
VBD NP(CEO) NP(shares)
|
gave DT NN
| |
the CEO PP (of) NP(shares)
IN NP(IBM) cD NNS
| | | |
of NNP 1,000,000 shares
|
IBM

Figure 3.9: Two tree fragments and their associated dependencies ((b) and (b’) show
the one dependency that differs between the two trees.) (a) should have relatively high
probability; (a’) should be very unlikely, as PPs can virtually never pre-modify NPs in
English. Without the direction associated with each dependency, the two trees both
contain plausible dependencies and the model assigns roughly equal probability to each.

84

e For each dependency headword(Y;) — headword(Y},) derived from rule X — ¥7...Y,,,
the associated relation is (Y;, X,Y},).

e If X is the root non-terminal in the tree, and x is its headword, then the dependency

x — START has relation (X, START, START).

Figure 3.10 shows an example lexicalized tree with its associated dependencies and their
relations. As an example of how a rule defines the relation for each dependency, take the
rule VP — VBD NP PP in figure 3.10. It contributes two dependencies: (headword(Ys) —
headword(Y1)) = (sacks — dumped) and (headword(Ys) — headword(Y1)) = (into —
dumped). The associated relations are (Y3, X,Y;) = (NP,VP,VBD) and (Y3, X,Y)) =

(PP,VP,VBD) respectively.

Motivation for Relations

The inclusion of non-terminals is important for two reasons. First, if we are interested in
recovering parse trees with the non-terminals, it is essential to include the non-terminals in
the dependency representations. Otherwise, any lexicalized tree with the same headword
structure, but arbitrary node labels, would have the same dependency structure and would
therefore receive the same probability. Dependencies alone fail to discriminate between
trees with different node labelings. With the relation triples, the mapping between a
lexicalized tree and its associated set of dependencies is almost one-to-one, and different
probabilities are assigned to different tree labelings.

There is a second reason for including the relation triples. Even if we were not concerned
with recovering the tree non-terminals — recovering dependency structures alone was
considered sufficient — the non-terminals would still be crucial in that they improve parsing
accuracy. Whereas before a constituent was represented by its headword alone, it is now
effectively represented by a (headword, non-terminal) pair. The addition of the non-

terminal provides two pieces of additional information:

1. The major part-of-speech category for the word (noun, verb, preposition etc.). This
is almost completely derivable from the non-terminal label (an NP almost always

takes a noun as its head, a PP almost always takes a prepositional head, a VP or

85

(a) S(dumped)

NP (workers) VP (dumped)
|
NNS(workers)
|
workers
VBD(dumped) NP (sacks) PP(into)
| |
dumped NNS(sacks) . .
| IN(into) NP (bin)
sacks N
into DT(a) NN(bin)
| |
a bin
(b)| Dependencies | Directions | Relations |
workers — dumped L (NP, S, VP)
dumped — START — (S, START, START)
sacks — dumped R (NP, VP, VBD)
into — dumped R (PP, VP, VBD)
a — bin L (DT, NP, NN)
bin — into R (NP, PP, IN)

Figure 3.10: (a) a lexicalized tree. (b) a list of dependencies that the tree contains, with
their direction and associated relations.

86

S almost always takes a verb as a head and so on). The importance of this POS

information is due to the combination of two factors:

e POS tag ambiguity. A particular word may be ambiguous between several parts
of speech. This means that a word can potentially be the head of quite different
types of phrase.

For example, saw can be verbal, as the head of a sentence such as I saw the

mamn; or nominal, as in the saw on the bench.

e A head has strong restrictions about the POS type of its modifier. For example,
a verb will take a subject to its left that is almost always an NP, and is never

an S. The non-terminal information allows the head to specify this preference.

For example, the verb “cut” may take a constituent headed by “saw” as a
(subject) premodifier as long as it is the head of an NP (i.e., is the head of a
phrase such as the saw on the bench), rather than the head of an S (as in I saw

the man).

See figure 3.11 for an example of how these two characteristics may conspire to cause

difficulties for a representation that lacks POS information.

. The bar level for the constituent. A word with a particular part of speech may be
the head of several different types of phrases: for example a verb may be the head
of a single word constituent, a complete VP, a complete S, or even an SBAR; a noun
may be the head of a phrase that is a bare noun, or may be the head of a complete
NP. Beyond the simple POS distinctions, non-terminals make the further distinction

between, for example, the noun (NN) man and the NP the man in the park.

These distinctions are crucial, in that phrases with different bar levels are seen in
quite different syntactic environments. A single noun can be a pre-modifier to another
noun in a compound-nominal expression (e.g., as cigarette is in cigarette filter) but a
full noun phrase can certainly not be a pre-modifier to another noun (e.g., as in the
(cigarette with a cigarette) filter). See figure 3.12 for further illustration. As another

example, a phrase headed by to can appear as a complement to a verb such as force

87

Dependencies | Relations

(a) S(cut) (b)[I — saw (NP, S, VP)
/\ saw — cut (S,S, VP)
the — man (DT, NP, NN)
Steaw) V/P({ man — saw | (NP, VP, VBD)
Npmm) VED NPGeod) cut — START | (S, START, START)
e P ot NN wood — cut (NP, VP, VBD)
| VBD NP(man) |
1 | PN wood
saw DT NN
tllw man
(a”) S(cut) (b’) | Dependencies | Relations |
the — saw (DT, NP, NN)
NP (saw) VP (cut) saw — cut (NP, S, VP)
DT NN ygp NP (wood) cut — START < S, START, START >
the saw L NN wood = cut | (NP, VP, VBD)

wood

Figure 3.11: Two lexicalized trees, (a) and (a’), and the dependencies they contain, (b) and
(b’). (a) should be a very unlikely parse: the dependency (saw — cut,(S,S,VP)) should
get low probability. (a’) is a likely parse, and contains a similar dependency (saw —
cut, (NP,S,VP)). Without the non-terminal relations, both trees would contain the same
dependency (saw — cut), and the model would be unable to give low probability to (a)
while giving high probability to (a’).

88

providing it is an S rather than a VP.

3.3.6 Parameterization Proposal 5: Dependencies + Direction + Rela-

tions 4+ Subcategorization

Parameterization Proposal 5. (Dependencies + Direction + Relations + Subcatego-
rization) A parse tree is represented as n + m events Event...Event, . Events 1..n
are (w; — hy, direction;, relation;) dependency tuples, as in proposal 4. Events n+ 1..m
are subcategorization frames. Each subcategorization frame is o (parent, head-child,
head-word, direction, frame) tuple, where parent and head-child are non-terminals,

head-word is a word, direction is either L or R, and frame is a multiset of non-terminals.

The subcategorization frames associated with a tree are derived as follows:

e We assume that the complement-adjunct distinction is made: that is, that a con-
stituent can be identified as being a complement or an adjunct by inspection of its
non-terminal label. (For the remainder of this section we will assume that comple-
ment non-terminals are marked with a -C suffix: NP-C would be an NP complement,
NP would be an NP adjunct. Adding this distinction effectively doubles the number

of non-terminals in the grammar.)

e Bach rule X — Y7...Y,, where Y7...Y,, are non-terminals, and Y} is the head non-

terminal, contributes two subcategorization frames:

1. (X,Y},, headword(X), L, frame;) where frame; is a multiset containing all com-

plement non-terminals in the sequence Yi...Y;_1.

2. (X, Y}, headword(X), R, frame,) where frame, is a multiset containing all

complement non-terminals in the sequence Y, 41...Y,.

For example, in the rule S — NP-C VP where VP is the head, and dumped is the head-
word of the phrase, the two subcategorization frames are (S,VP,dumped,L,{NP-C})
and (S,VP,dumped,R,{}).

Figure 3.13 shows a tree and its associated subcategorization frames.

89

(a) NP (flter) (b) | Dependency | Relation
the — filter DT, NP, NN
cigarette — filter | NP, NP, NN
with — cigarette PP, NP, NP
' a — cigarette DT, NP, NN
T NP(cgarette) Y cigarette — with NP, PP, IN
the filter
NN PP (with)
|
cigarette IN NP (cigarette)
with DT NN
:«L cigarette
(a) NP (cigarette) (b’)| Dependency | Relation |
the — cigarette DT, NP, NN
NP (cigarette) PP(with) with — Cigarette PP7 NP7 NP
a — filter DT, NP, NN
D|T . N|N] NP(Glter) cigarette — filter | NN, NP, NN
the cigarette I filter — with NP, PP, IN
DT NN NN
8|/ Cigalette ﬁller

Figure 3.12: Two trees that contain a dependency (cigarette — filter). Tree (a)
should get low probability, as an NP cannot premodify a noun. In contrast, tree (a’)
should get relatively high probability. Without non-terminal relations the model fails
to distinguish the dependencies (cigarette — filter, (NP, NP, NN){ (low probability) and
(cigarette — filter, (NN, NP, NN)((high probability), and cannot give low probability to
(a) while giving high probability to (a’).

90

(a) S(dumped)

NP-C(workers) VP (dumped)
|
NNS(workers)
|
workers
VBD(dumped) NP-C(sacks) PP (into)
| |
dumped NNS(sacks) . .
| IN(into) NP-C(bin)
sacks . |
into DT(a) NN(bin)
| |
a bin
(b) | Rule | Associated Subcategorization Frames |
S — NP-C VP (S,VP,dumped, L, {NP-C}) (S,VP,dumped,R,{})

VP — VBD NP-C PP | (VP,VBD,dumped,L,{} } (VP,VBD,dumped,R,{NP-C})
PP — IN NP-C (PP,IN,into,L,{}) (PP,IN,into,R, {NP-C})
NP-C — NNS (NP-C,NNS,workers,L,{}) (NP-C,NNS,workers,R,{})
NP-C — NNS (NP-C,NNS,sacks,L,{}) (NP-C,NNS,sacks,R,{})
NP-C — DT NN (NP-C,NN,bin,L,{}) (NP-C,NN,bin,R,{})

Figure 3.13: (a) A lexicalized tree with the complement-adjunct distinction made. Com-
plement non-terminals are marked with a -C suffix. (b) A list of the subcategorization
frames associated with the tree (rules with a POS tag on their left hand side contribute
no subcategorization frames, and are excluded from the table).

91

(a) PP (among)

IN NP-C(group) NP-C(workers)
| / \ |

among NP(group) PP(of) N1|\IS
DT/\NN Il|\I workers
| | |
a group of
(a”) S(was)
NP-C(Dreyfus) NP-C(fund) VP (was)
|
Dreyt N | |
reyius the best fund Was JJ

low

Figure 3.14: Two trees that should have low probability due to unlikely subcategorization
frames. In each case the dependencies in the tree should all have high probability, and a
representation based on dependencies alone will fail to give the trees low probability.

The Motivation for Subcategorization

The need for subcategorization probabilities is not surprising, given that subcategorization
is a major component of almost any syntactic theory. Figure 3.14 gives a couple of examples
where subcategorization is needed to penalize bad parses. In both cases the trees have
dependencies that are highly plausible, so that a representation based on dependencies
alone will fail to give them low probability. The addition of subcategorization frames
solves this problem: the tree in figure 3.14(a) will now have two very low probability frames
(PP,IN,among,R,{NP-C, NP-C}) and (PP,IN,of,R,{}) (PPs in training data will almost
always be seen with one complement, and very rarely if ever with zero or two complements);
the tree in figure 3.14(a’) will have a low probability frame (S,VP,was,L,{NP-C, NP-C})

(was will probably never be seen with two subjects in training data).

92

3.3.7 Parameterization Proposal 6: Dependencies + Direction + Rela-

tions 4+ Subcategorization + Distance

Parameterization Proposal 6. (Dependencies + Direction + Relations + Subcatego-
rization + Distance) A parse tree is represented as n + m events Event;...Event,p,.
Events 1..n are (w; — hy,direction;, relation;, distance;) dependency tuples. w;, h;,
direction;, and relation; are as defined before. distance; is some function of the dis-
tance between w; and h; in the tree. Events n + l...m are subcategorization frames, as

before.

This section shows that adding a distance variable to each dependency allows the model
to discriminate between parse trees with and without close attachment (i.e., to learn a
preference for right or left branching structures). We first give an exact definition of the
distance variable, and then give examples that motivate its utility. We also show how
this distance measure can approximate subcategorization preferences, and actually greatly
diminishes the need for subcategorization probabilities.

Finally, we give a second definition of distance. The first definition is that used by the
parser in chapter 7. The second definition is used by the parser in chapter 6, and is a close
approximation of the first distance measure, but with some significant failings that we will

describe.

The First Definition of distance

To define the distance associated with each dependency we first define a surface string

associated with each dependency:

e For each dependency (headword(Y;) — headword(Y,)) derived from rule X —
Y1...Y,, such that ¢ < h, the surface string associated with the dependency is
the string indirectly dominated by non-terminals Yj;1...Y, 1 (the string is empty

ifi=h—1).

e For each dependency headword(Y;) — headword(Y},) derived from rule X — ¥7...Y,,,
such that ¢ > h, the surface string associated with the dependency is the string

indirectly dominated by non-terminals Y} y1...Y;_1 (the string is empty if i = h + 1).

93

The distance feature is a function of the surface string associated with a dependency. The

distance is a two bit string, with the following values:

Bit 1 1 if the string is empty, 0 if the string is non-empty. This feature indicates whether

or not the modifier non-terminal is adjacent to the head.

Bit 2 1 if the string contains a verb, 0 if it does not contain a verb.

From these definitions there are three® possible values for the distance variable: 10,
which means that the head and modifier non-terminals are adjacent; 00, which means they
are non-adjacent, but there is no verb in the intervening string; 01, which means that the
intervening string does contain a verb. See figure 3.15 for example trees containing the

same dependency with varying distance values.

Motivation for the Distance Measure

Figures 3.16 and 3.17 give examples where the distance measure is useful. In each case two
competing trees differ by a single dependency, and the scores for these two discriminating
dependencies are likely to be similar under the previous representation. The addition of
the distance variable further differentiates the two dependencies, and allows the model to

assign higher probability to dependencies involving close attachments.

The Distance Measure as an Approximation of Subcategorization

If we now return to the example in figure 3.14(a) it becomes clear that the distance measure
solves some of the problems concerning subcategorization. The second NP attaching to the
preposition among gives a dependency (workers — among,R, (NP,PP,IN),00), whereas
the first NP attachment gives (group — among,R, (NP,PP,IN), 10). The distance variable
differentiates between a dependency where the NP is/isn’t adjacent to the preposition: the
result is that (workers — among,R, (NP,PP,IN),00) will get very low probability (a PP

will almost never be seen with an NP modifier at distance 00), and the parse tree will get a

5The fourth value, 11, is impossible because this would represent the contradiction that the string is
both empty and contains a verb.

94

(a) NP (acquisition) (b)

Feature associated with

NP (acqiisition) PB{by) by — acquisition

TN S Surface String | Distance
PRP NN IN NP(IBM)

| I I | — | 10]
its acquisition by N1|\IP

IBM
(a]) NP (acquisition) (b’)

Feature associated with
by — acquisition
Surface String | Distance

NP (acquisition) NP (week) PP(by)
PN P | last week | 00 |
PRP NN JJ NN IN NP(IBM)
| | . | | N I |
its acquisition ast wee by NI|\IP
IBM
(a”) NP (acquisition) (b”)
Feature associated with
by — acquisition
Surface String | Distance
NP (acquisition) VP PPlby) | announced last week | 01 |
Pﬁ”’ NlN VBN NP (week) Hlv NP(IlBM)
) N |
its acquisition announced JJ/\NN by Nll\IP
| | IBM
last week

Figure 3.15: Three trees that contain a dependency (by — acquisition). The surface string
and distance features are shown for each dependency.

95

(a.) NP(candidate) (b)

/\ | Dependency | Distance |

NP(candidate) PP(for) = =
P | in — election | 10 |
DT NN
| | IN NP (electi
a candidate | (election)
for
NP (election) PP(in)
DIT NIN IN NP (York)
. i N
the election in NNP NNP
|
New York
(a.’) NP(candidate) (b,)
| Dependency | Distance |
| in — candidate | 00 |
NP (candidate) PP (for) PP(in)
DT NN IN NP(election) N NP (York)
| | [I
a candidate for DT/\NN in NI\(\NNP
| |
the election New York

Figure 3.16: Two competing trees which differ by a single dependency, (in — election) vs.
(in — candidate). Without the distance variable, each dependency looks quite plausible
and their probabilities are likely to be similar — the decision between the two structures
will be a close one. With the distance variable the model can discriminate between the
first attachment as close attachment (distance 10) and the second attachment as longer
distance attachment (distance 00). (In fact, the right branching structure in (a) occurs
about twice as often in the Penn WSJ treebank as the alternative structure in (a’).)

96

(a.) VP (believed) (b)

/\ | Dependency | Distance |

VP(to)

belibved /\ | by — shot | 00 |
TO VP (have)
|
to /\
VP(shot)
have been /’\
NP(yesterday) PP(by)
st I IN/N\P(Bill)
yesterday bly NIl\IP
|
Bill
(a”) VP(believed) (b)
| Dependency | Distance |
| by = believed | 01 |
VBN VP(to) PP(by)
i
believed /\ IN/N\P(Bill)
TO VP (have) | |
| by NNP
to n
VBD VP (3hot) Bi

have been
VBN NP (yesterday)
| |
shot NN

|
yesterday

Figure 3.17: Two competing tree fragments which differ by a single dependency, (by —
shot) vs. (by — believed). Without the distance variable, each dependency looks quite
plausible and their probabilities are likely to be similar — the decision between the two
structures will be a close one. With the distance variable the model can discriminate
between the first attachment as an attachment that does not cross a verb (distance 00)
and the second attachment as one that does cross a verb (distance 01). (In fact, the right
branching structure in (a) occurs about 19 times as often in the Penn WSJ treebank as
the alternative structure in (a’).)

low score. In practice, the addition of distance allows the model to learn that a PP (almost
always) subcategorizes for a single complement.

This result is not restricted to PPs alone. It also applies to other heads which take
a single obligatory argument: the most common cases being a complementizer taking a
sentential complement, or a transitive verb taking a single NP complement. Later, experi-
mental results show that the distance and subcategorization features overlap a great deal
in their utility, and that a model with distance but without subcategorization performs

almost as well as a model that includes both distance and subcategorization.

A Second Definition of distance

The first distance measure, just described, is used in the parser in chapter 7. We now
describe a second measure that was used in the earlier parser in chapter 6. It can be
considered an approximation of the first distance measure. The difference between the
two distance measures was forced by the difference between the two probability models.
Although the two distance measures are approximately the same, the second measure
breaks down as a close-attachment or subcategorization preference in some cases. (The
model structure in chapter 6 does not allow a natural incorporation of subcategorization
probabilities, so the breakdown of distance as an approximation of subcategorization is
particularly problematic.)

The second distance measure differs only in its definition of the surface string associated

with a dependency:

e The surface string associated with a dependency w; — h; is the surface sequence of

words between w; and h;.

The distance measure is then defined as a function of the surface string, in the same way

as before:

Bit 1 1 if the string is empty, 0 if the string is non-empty. This feature indicates whether

or not the modifier word is adjacent to the head.

Bit 2 1 if the string contains a verb, 0 if it does not contain a verb.

98

Whereas the first definition of distance depended at least partially on the phrase struc-
ture of the tree, this second definition depends only on the surface position of the head
and modi fier in the surface string.

In some situations the two distance measures will give the same results: in fact, in
figures 3.15, 3.16 and 3.17 this new distance measure will give the same results as the first
distance measure for the highlighted dependencies.

Consider, however, the tree in figure 3.14(a). With the first distance measure, the two
dependencies involving the preposition among were (workers — among, R, (NP, PP,IN),00)
and (group — among, R, (NP,PP,IN),10). In contrast group is not adjacent to among
in the surface string, so the second distance measure gives the dependency (group —
among, R, (NP ,PP,IN),00): the distance variable now fails to differentiate the two depen-
dencies and the approximation of subcategorization has broken down. This kind of problem
lead to a refinement of the distance measure in chapter 6, through a redefinition of the

surface string:

e The surface string associated with a dependency w; — h; is the surface sequence
of words between w; and h;, excluding words that appear as pre or post modifiers

within non-recursive NPs.

By this definition, the premodifier the is excluded from the string between among
and group, leading to a dependency with the “correct” distance measure: (group —
among, R, (NP,PP,IN), 10).

The redefinition of the surface string was not trivial to incorporate in the probabilistic
model in chapter 6, involving a definition of a separate level for non-recursive NP recovery.
We can see from the example in figure 3.18 that the second distance measure is still
different from the first in some cases. In this example the difference leads to a failure to
approximate the subcategorization fact that a complementizer takes a single S complement.
The remaining differences between the two distance measures is no doubt one of the reasons

that the chapter 7 parser performs better than the chapter 6 parser.

99

(a) SBAR(that)

WDT S S

|
that
NP(she) VP (hated)

| |
PRP VBD

NP(man) VP(liked) |
|
VBD she hated
|
NP(woman) VP (elected) liked
DT NN /\
| VBN NP (yesterday)
the woman |
elected NN
|
yesterday
[Dependency] Stringl [Distancel | String?2 [Distance2 |
liked — that — 10 the woman elected yesterday 01
hated — that the woman elected yesterday liked 01 the woman elected yesterday liked she 01

Figure 3.18: A tree, and the distance measure assigned by the first and second distance
measures: Stringl, Distancel are the features assigned by the first measure; String2, Dis-
tance2 are assigned by the second measure. Notice that the two distance measures give
differing results, and importantly the first distance measure differentiates the S complement
adjacent from the head from the second S complement. In contrast the second distance
measure fails to differentiate the two dependencies, and will be forced to give similar prob-
abilities to each, thereby failing to learn the subcategorization fact that a complementizer

generally takes a single S complement.

100

3.3.8 Parameterization Proposal 7: Dependencies + Direction + Rela-

tions 4+ Subcategorization + Distance + Parts-of-Speech

Parameterization Proposal 7. (Dependencies + Direction + Relations + Subcatego-
rization + Distance + Parts-of-Speech) A parse tree is represented as n +m events
Event,...Event, . Events 1...n are (w;/tag(w;) — hi/tag(h;), direction;, relation;,
distance;) dependency tuples. w;, h;, direction;, relation; and distance; are as defined
before. tag(w;) and tag(h;) are the part of speech tags in the tree associated with words w;

and h; respectively.

In the final refinement of the parse tree representation, part of speech tags are added.
The relation tuple already includes non-terminals associated with the words in a depen-
dency, and therefore distinguishes the major part-of-speech category for the words in the
dependency (as argued in section 3.3.5). The addition of parts of speech makes finer graded
distinctions: for example distinguishing singular, plural and proper nouns, or distinguish-
ing different verb forms.

The motivation for including parts of speech is tied to the estimation methods used
for calculating parameter values. Without sparse data problems, the count of full depen-
dency relations Count((w;/tag(w;) — h;/tag(h;), direction;, relation;, distance;)) would
be reliable enough to be the sole basis for estimation. But all such counts being reliable is
extremely unlikely to be the caseS.

The estimation methods attack the sparse data problem by incorporating counts from
subsets of this full representation (with probability theory solving the delicate problem of
exactly how to combine these counts). These subset counts correspond to differing lev-
els of generalization. For example: Count(IBM/NNP — bought/VBD, L,(NP,S, VP),10)
would be number of times IBM is seen as the subject of bought; Count(IBM/NNP —
VBD, L,(NP,S, VP),10) would be the number of times IBM is seen as the subject of any

verb tagged VBD; Count(NNP — VBD, L,(NP,S, VP),10) is the number of times a noun

In the Penn WSJ treebank there are approximately 1,000,000 dependency events on which to base
counts; with a (conservative) estimate of the vocabulary size as 20,000 words there would be 20,000% =
40,000, 0000 parameters even before considering the direction, distance and relation features. It’s clear that
the number of parameters vastly exceeds the number of training events, and that the sparse data problem
is severe.

101

tagged as NNP is seen as the subject of a verb tagged VBD.

The addition of part of speech tags allows the model to learn useful generalizations
about how whole part-of-speech classes behave. The subset counts will generally dis-
card the (sparse) lexical items but retain the (much less sparse) POS tags. For example,
Count({tag(w;) — tag(h;), direction;, relation;, distance;)) may be quite reliable, and will
encode many useful facts about how different parts-of-speech behave. For example, that
singular or plural nouns are much more likely to take PP modifiers than proper nouns, or
that a subject verb dependency must involve POS tags that agree for person and number,

and so on.

3.4 Summary

This chapter initially showed that a “simple” PCFG has a couple of major failings: namely,
a lack of sensitivity to lexical information and structural preferences. This motivated the
move to dependencies as a representation. A tree for a sentence with n words contains
n dependencies between pairs of words; associating probabilities with these dependencies
leads to a model which is much more sensitive to lexical information. However, simple
dependencies are not enough. We described a series of additions to the parameterization:
word-order information, non-terminals encoding grammatical relations, subcategorization
events, distance preferences, and the use of part-of-speech tags as word-class information.
The remaining question is how to build a statistical model, using the techniques described

in chapter 2, which includes all of these parameter types.

102

Chapter 4

Previous Work

4.1 Introduction

This chapter gives a broad overview of the literature on statistical parsing of natural
language. We first give a brief history of the field, then describe each paper in detail. Note
that chapter 8 of this thesis gives a more detailed comparison to previous work that is of

the most direct relevance to the work in this thesis.

4.2 A Brief History of Probabilistic Parsing for Natural Lan-
guage
Goals of the field

When considering the work in this chapter, it is useful to bear in mind two distinct goals

driving the research:

e The first is the topic of this thesis: i.e., building a parser that recovers linguistic
structures with high accuracy. Thus the goal of this research is to maximize parse

accuracy.

e The second is related to speech recognition: i.e., building a language model, a model

that assigns probabilities to strings in a language. Trigram language models (e.g., see

103

[Jelinek 90]) have been very successful in speech recognition, but have clear weak-
nesses in modeling the grammaticality of strings, or capturing dependencies between
pairs of words that are more than two words apart. Language models containing
hierarchical or linguistic structure might lead to improved recognition performance.
Thus this second goal is to build statistical grammars that give improved speech
recognition performance over trigram models, or that give improved perplexity' re-

sults over trigram models.

The first goal is of most direct relevance to this thesis, but it is perhaps important
to be aware of the second goal when analysing the underlying motivation for some of the
work discussed in this chapter.

Both supervised and unsupervised methods have been pursued (supervised training
uses a treebank of example sentence/tree pairs as training data, unsupervised training uses
unanalysed text). While unsupervised training is clearly preferable, in that it removes the
need for costly hand-annotation of a treebank, it is also generally acknowledged to be a

much harder problem (at least for the goal of learning linguistically plausible structures).

Availability of Treebank Data

An important factor influencing research in the field has been the availability of parsed
treebank corpora. This is needed for training supervised models, and for testing the parsing
accuracy of both supervised and unsupervised models.

A major source of publicly available data is the Penn treebank [Marcus et al. 93]. The
ATIS and Wall Street Journal (WSJ) sections of the first version of the treebank (TBI)
became available in mid-to-late 1991. The ATIS and WSJ sections of the second version
(TBII) became available in mid-to-late 1994 (this data is used in this thesis). TBII was
superior to TBI in a couple of important respects: the annotations were checked more
carefully, leading to greater consistency; and the annotation style was much improved,
being sounder linguistically and having more information, in terms of semantic labelings

and other indications of predicate-argument structure [Marcus et al. 94].

! Perplexity is a measure of how well a language model predicts some previously unseen data, and is at
least perceived to be strongly related to speech recogniser performance; see [Jelinek 90] for details.

104

The lack of treebank data in the early years of statistical parsing research lead to a num-
ber of different training and evaluation approaches. Researchers at IBM [Black et al. 92a,
Black et al. 92b, Jelinek et al. 94] had developed their own treebank corpora, for exam-
ple on a computer manuals domain. Some researchers used the first version of the Penn
treebank [Bod 93, Pereira and Schabes 92, Schabes et al 93]. Others developed their own
training and test data, often by hand-selecting between multiple parses produced by an
existing parser [Alshawi and Carter 94, Briscoe and Carroll 93, Carroll and Briscoe 95].
Several papers were theoretical, developing a probabilistic version of existing grammars
such as TAGs or link grammars, often additionally deriving algorithms for parsing and
unsupervised training [Resnik 92, Schabes 92, Schabes and Waters 93, Lafferty et al. 92],

but not giving any evaluation of parsing accuracy.

Perceived Problems with Probabilistic Context Free Grammars

Probabilistic context free grammars (PCFGs) were a natural starting point for the re-
search in statistical parsing of natural language. Their formal properties have been well
understood since at least [Booth and Thompson 73]; efficient parsing algorithms are well
known; and [Baker 79] describes the inside-outside algorithm, an efficient approach to EM
parameter estimation [Dempster, Laird and Rubin 77|, for unsupervised training.

Unfortunately, research suggested that PCFGs were poor models of language in several
respects. In the unsupervised case the inside-outside algorithm was unsuccessful at induc-
ing linguistically plausible structures (see, for example, [Pereira and Schabes 92]); neither
did it lead to models that reduced perplexity for the language modeling task (almost cer-
tainly because PCFGs do not have the parameters corresponding to pairs or triples of words
that make trigram models so successful). In the supervised training case, PCFGs were
again perceived to be poor models, although more recent work [Charniak 97, Charniak 96]
has shown that PCFGs can achieve at least respectable results on parsing the Penn WSJ
corpus, version 2.

These perceived failures lead to areas of research that are described in the next three

sections: (1) designing models with increased structural sensitivity; (2) the development

105

of models containing parameters corresponding to lexical dependencies; and (3) the devel-

opment of history-based models.

Probabilistic Methods with Increased Structural Sensitivity

Several researchers looked at increasing the context-sensitivity of PCFGs, with encouraging
results: e.g., [Magerman and Marcus 91, Magerman and Weir 92, Briscoe and Carroll 93,
Bod 93]. [Brill 93] considered a rule-based learning model, again with more context sensi-
tivity than a PCFG. Other researchers such as [Pereira and Schabes 92, Schabes et al 93,
Black et al. 92a] considered partially supervised versions of the Inside-Outside algorithm:
the idea being that treebanks such as TBI had relatively flat, underspecified trees, and that
learning algorithms should be able to use this information while learning more detailed
structure in an unsupervised manner.

All of these models retained PCFG’s weakness of a lack of lexical sensitivity; the next

two areas of research addressed this problem.

Formalisms Including Lexical Dependencies

There were at least two reasons for developing models that included dependency param-
eters. First, researchers who were interested in language modeling for speech recognition
realised that while trigram models might make poor syntactic models?, the probabilities
associated with pairs or triples of words were very useful when assigning probabilities to
sentences in a language. It followed that for structured models to compete as language
models, they would have to include such parameters (see for example [Lafferty et al. 92]).
Second, and more importantly for the research in this thesis, research had suggested
that dependency probabilities might be powerful sources of disambiguating information.
[Hindle and Rooth 91] had shown their use in prepositional phrase disambiguation; and as
early as 1990 arguments were made for the generalization of this method to full parsing

(text taken from [Marcus 90]):

Ken Church argued that parameterization on purely structural relations, such

2By syntactic models we mean models that distinguish grammatical from ungrammatical sentences, see
the arguments in [Chomsky 57] for why Markov models fail in this respect.

106

as used in this and the previous paper would be strikingly less successful than
parameterization on words, parameterizing perhaps (as in Hindle and Rooth’s

paper) on pairs of words in certain structural relations.

There were two types of work that attempted to generalize the method described in
[Hindle and Rooth 91]. First, [Sekine et al 92, Alshawi and Carter 94, Jones and Eisner 92a]
used an existing hand-crafted parser that recovered predicate-argument relations. Scores
were added to the predicate-argument relations to rank different parses. The method in
[Sekine et al 92] used unsupervised learning; [Alshawi and Carter 94, Jones and Eisner 92a]
used supervised learning. The results were very promising: [Alshawi and Carter 94| report
89% exact match accuracy on the ATIS domain using the predicate-argument parameters
alone, with 94% accuracy when other features were added.

A second line of research was to extend various lexicalized syntactic formalisms to the
statistical case, as in stochastic tree adjoining grammars (STAGS) [Resnik 92, Schabes 92]
and link grammars [Lafferty et al. 92]. A natural consequence of these formalisms was to
give dependency parameters. Both [Schabes 92] and [Lafferty et al. 92] derive versions of
the inside-outside algorithm for unsupervised training. These papers represent important
work, as they give well-founded probability models including dependency parameters; but
the lack of availability of training and test data means they are limited in their lack of
evaluation, which inevitably leads to a lack of detail in the modeling choices, or to modeling

choices that would most likely hurt parsing performance.

History-Based Models

A third line of research, history-based models, was developed by researchers at IBM
[Black et al. 92a, Black et al. 92b, Jelinek et al. 94]. These models were characterized by
two differences from simple PCFGs. First, the parse-tree representation was enriched in a
couple of ways: non-terminal labels were extended to include information such as lexical
items (head words), or semantic categories; and the conditioning context was extended to
look at potentially all previously built structure, rather than just the non-terminal being

expanded as in PCFGs. Second, more powerful machine-learning methods, in particular

107

decision trees, were used for parameter estimation. The basic idea was to expand the condi-
tioning features and context to (hopefully) include practically all sources of disambiguating
information; then to use decision trees to learn exactly what features or combinations of
features were actually important for parsing.

An important development in this research was a move from the use of a hand-crafted
grammar in [Black et al. 92a, Black et al. 92b], to a model that was trained from a tree-

bank alone in [Jelinek et al. 94].

Statistical Models for Parsing the Penn WSJ Treebank

[Magerman 95] described the SPATTER parser — an extension of the model described
in [Jelinek et al. 94] — applied to the Penn WSJ Treebank (version 2). The model was
trained on 40,000 sentences, and tested on over 2,000 sentences. In many ways this work

represented a maturation of the work in statistical parsing:

e It represented a major advance in the scale of the tasks undertaken by statistical
parsers. All sentences up to 40 words in length were parsed, on a domain (WSJ)
that is much less restricted than previous domains such as ATIS or the IBM computer

manuals data.

e The parser was trained completely automatically from the treebank, with no require-

ment for a hand-crafted grammar.

e The results represented a major improvement over accuracy for PCFGs: 84.5/84.0%
precision/recall on section 23 of the treebank ([Charniak 97] later reported that a

non-lexicalized PCFG scores around 72% averaged precision/recall on this task).

e The model had parameters that conditioned heavily on lexical information, presum-

ably accounting for much of its improvement over PCFG based methods.

The work in chapter 6 was originally published in [Collins 96], and was well underway
by mid to late 1995; because of this, the work in [Magerman 95] was a crucial benchmark
for the work. Since then, several other results have been reported on parsing the Penn WSJ

treebank: [Ratnaparkhi 97] describes a history-based parser based on maximum entropy

108

models; [Charniak 97, Goodman 97, Eisner 96] all describe methods that rely heavily on
dependency probabilities. Thus [Magerman 95, Eisner 96, Ratnaparkhi 97, Charniak 97,
Goodman 97] are all highly relevant to the work in this thesis, and are described briefly

in section 4.8 of this chapter with a much more detailed comparison in chapter 8.

4.3 Five Categories of Previous Work

We now describe each of the papers in more detail. We divide previous work into five

broad categories:

Probabilistic Methods without Lexical Sensitivity This section first describes re-
cent work on parsing the Penn WSJ treebank using (non-lexicalized) PCFGs. It
then goes on to describe refinements to PCFG models: partially supervised training
algorithms, parameterizations that give increased structural sensitivity, and a few

other topics.

Rule-Based Learning Methods This section describes work on applying transforma-
tional based learning to parsing, and decision tree learning of a deterministic shift-

reduce parser.

Ranking Parse Trees through Scores Associated with Semantic Tuples The pa-
pers in this section use hand-written parsers that recover semantic tuples (tuples
specifying pairs of head-words in some predicate-argument relationship) together
with a syntactic parse. The papers describe methods of assigning scores to semantic

tuples, thereby defining a function for ranking parse trees.

Probabilistic Versions of Lexicalized Grammar Formalisms This section describes
work on probabilistic versions of grammar formalisms such as tree adjoining gram-
mars, link grammars, lexicalized PCFGs, and head automata. This work is highly
relevant to this thesis, as these formalisms include parameters corresponding to lex-

ical dependencies.

Previous Work on Probabilistic Parsing of the Penn WSJ Treebank The work in

109

this section is of most direct relevance to this thesis, as it describes statistical mod-
els that make strong use of lexical information, and have been evaluated on wide-
coverage parsing (the WSJ treebank). This chapter gives a brief overview of this
work; chapter 8 compares the work in this thesis to these papers in much greater

detail.

4.4 Probabilistic Models without Lexical Sensitivity

4.4.1 Results for PCFGs on the Penn WSJ Treebank
[Charniak 97, Charniak 96]

Although there was much early work on PCFG-based parsing of natural languages, the
most directly relevant result to this thesis is given in [Charniak 97]. [Charniak 97] describes
a lexicalized PCFG model that we will discuss extensively in section 8.4.1, and also gives
results for a non-lexicalized PCFG as a baseline. On sentences of length < 100 words,
the non-lexicalized PCFG scores 70.6% recall, 74.8% precision. This result is directly
comparable to the results in this thesis, as the model was trained and tested on the same
data, and evaluated using the same measures of accuracy.

[Charniak 96] also describes results for a PCFG trained and tested on the treebank.
The results are less comparable: the training and test data differ from the sections used
in this thesis, and evaluation is only given on the recovery of unlabeled constituents. The
paper makes a number of important observations though. First, it shows that adding a
structural bias to the grammar for right-branching structures gives a 2.4/2.7% improve-
ment in recall/precision (although this change means that the model does not sum to one
without renormalization, with the consequence that the relative frequency estimates used
are not maximum-likelihood estimates; see section 2.3.3 of this work for more about this
problem). Second, the paper considers the coverage problem in some depth. Inducing a
PCFG directly from the Penn WSJ treebank inevitably leads to a grammar with imperfect
coverage of test data: some test data sentences will require rules that have never been seen
in training. [Charniak 96] argues that these problems are not harmful, we return to this

point in section 8.3.

110

4.4.2 Partially Supervised Training of PCFGs
[Chitrao and Grishman 90]

[Chitrao and Grishman 90] describe a method that uses an existing parser — the PRO-
TEUS parser — with EM unsupervised training of its rule probabilities (the model is a
PCFG). They also describe a model with increased context-sensitivity, the expansion prob-
ability for a non-terminal being conditioned on its parent. The model was trained on 300
sentences, and tested on 140 sentences (these sentences were a subset of the 300 training
sentences; this is not a problem because the method uses unsupervised training). They
show a decrease in the number of incorrect parses from 44% without statistics to 26% with

the use of statistics.

[Pereira and Schabes 92]

[Pereira and Schabes 92] describe an extension of the inside-outside algorithm [Baker 79] to
the case where a partially bracketed corpus is used as (partially supervised) training data for
a binary-branching PCFG. The benefits of this approach over the algorithm in [Baker 79]
are two-fold: first, the algorithm is more efficient (in the limit, if the corpus contains
fully-bracketed binary branching trees, the algorithm runs in O(n) time, as opposed to
O(n3) time for [Baker 79]); second, the grammar induced by the algorithm is partially
constrained by the partial bracketings, thus it is likely to learn whatever information is in
these partial bracketings, while learning more detailed structure within the bracketings in
an unsupervised manner. Tests are made on the ATIS corpus: 90.36% bracketing accuracy
(bracketing accuracy is the percentage of constituents that do not cross a constituent in
the gold-standard parse) is reported for the [Pereira and Schabes 92] algorithm, as opposed
to 37.35% accuracy for [Baker 79]. Thus the unsupervised method is shown to be very
poor at inducing linguistic structure automatically, while the partially supervised method
is shown to be counstrained enough to give good results. Interestingly, the two induced
grammars show very similar perplexity measurements on the corpus, in spite of giving

radically different parsing accuracies.

111

[Schabes et al 93]

[Schabes et al 93] describe the application of the method in [Pereira and Schabes 92] to
the WSJ corpus. In this case the corpus is converted to completely binary branching trees,
so the learning algorithm is completely constrained for bracketing, though it is free to learn
non-terminal labelings in an unsupervised fashion. On sentences up to 15 words in length,

they report bracketing accuracies of around 90%.

[Black et al. 92a]

[Black et al. 92a] describe a statistical parsing model that assumes two resources: 1) a
treebank of tree/sentence pairs for the domain under consideration; 2) a hand-crafted
grammar with good coverage of this domain. The goal is to induce a PCFG model of
the hand-crafted grammar (i.e. to estimate probabilities associated with the rules in the
hand-crafted grammar). These parameters are estimated in a partially supervised way
using the inside-outside algorithm on the treebank data: the trees in the treebank provide
constraints in terms of bracketings and non-terminal labels (the learning algorithm is very
similar to that in [Pereira and Schabes 92]). The method is shown to recover the correct
parse 75% of the time on a computer manuals domain, with restrictions that 1) sentences
in the test set are 7-17 words in length; and 2) sentences are comprised of a restricted

vocabulary of the 3000 most frequently occurring words in the domain.

4.4.3 Methods with Increased Structural Sensitivity
[Magerman and Marcus 91, Magerman and Weir 92]

[Magerman and Marcus 91] describe Pearl, a probabilistic parser; [Magerman and Weir 92]
look more closely at efficient search strategies within Pearl, and give further empirical
evaluation. Pearl’s major departure from PCFG formalisms is to increase the context-
sensitivity of the parameters in the model. In a PCFG each rule A — (8 has probability
P(A — B|A); in Pearl the parameters are extended to condition on the rule C — aAy that
generated A, and on the POS trigram apajas in the sentence such that a; is the left-most

word in the constituent. (The new parameters are written P(A — B|C — oAy, apaaz).)

112

Evaluation showed results of 88% accuracy in recovering the correct parse in the Voyager

domain. The model did not use lexical information, parsing POS strings as input.

[Briscoe and Carroll 93]

[Briscoe and Carroll 93] describe a probabilistic model of LR parsing, based on the Alvey
Natural Language Tools (ANLT) parser. Probabilities are associated with actions in an LR
parse table, rather than with context-free rules: the model is more sensitive to structural
distinctions than simple PCFGs, as the probability of applying a rule is conditioned on
the LR state, not just the non-terminal being expanded. However, it is likely to have the
same insensitivity to lexical information as simple PCFGs. [Briscoe and Carroll 93] note
that simple PCFGs cannot encode structural preferences in examples such as compound
nominal or prepositional phrase ambiguities (for example the analyses [[N N] N] vs. [N [N
N]] contain the same rules, and therefore can’t be distinguished by a simple PCFG), but
that the LR probabilities can discriminate between these alternative analyses. The method
is evaluated on 55 dictionary definitions of length up to 10 words, with a training set of
246 definitions. 41 (75%) of the definitions are parsed correctly. [Carroll and Briscoe 95]
describe considerable progress in scaling the system. The system described there recovers
at least one analysis for 80% of sentences in a diversified corpus; evaluation of 250 sentences

that were covered showed labeled constituent recall/precision results of 82.9/83.9%.

[Bod 93]

[Bod 93] describes the application of Data Oriented Parsing (DOP) to the ATIS corpus.
The DOP model can be viewed as a variant of Stochastic TAG [Resnik 92, Schabes 92] re-
stricted to substitution only. The key distinguishing feature to DOP is how the parameters
of this STAG are estimated from a corpus. Given a set of context-free trees in a treebank,
there are multiple possible STAG derivations for each tree: the underlying derivation for a
particular tree could involve sub-trees ranging in size from 1-level context-free productions,
to an entire tree spanning the whole sentence. Thus the derivation underlying a tree is
“hidden”, and the parameter values cannot be estimated directly. [Bod 93] describes a

method that first extracts all partial trees from a treebank, and then assigns probabilities

113

to them in a way that gives a well-formed probability distribution over the space of possible
derivations (the estimation method is perhaps rather ad-hoc — for example not maximiz-
ing the likelihood of the training set of example trees — but is probably quite robust; in
effect the model smooths the probability for large tree fragments with probabilities for
smaller trees). Given a test-data sentence, the probability of a candidate parse tree can be
calculated as the sum of probabilities for derivations underlying the tree. Search for the
highest probability tree is computationally expensive, given a requirement for summation
over all derivations for each tree; [Bod 93] reports use of a Monte Carlo style algorithm to
find the highest probability tree.

The model is interesting in that it radically extends the structural seunsitivity of PCFGs
to much larger tree fragments. The work in [Bod 93] does not include lexical information
(parsing was done over POS strings), but there is nothing in principle to prevent exten-
sion of the model to lexicalized grammars. Unfortunately the computational complexity of
parsing with the model may make it difficult to scale to more complex corpora than ATIS,
or to the lexicalized case. [Bod 93] reports very good results (96% accuracy at recovering
parse trees on the ATIS corpus). However, these results have not been replicated: see
[Goodman 96] for a lengthy discussion. [Goodman 96] describes an efficient, but possibly
approximate, implementation of DOP. He also reports results on ATIS for DOP, and com-
pares to the PCFG method described by [Pereira and Schabes 92]: in these experiments
DOP performs with moderately greater accuracy than a PCFG model. (Approximately
66.1% of sentences receive 0 crossing brackets for DOP, as opposed to 63.9% for a PCFG;
this score is more lenient than the exact match criterion, so this performance clearly rep-
resents a substantial decrease from the 96% figure in [Bod 93]. In a data set that was
cleaned up by Bod, both methods report better results: 86.1% and 79.2% zero crossing
brackets for DOP and PCFG respectively.)

[Sekine and Grishman 95]

[Sekine and Grishman 95] describe a parser that uses rules with a large amount of struc-
tural detail. Only two non-terminals — S and NP — are used. Other non-terminals appear

as intermediate structure associated with a rule. For example, the method might induce a

114

rule S — NP VBX JJ CC VBX NP with associated structure [S NP [VP [VP VBX [ADJP
JJ] CC [VP VBX NPJ]]], and an associated probability P(rule,structure|S). A part-of-
speech tagging model is also integrated with the rule probabilities. The method is tested
on the Penn WSJ treebank, with 33.9% of sentences receiving an analysis with no crossing

brackets.

4.4.4 PCFG Parsing Algorithms for Different Evaluation Criteria
[Goodman 96D

[Goodman 96b] describes different parsing algorithms for PCFGs that maximize the ex-
pected accuracy on different parsing metrics. Search for the highest probability parse under
a PCFG model maximizes the probability of finding the correct parse for a sentence, but
does not necessarily maximize the expected accuracy on other evaluation metrics such as
crossing brackets, or labeled recall of constituents. Evaluation on the ATIS domain, with
a PCFG induced directly from a treebank, shows that the different algorithms each give

the best results for the particular evaluation metric they are tuned for.

4.4.5 The Effect of Annotation Style on PCFG Accuracy
[Johnson 97]

[Johnson 97] considers the effect of alternative tree representations on PCFG accuracy:
in particular, how different representations for PP adjunction effect a PCFGs ability to
distinguish between different parses. He gives results for a PCFG that are similar to
those in [Charniak 97] (69.6%/73.5% recall/precision in recovering labeled constituents).
He also shows that adding the parent of each non-terminal as conditioning information
— that is, replacing P(a — f|a) with P(a — (o, Parent(«)) where Parent(«) is the
non-terminal dominating o — leads to an improvement to 79.3%/80.1% recall/precision.
This modification was originally described in [Charniak and Carroll 94], which considered
unsupervised training of a PCFG with P(a — B|a, Parent(«)) parameters, but did not

give results for supervised training.

115

4.4.6 Representation of PCFG Rules as Markov Processes
[Seneff 92]

[Seneff 92] describes TINA, a natural language system for spoken language systems. The
paper describes the implementation of a probabilistic parser, and its integration into a
speech system. The work is of relevance to the work in this thesis, because the proba-
bility of a rule P(X — Y7 Y5 ...Y,|X) is decomposed using a bigram Markov process, as
P |X,START)P(STOP|X,Y,) [Ii—o. . P(Yn|X,Yn—1). The models in chapter 7 also

use Markov processes over non-terminal sequences to parameterize rule probabilities.

4.5 Rule-Based Learning Methods

[Brill 93]

[Brill 93] described the application of transformation based learning (TBL) to parsing.
TBL has also been applied to POS tagging [Brill 95] and prepositional phrase attachment
disambiguation [Brill and Resnik 94]. The method learns a set of rules, which are applied
in sequence to give a parse for a sentence. The starting state is to have a completely
right-branching, binary-branching tree for a sentence: each of the transformational rules
can then change a local piece of structure, for example by transforming a bracketing [A
[B C]] to [[A B] C]. A transformation can be triggered by a conditioning context, which
is either a single tag, or a pair of tags. The method is sensitive to POS tags only, as
the conditioning features do not include words. Training the model is achieved through a
greedy search, at each iteration adding the rule that gives the greatest decrease in error
rate to the list of rules. Results are given on the WSJ and ATIS corpora. On ATIS the
method shows a slight improvement over [Pereira and Schabes 92], in spite of training on
only 150 sentences ([Pereira and Schabes 92] trained on 700). The most comparable result
to the results in this thesis are the percentage of sentences in WSJ of length 2-25 words
with 0 crossing brackets, 29.2%. This result was with only 250 sentences of training data

from TBI.

116

[Hermjakob and Mooney 97]

[Hermjakob and Mooney 97| describe a machine-learning method that induces the rules
required by a deterministic shift-reduce parser. The model is history-based, in that a
parse tree is represented as the sequence of decisions made by the parser. Recovery of a
parse tree is then considered to be a series of classification problems: given the previously
built structure, what should the next move by the shift-reduce parser be? The model
uses a combination of ID3 decision trees (with some modifications), and decision lists,
as the learning algorithm. Conditioning features include the previously built structure,
together with a knowledge base that contains semantic information about the words in the
lexicon, as well as subcategorization information. Decoding is deterministic, in that the
decision trees return a single decision at each point of ambiguity, rather than returning a
distribution over possibilities which could then be used in a probabilistic search.

Results for the method are given on Wall Street Journal text, training from 256 sen-
tences. The Penn WSJ treebank is not used as training or test material, instead the
authors construct their own corpus. Labeled Precision/Recall results of 89.8/89.6% accu-
racy are given; 1.02 crossings brackets per sentence are observed, with 56.3% of sentences
having 0 crossing brackets. When comparing these figures to work on parsing the Penn
WSJ treebank, a number of factors should be taken into account: 1) the test and training
material is from a different set of sentences; 2) the domain is restricted, in that only sen-
tences containing words from a vocabulary of the most frequent 3000 words in WSJ are
included in the training/test data; 3) The annotation style is quite different from that of
the Penn treebank (looking at figure 2 of [Hermjakob and Mooney 97], in some cases the
tree is “flatter” than the treebank, in other cases it is more detailed, and the non-terminal
labels are quite different). This difference in annotation style may substantially impact
evaluation scores. In particular, the labeled precision/recall figures may be problematic,
as the difference in annotation styles may lead to a quite different definition of what a

3

constituent is°. Thus the crossing brackets figures may be the only point of reasonable

comparison.

3As an example of an extreme case, if the POS tag or something similar for each word is included
as a constituent, then approximately half the constituents will be recovered with over 98% accuracy; the
presence or absence of POS tags as constituents will effect the labeled precision/recall figures drastically.

117

4.6 Ranking Parse Trees through Scores Associated with
Semantic Tuples

[Sekine et al 92]

[Sekine et al 92] describe a method that ranks parses by associating scores with [head-word,
syntactic relation, argument] tuples. A parse tree is represented as a set of such tu-
ples; each tuple has an associated score; the score for each candidate parse tree is calculated
as a product of its tuple scores. The syntactic relation field can be either a direct syn-
tactic relation, such as subject or object, or the identity of a preposition, such as by or
with. Scores for tuples are calculated in an unsupervised manner: the method assumes
an existing parser that will provide all analyses for a particular sentence, and an iterative
algorithm is used to calculate the scores for tuples. While the method is heuristic — the
tuple scores do not apparently have a direct probabilistic interpretation, and the model
does not define a joint or conditional probability distribution over sentence-tree pairs —
the method appears to be similar to the EM algorithm [Dempster, Laird and Rubin 77].
Evaluation was done on compound-nominal ambiguities alone, with over 70% accuracy
in disambiguating these structures. In conclusion, while the method is heuristic in na-
ture, and evaluation is fairly limited, the work is of great interest in a couple of respects.
First, it proposes representing a parse tree as a set of [head word, syntactic relation,

argument] tuples. Second, it uses an unsupervised training method.

[Jones and Eisner 92a, Jones and Eisner 92b]

[Jones and Eisner 92a, Jones and Eisner 92b] describe a probabilistic parser applied to
software testing documents. The probability of two constituents combining to form a
new constituent in a bottom-up parse is calculated as the combination of two terms: a
syntactic probability conditioned on the two non-terminals being joined; and a semantic
probability conditioned on the two terms in the predicate-argument relation implied by
the combination of the two constituents. Results showed that the parser recovered a parse

for 77% of all test sentences, with the highest ranked parse being correct 90% of the time.

118

[Alshawi and Carter 94|

[Alshawi and Carter 94] describe a supervised technique for ranking parses in the ATIS
domain. A parse tree is represented as: 1) a set of tuples that represent grammatical
relations between words, in a similar way to [Sekine et al 92]; 2) the count of a number
of other features appearing in the parse, for example the number of adjuncts, elliptical
expressions, balanced conjunctions, and so on. An existing parser is used to generate all
possible analyses for each sentence, and the correct analysis is selected by hand to give
examples for supervised learning, and to provide a test set. The paper considers a number
of ways of associating a score with each semantic tuple — the best method selects the
correct parse 89.7% of the time. The second point in the paper is the combination of
the different forms of evidence (semantic collocations, and counts of other features of the
parse) using optimization methods based on hill climbing. Combining all features gives an

accuracy of 94.3%.

4.7 Probabilistic Versions of Lexicalized Grammar Formalisms

A number of papers describe work on probabilistic versions of lexicalized syntactic for-
malisms. This work is important, as a natural result of the formalisms is to have parame-
ters associated with lexical dependencies in parse trees. The work in this section is more
theoretical, generally specifying a probability model, sometimes with a derivation of an

inside-outside style training algorithm, but generally with no evaluation on a parsing task.

4.7.1 Stochastic Tree Adjoining Grammars
[Resnik 92]

[Resnik 92] describes a probabilistic model of Tree Adjoining Grammar (TAG). The model
includes three types of parameters: Pr(«), the probability of tree « being the first tree in
a derivation; Ps(8|a,n), the probability of substituting tree § into tree a at node n; and
P4(B|a,n), the probability of adjoining tree (into tree « at node 7. Given that a tree
in TAG contains at least one lexical item, the substitution and adjunction parameters are

associated with pairs of words, their respective trees, and the grammatical relation that

119

is involved. Hence the method is sensitive to many of the features (with the exception of
right-branching preferences) that we proposed in chapter 3. A drawback of the method
is that the inclusion of both trees as well as the grammatical relation will probably lead
to a very large number of parameters. An easy way to solve this problem might be to:
first, decompose the generation of the tree 8 into a number of smaller steps; second, define
smoothed estimates by defining a back-off hierarchy in the conditioning context for the

parameters.

[Schabes 92]

[Schabes 92] describes a probabilistic model of TAG that is very similar to the model in
[Resnik 92]. This paper additionally derives a method for unsupervised learning through
the EM algorithm [Dempster, Laird and Rubin 77]: EM was originally derived for context-
free grammars in [Baker 79], the algorithm in [Schabes 92] is an extension of this algorithm
of this to Stochastic TAGs. Empirical results are given for unsupervised learning of the

language {a"b"|n > 0}. The method is shown to converge quickly and correctly.

[Schabes and Waters 93]

[Schabes and Waters 93] describe what they call “Stochastic Context-Free Grammar”. The
formalism is equivalent in power to a context-free grammar, but its representation is the
same as lexicalized TAG, with restrictions on the form of trees to ensure that the formalism
is only context-free in power. The resulting formalism retains the parameters of [Resnik 92]
and [Schabes 92], while allowing both parsing and EM training to be performed in O(n?)
(as opposed to O(n%)) time.

Formal Results for Stochastic TAG

Additional papers give further results and algorithms for Stochastic TAGs. [Sarkar 98]
extends the conditions for the consistency of PCFGs given in [Booth and Thompson 73]
to STAGs. [Nederhof et al 98] describes an algorithm for efficiently computing prefiz prob-
abilities for a STAG: efficient computation of these probabilities would allow incorporation

of an STAG into a strictly incremental speech recogniser. [Nederhof et al 1998b] describe

120

the computation of prefix probabilities in Stochastic Linear Indexed Graminars, a class of

grammars that includes STAGs.

[Joshi and Srinivas 94]

[Joshi and Srinivas 94] introduced Supertagging as a method of stochastic parsing of TAGs;
[Srinivas 97] gives more recent models and results. In supertagging, the recovery of the
TAG tree associated with each word in the sentence is achieved through a trigram tagging
model, as described in [Church 88]. The TAG tree for a word in a sentence can be regarded
as a highly refined POS tag, with information about subcategorization for verbs, whether
a noun is a pre-modifier or head, and so on. This increased detail of information also leads
to increased ambiguity, words on average having 47 possible elementary trees, with the
baseline method of simply choosing the most likely tree for each word giving 77% accuracy
on the WSJ corpus (for simple POS tagging, this baseline is over 90%). A trigram tagger
recovered supertags with 92% accuracy when trained from 1,000,000 words of the WSJ
corpus (result from [Srinivas 97]). As a second step to parsing, a Lightweight Dependency
Analyser (LDA) is used to link the elementary trees discovered by the supertagger to form

a partial (or possibly complete) parse for the sentence.

4.7.2 Link Grammars
[Lafferty et al. 92]

[Lafferty et al. 92] describe a probabilistic version of Link grammar. Link grammar, intro-
duced in [Sleator and Temperley 91], is similar to both categorial grammars [Wood 93] and
lexicalized TAGS in many ways. The lexicon specifies a left and right disjunct for each word
in a language, a disjunct being an ordered list of left or right complements/adjuncts that
are required by the word (note that adjunction is not handled separately by the formalism,
so a disjunct must list possible adjuncts as well as complements — this is a substantial
difference from categorial grammars or TAG). [Lafferty et al. 92] describe a probabilistic
model based on the top-down parsing algorithm in [Sleator and Temperley 91]: the model
is generative, specifying a distribution over the space of parse/sentence pairs. They give an

algorithm for unsupervised training of the model (similar to the inside-outside algorithm).

121

No evaluation of the model on a parsing task is given.

By taking a closer look at the parameterization of the model we can see that the method
has potential for capturing many of the representational properties in chapter 3, but that
there may be problems with the particular modeling choices made in the paper. The main
parameters in the model are of the form P(W,d,O|L, R,l,r), where W is a word being
generated; L and R are two potential words that could generate W as a dependent; O is an
orientation specifying which of the two words W could attach to (attaching to both words
is a possibility); d is the disjunct for W; and [, r are the potential connection sites for
L and R respectively. [Lafferty et al. 92] decompose this probability into three terms —
P(W|L,R,l,r)P(d|W,l,r)P(O|d,l,r) — implicitly choosing to generate the word W first,
followed by a choice of W’s disjunct, followed finally by a choice of which of L and R to
attach to. We see an immediate problem with this: W is generated before it is known which
of L or R it will attach to. Thus the trigram probability cannot be reduced to a bigram
involving the word that generates W, or cannot be smoothed by back-off to this bigram®.
A more natural decomposition might be P(O|d,l,r)P(W|L,R,l,r,O)P(d|W,l,r). In this
case the parameter P(W|L, R,[,r, O) can be backed off to P(W|L) or P(W|R) depending
on the value of O, so the more predictive of the two bigrams can be used directly.

A second problem concerns the disjunct probability P(d|W,[,r). Disjuncts in link
grammar must list adjuncts as well as complements that will attach to a head-word, as
well as the syntactic role that the word appears in. The original grammar formalism in
[Sleator and Temperley 91] describes methods for concisely representing disjuncts, through
the use of the OR connective for the representation of alternatives, and through the spec-
ification of optional or iterated members of a disjunct. This means that a large number
(possibly an infinite number, given the iteration operator) of disjuncts can be specified
in a single formula. Unfortunately, the parameter P(d|W,,r) must refer to prediction of
a disjunct d that fully specifies the complements and adjuncts required by W: d cannot
be a formula that represents a set of possible disjuncts. This will make the number of

parameters of the form P(d|W,l,r) very large, and will prevent the model from learning

“This is particularly problematic given that the “third”, less relevant, word involved in the trigram may
stand in a more-or-less arbitrary relationship to W in the parse tree, see [Eisner 96] for further explanation.

122

generalizations (such that a particular verb is transitive, in spite of taking a varying num-
ber of adverbial modifiers; or that a particular noun tends to take particular modifiers,

whether it is in subject, object, or some other syntactic position).

4.7.3 Lexicalized PCFGs
[de Marcken 95]

[de Marcken 95] describes experiments and analysis of unsupervised learning of PCFGs.
He makes two very important points. First, he argues for a lexicalized formalism, where
each non-terminal Z has an associated head-word z, and the probability of a rule Z'(z) —
Z(2)Y (y) is decomposed as the product of a rule and dependency probability, P(Z' —
Z Y|Z"\P(z|y,Y, Z). Thus the method includes dependency probabilities, and is similar to
the work described in [Charniak 97], [Goodman 97], and this thesis (although modification
of P(Z' - Z Y|Z') to P(Z' — Z Y|Z',z) would almost certainly lead to an improved
model). He shows that the global maximum of the likelihood function for an artificial
example is linguistically plausible with a lexicalized grammar, while with a simple PCFG
the global maximum is not linguistically plausible. Second, he gives analysis on an example
problem of an artificial corpus. This shows that even in a case where the global maximum
of the likelihood function is a linguistically plausible grammar, the inside-outside algorithm

is very likely to hill-climb to a local maximum that is not linguistically plausible.

4.7.4 Head Automata
[Alshawi 96]

[Alshawi 96] describes lexicalized head automata, a formalism for both parsing and machine
translation. The formalism represents a parse tree through head-modifier relationships:
each head has a sequence of left and right modifier words (w;...wg), (Wgy1...wp), with
associated relations (ri...rg), (rgs1...r). The paper describes a probability model that is
generative, defining a probability distribution over all possible parse trees. Algorithms for
both parsing and generation are given; the paper also discusses how the models can be

used for machine translation, and discusses the use of weights on transitions that are not

123

probabilistic.

[Alshawi 96] describes five parameter types: P(|,w'|w,r), the probability of seeing
the word w' as an r-dependent of word w; P(m,g|r,],w), the probability of starting in
state ¢ of machine m, given that w has just been generated as an r dependent of some
other word; P(<,q;,7|gi—1,m) and P(—,g;,r|gi—1,m), the probabilities of choosing to
generate an r-dependent to the left/right of the head respectively, and to move to state
gi, given that the model is in state ¢;—; of machine m; P(O|q,m), the probability of
stopping, given that the machine is in state g of machine m. P({,w'|w,r) is similar to
the parameter types Pri/Pg; in chapter 7 (see section 7.6.1 for a description of these
parameters). P(<,qi,r|gi—1,m) and P(—,q;,r|q;—1,m) could be made to correspond to
the Pro/Pry parameters, if the pair (¢, m) is used to encode the conditioning variables such
as non-terminals, subcategorization frames, the distance measure, and the head word. The
head-projection and subcategorization probabilities could be encoded in P(m, g|r,), w) —
in this case, P(m,q|r,},w) is a probabilistic choice of the entire X-bar structure, including

subcategorization frames, associated with w.

4.7.5 Stochastic Attribute-Value Grammars
[Brew 95]

[Brew 95] describes a stochastic formulation of Head-Driven Phrase Structure Grammar
(HPSG) [Pollard and Sag 94]. The model assigns probabilities to type-hierarchies, and
thereby to HPSG’s representation of syntactic structure. The paper concentrates on defin-
ing parameters over these feature structures, rather than specifying the precise nature
of the parameters: it is not clear that a model could, or would, include dependency pa-
rameters, for example. The model is essentially specified by drawing a parallel between
the hierarchical structures and a context-free grammar, then using a PCFG. A problem
is noted with re-entrancy, where two values in a feature structure may be constrained to
take the same value, but where the PCFG model loses probability mass to structures with

different values of the feature.

124

[Abney 97]

[Abney 97] looks at assigning probabilities to attribute-value (AV) grammars. He notes
that the method in [Brew 95] leads to a model that does not sum to 1 when summed over
all well-formed structures, due to the re-entrancy problem. [Abney 97] also notes that,
although the model can be normalized so that is sums to 1, in this case the parameter
estimates defined by [Brew 95] are no longer justifiable as maximum-likelihood estimates.
[Abney 97] describes the use of maximum-entropy estimation methods to define a model
over AV grammars. The estimation techniques require an iterative algorithm with Monte-
Carlo sampling: this may be computationally expensive. As [Abney 97] points out in his
conclusion, the estimation method may also be of interest in context-free formalisms, as it
allows parameters to be defined corresponding to arbitrary pieces of sub-structure within

parse trees.

4.8 Previous Work on Parsing the Penn WSJ Treebank

The work described in this section is of very direct relevance to the work in this thesis. In

chapter 8, we give a much more detailed analysis and comparison of the methods.

4.8.1 Formalisms Including Dependency Probabilities
[Eisner 96]

[Eisner 96] describes three models for statistical parsing of dependency formalisms; in
addition [Eisner 96b] gives a fourth model, a more detailed description of the models,
and more up-to-date results. The models vary from conditional probability models, to a
generative model that is similar to model 1 in chapter 7 of this thesis. The best results
for dependency accuracy on the test set (in [Eisner 96b]) are 92.6% accuracy. The model
in chapter 6 was trained and tested on the same data, with an identical result (with
the modest caveat that the chapter 6 parser used machine generated tags for this test,
[Eisner 96b] used hand labeled tags). A more detailed comparison of Eisner’s models to

the models of this work is given in section 8.4.3.

125

[Charniak 97]

[Charniak 97] describes a probability model for a lexicalized PCFG. The probability of a
lexicalized rule is decomposed into the product of two terms: 1) a probability that predicts
the non-lexicalized part of a rule, conditioned on the parent non-terminal and its head-
word; 2) a probability of generating the lexical head of each modifier in the rule, giving
dependency probabilities. Several other refinements are given: conditioning on the non-
terminal above the parent when predicting a rule; the use of automatically derived word-
classes to smooth probabilities; the use of additional unsupervised training of parameter
values. Results on the Penn WSJ treebank of 86.7/86.6% recall/precision are obtained.
A more detailed comparison of Charniak’s model to the models of this work is given in

section 8.4.1.

[Goodman 97]

[Goodman 97] describes the use of probabilistic feature grammars. Each non-terminal in
the grammar is represented as a set of feature-value pairs; the probability P(X — Y Z|X)
of arule X - Y Z is decomposed as incremental prediction of the feature values of Y
and Z. The formalism assumes binary branching rules (without loss of generality: a one-
to-one mapping from n-ary rules to binary-branching rules is given). Experimental results
are given on the Penn WSJ treebank with a non-terminal representation that includes
the non-terminal label, head-word, head POS, distance features, and additional context
in terms of modifier non-terminals generated at earlier stages in the derivation. Results
on the Penn WSJ treebank of 84.8/85.3% recall/precision are given. A more detailed

comparison of Goodman’s model to the models of this work is given in section 8.4.4.
4.8.2 History-Based Models

[Black et al. 92b]

[Black et al. 92b] describe a history-based model for parsing, with results on a computer
manuals domain. This work can be viewed as a progression of the work in [Black et al. 92a].

A hand-crafted grammar is again used in combination with a treebank; the paper describes

126

a method for obtaining a training set of parses in the grammar’s formalism using the
treebank and the grammar. A history-based generative model is then trained with this
converted treebank: the parse tree is modeled as the sequence of decisions in a top-down,
left-most derivation of the tree. Each decision corresponds to the choice of a rule expansion,
followed by selection of non-terminal features on each child of the rule.

A major change from [Black et al. 92a] is in the representation of non-terminals: each
non-terminal has a syntactic category (e.g. NP), a semantic category (e.g. Data), and two
head-words. Head-words are represented as bit-strings, which are derived automatically
using the method in [Brown et al. 1992]. All probabilities are conditioned on features
of the parent and grandparent non-terminal; the rule probability is estimated using a
decision tree, other parameters are estimated using n-gram deleted interpolation methods.
While the exact back-off order is not specified, the model clearly has the potential to
include parameters similar to the model described in [Charniak 97]: i.e. the probability
of expanding a rule given its lexical head, and head-modifier dependency relationships.

Results show a 36.8% relative error reduction from the PCFG model in [Black et al. 92a].

[Jelinek et al. 94]

[Jelinek et al. 94] describe work on the computer manuals domain of [Black et al. 92a,
Black et al. 92b]. In contrast to [Black et al. 92a, Black et al. 92b] the method does not
require a hand-crafted grammar. Instead, a history-based conditional model is trained
directly from a treebank. A syntactic tree is represented as the sequence of decisions in
a bottom-up parse of the tree. The probability of each decision is based on surrounding
context, and is estimated using a decision tree. There are three types of parameters: a
model for POS tagging; a model for extending a node, i.e. building a child-parent arc in
either a left, right or unary fashion; and a model for assigning non-terminal labels. Each
parameter type is estimated using decision trees. Each node in the tree is represented as
its non-terminal label, head-word, and POS tag for the head-word. Words are represented
as bit-strings derived using the clustering method in [Brown et al. 1992]. An additional

refinement of the model is to assume a distribution over possible bottom-up derivations of

127

the tree, the parameters specifying this distribution being estimated using EM training.’
Results show a 29% error reduction over performance of the model in [Black et al. 92a], in
spite of the move to direct learning from a treebank as opposed to the use of a hand-crafted

gramimar.

[Magerman 95]

[Magerman 95] describes the SPATTER parser, a progression of the work in [Jelinek et al. 94].
SPATTER was applied to the computer manuals domain, and to the Penn WSJ treebank.
This paper is crucial to the work in this thesis, as it describes the first result on the WSJ
treebank that is significantly higher than the result for PCFGs, using a parser that condi-
tions strongly on lexical information. Running the parser on section 23 of the treebank®

gave results of 84.0%/84.3% recall/precision at recovering labeled constituents.

[Ratnaparkhi 97]

[Ratnaparkhi 97] describes a model that is also a history-based conditional model, associat-
ing probabilities with decisions made by a parser. The work differs from [Jelinek et al. 94,
Magerman 95] in several significant ways: maximum-entropy models are used for estima-
tion, rather than decision trees; words are represented directly, rather than as bit-strings
(perhaps because of advantages of the maximum-entropy estimation technique); the deriva-
tion order is quite different, with separate stages for POS tagging and chunking:; as a
consequence of the different derivation order, the conditioning features for each decision
are different; the search method uses a beam search which runs in expected linear time, a
rather simpler strategy than that described in [Magerman 95]; the model does not use a
hidden derivation model, instead there is a one-to-one mapping between parse trees and
decision sequences. Results of 87.5/86.3% precision/recall on the WSJ treebank are ob-
tained, a significant improvement over [Magerman 95]. [Ratnaparkhi 97] also gives results

for recovery of the n-best parse trees: an oracle that could make an optimal choice from

This leads to a considerably more complicated model for both training and decoding in comparison
to fixing a simple single derivation model; and results in [Magerman 95, Ratnaparkhi 97], history-based
models without hidden derivations, suggest that this additional complexity may not help accuracy.

®Thanks to David Magerman for allowing us to run these experiments.

128

the top 20 parse trees recovered in this way would score around 93% precision and recall,
suggesting that the investigation of reranking schemes for n-best parses might be a fruitful
line of research.

A more detailed comparison of the models of [Ratnaparkhi 97, Magerman 95] to the

models of this work is given in section 8.4.2.

[Chelba and Jelinek 98]

[Chelba and Jelinek 98] describe a history based model that parses strictly left-to-right,
and assigns a joint probability P(T,S) to Tree-Sentence pairs. The main intention of
the work is to build a language model for speech recognition. The model operates on
binary-branching trees; the Penn WSJ treebank is converted to binary-branching trees
centered around the heads of rules. The model uses both a parsing and a prediction model.
Structure is built up incrementally from left to right. When control is with the parsing
model there are three possible moves: either to join the right-most adjacent two trees with
the left/right tree providing the head-word of the new constituent, or to choose not to
join the structures, thereby passing control to the prediction model. The prediction model
generates a word-tag pair with some probability, conditioned on the two previous head-
words exposed in the parse. Thus the model provides trigram probabilities conditioned on
head-words that may fall outside the three-word window of a usual trigram model. EM
training is used to re-estimate the parameters of the model. The model achieves an 11%

reduction in perplexity over a trigram model trained on the same data.

129

Chapter 5

Prepositional Phrase Attachment

through a Backed-Off Model

The major part of this chapter is joint work with James Brooks, having been originally
published as [Collins and Brooks 95]. It remains largely unchanged and when it differs we
make a note at that point in the text. In the final discussion section we give more recent
analysis, and describe some additional experiments that have implications for the parsing

work in this thesis.

5.1 Introduction

Prepositional phrase attachment is a common cause of structural ambiguity in natural
language. For example take the following sentence:

Pierre Vinken, 61 years old, joined the board as a nonexecutive director.

The PP ‘as a nonexecutive director’ can either attach to the NP ‘the board’ or to the VP

‘joined’, giving two alternative structures. (In this case the VP attachment is correct):

NP-attach: (joined ((the board) (as a nonexecutive director)))

VP-attach: ((joined (the board)) (as a nonexecutive director))

Work by [Ratnaparkhi et al. 94] and[Brill and Resnik 94] has considered corpus-based ap-

proaches to this problem, using a set of examples to train a model which is then used to

130

make attachment decisions on test data. Both papers describe methods which look at the

four head words involved in the attachment: the VP head, the first NP head, the preposi-

tion and the second NP head (in this case joined, board, as and director respectively).
This paper proposes a new statistical method for PP-attachment disambiguation based

on the four head words.

5.2 Background

5.2.1 Training and Test Data

The training and test data were supplied by IBM, being identical to the data that was used
in [Ratnaparkhi et al. 94]. Examples of verb phrases containing a (v np pp) sequence had
been taken from the Wall Street Journal Treebank [Marcus et al. 93]. For each such VP
the head verb, first head noun, preposition and second head noun were extracted, along
with the attachment decision (1 for noun attachment, 0 for verb). For example, the verb

phrase:
((joined (the board)) (as a nonexecutive director))
would give the quintuple:
0 joined board as director

The elements of this quintuple will from here on be referred to as the random variables
A, V, N1, P, and N2. In the above verb phrase A =0, V = joined, N1 = board, P = as,
and N2 = director.

The data consisted of training and test files of 20801 and 3097 quintuples respectively.
In addition, a development set of 4039 quintuples was also supplied. This set was used
during development of the attachment algorithm, ensuring that there was no implicit

training of the method on the test set itself.

5.2.2 QOutline of the Problem

A PP-attachment algorithm must take each quadruple (V = v, N1 =nl, P =p, N2 =n2)

in test data and decide whether the attachment variable A = 0 or 1. The accuracy of the

131

algorithm is then the percentage of attachments it gets ‘correct’ on test data, using the A
values taken from the treebank as the reference set.

The probability of the attachment variable A being 1 or 0 (signifying noun or verb
attachment respectively) is conditional on the values of the words in the quadruple. In

general, a probabilistic algorithm will make an estimate, p, of this probability:
p(A=1V =v,N1l =nl,P =p, N2 =n2) (5.1)
For brevity this estimate will be referred to from here on as:
p(1]v,nl, p,n2) (5.2)
The decision can then be made using the test:
p(1|v,nl,p,n2) > 0.5 (5.3)
If this is true the attachment is made to the noun, if not then it is made to the verb.

5.2.3 Lower and Upper Bounds on Performance

When evaluating an algorithm it is useful to have an idea of the lower and upper bounds
on its performance. Some key results are summarised in the table below. All results in
this section are on the IBM training and test data, with the exception of the two ‘average

human’ results.

Method Percentage Accuracy
Always noun attachment 59.0
Most likely for each preposition 72.2
Average Human (4 head words only) 88.2
Average Human (whole sentence) 93.2

‘Always noun attachment’ means attach to the noun regardless of (v,nl,p,n2). ‘Most
likely for each preposition’ means use the attachment seen most often in training data for
the preposition seen in the test quadruple. The human performance results are taken from

[Ratnaparkhi et al. 94], and are the average performance of 3 treebanking experts on a set

132

of 300 randomly selected test events from the WSJ corpus, first looking at the four head
words alone, then using the whole sentence.

A reasonable lower bound seems to be 72.2% as scored by the ‘Most likely for each
preposition’ method. An approximate upper bound is 88.2%: it seems unreasonable to

expect an algorithm to perform much better than a human.

5.3 Estimation based on Training Data Counts

5.3.1 Notation

We will use the symbol f to denote the number of times a particular tuple is seen in training
data. For example f(1,is,revenue, from,research) is the number of times the quadruple
(is, revenue, from,research) is seen with a noun attachment. Counts of lower order tuples
can also be made: for example f(1, P = from) is the number of times (P = from) is seen
with noun attachment in training data, f(V =is, N2 = research) is the number of times

(V =1is, N2 = research) is seen with either attachment and any value of N1 and P.

5.3.2 Maximum-Likelihood (ML) Estimation

A maximum-likelihood method would use the training data to give the following estimation

for the conditional probability:

f(l,v,nl,p,n2)
f(v,nl,p,n2)

Unfortunately sparse data problems make this estimate useless. A quadruple may appear

]3(1|1),n1,p, n2) = (54)

in test data which has never been seen in training data. ie. f(v,nl,p,n2) = 0. The
above estimate is undefined in this situation, which happens extremely frequently in a
large vocabulary domain such as WSJ. (In this experiment about 95% of those quadruples
appearing in test data had not been seen in training data.)

Even if f(v,nl,p,n2) > 0, it may still be very low, and this may make the above ML
estimate inaccurate. Unsmoothed ML estimates based on low counts are notoriously bad
in similar problems such as n-gram language modeling [Gale and Church 90]. However,
later in this paper it is shown that estimates based on low counts are surprisingly useful

in the PP-attachment problem.

133

5.3.3 Previous Work

[Hindle and Rooth 93] describe one of the first statistical approaches to the prepositional
phrase attachment problem. Over 200,000 (v,nl,p) triples were extracted from 13 million
words of AP news stories. The attachment decisions for these triples were unknown, so
an unsupervised training method was used (section 5.5.2 describes the algorithm in more
detail). Two human judges annotated the attachment decision for 880 test examples, and
the method performed at 80% accuracy on these cases. Note that it is difficult to compare
this result to results on Wall Street Journal, as the two corpora may be quite different.

The Wall Street Journal Treebank [Marcus et al. 93] enabled both [Ratnaparkhi et al. 94]
and [Brill and Resnik 94] to extract a large amount of supervised training material for the
problem. Both of these methods consider the second noun, n2, as well as v, nl and p, with
the hope that this additional information will improve results.

[Brill and Resnik 94] use 12,000 training and 500 test examples. A greedy search is
used to learn a sequence of ‘transformations’ which minimise the error rate on training
data. A transformation is a rule which makes an attachment decision depending on up
to 3 elements of the (v,nl,p,n2) quadruple. (Typical examples would be ‘If P=of then
choose noun attachment’ or ‘If V=buy and P=for choose verb attachment’.) A further
experiment incorporated word-class information from WordNet into the model, by allowing
the transformations to look at classes as well as the words. (An example would be ‘If N2
is in the time semantic class, choose verb attachment’.) The method gave 80.8% accuracy
with words only, 81.8% with words and semantic classes, and they also report an accuracy of
75.8% for the metric of [Hindle and Rooth 93] on this data. (But note our later discussion
in section 5.8.2.) Transformations (using words only) score 81.9%! on the IBM data used
in this paper.

[Ratnaparkhi et al. 94] use the data described in section 5.2.1 of this paper: 20801
training and 3097 test examples from Wall Street Journal. They use a maximum entropy
model which also considers subsets of the quadruple. Each sub-tuple predicts noun or verb
attachment with a weight indicating its strength of prediction: the weights are trained

to maximise the likelihood of training data. For example (P = of) might have a strong

!Personal communication from Brill.

134

weight for noun attachment, while (V' = buy, P = for) would have a strong weight for
verb attachment. [Ratnaparkhi et al. 94] also allow the model to look at class information,
this time the classes were learned automatically from a corpus. Results of 77.7% (words
only) and 81.6% (words and classes) are reported. Crucially they ignore low-count events
in training data by imposing a frequency cut-off which they describe as being “usually 3

to 5”7 in value.

5.4 The Backed-Off Estimate

[Katz 87] describes backed-off n-gram word models for speech recognition. There the task
is to estimate the probability of the next word in a text given the (n-1) preceding words.
The ML estimate of this probability would be:

f(wy, wa....wy)
f(wl, U)Q....U)n_l)

Pwy |wy, wa....wp—1) = (5.5)

But again the denominator f(w,ws....w,—1) will frequently be zero, especially for large
n. The backed-off estimate is a method of combating the sparse data problem. f(z) is
defined as the discounted count for event z, where the Good-Turing method is used for
discounting. The backed-off estimate is then defined recursively as follows?:

If f(wy,wy....wp) > ¢

flwy, wo....wy)
f(wl, U)Q....U)n_l)

ﬁ(wn|w1,w2’wn,1) =

flwa, ws....wy)
f(U)Q, w3....wn_1)

ﬁ(wn|w1,'lU2....’wn,1) =y X

Else if f(ws, wyq....wp) > c3

f(w3,w4----wn)
f(wg, w4....wn_1)

P(wp |wy, wa....wp—1) = a1 X ag X

Else backing-off continues in the same way.

%[Collins and Brooks 95] gave a variation of the formulation in [Katz 87], for example stating the first
constraint as f(wi,wsz....wp—1) > c1 rather than f(wi,ws... wy) > c1

135

The idea here is to use estimates based on lower order n-grams if counts are not high
enough to make an accurate estimate at the current level. The cut off frequencies (cy,
¢3....) are thresholds determining whether to back-off or not at each level: counts lower
than ¢; at stage 7 are deemed to be too low to give an accurate estimate, so in this
case backing-off continues. (ay, @g,....) are normalisation constants which ensure that
conditional probabilities sum to one.

The estimation of p(wy,|wy, ws....w, 1) is analogous to the estimation of p(1|v, nl, p,n2),
and the above method can therefore also be applied to the PP-attachment problem. For
example a simple method for estimation of p(1|v,nl,p,n2) would go from estimates of
p(1lv,nl, p,n2) to p(1llv,nl,p) to p(llv,nl) to p(ljv) to p(1). However a crucial difference
between the two problems is that in the n-gram task the words w; to w, are sequen-
tial, giving a natural order in which backing off takes place: from p(wp|wy,ws....wp—1) to
p(wp|we, w3....wp—1) to p(wy|ws, wy....w,—1) and so on. There is no such sequence in the
PP-attachment problem, and because of this there are four possible triples when backing
off from quadruples ((v,nl,p), (v,p,n2), (nl,p,n2) and (v,nl,n2)) and six possible pairs
when backing off from triples ((v,p), (nl,p), (p,n2), (v,nl), (v,n2) and (nl,n2)).

A key observation in choosing between these tuples is that the preposition is particularly
important to the attachment decision. For this reason only tuples which contained the
preposition were used in backed off estimates: this reduces the problem to a choice between
3 triples and 3 pairs at each respective stage. Section 5.6.2 describes experiments which
show that tuples containing the preposition are much better indicators of attachment.

The following method of combining the counts was found to work best in practice:

f(]‘7v7n17p) + f(17v7p7n2) + f(17n17p7n2)

ﬁtriple(“vanlapanZ) = (56)

and
f(v,p) + f(nl,p) + f(p,n2)

Note that this method effectively gives more weight to tuples with high overall counts.

ﬁpair(”vanlapa ’ﬂ2) = (57)

The method is equivalent to a weighted average of the three estimates, where the weight is

proportional to the count on which the estimate is based. For example, 5.7 can be written

136

as
A f(]‘7,07p) f(17n17p) f(17p7n2)

o) M L) Y) 5:8)
where d = f(v,p) + f(n1,p) + f(p,n2), and
A = f(l;l,p) Mo = f(n;,p) A = f(p;ln2) (5.9)

Another obvious method of combination, a simple average?, gives equal weight to the three
tuples regardless of their total counts and does not perform as well.

The cut-off frequencies must then be chosen. A surprising difference from language
modeling is that a cut-off frequency of 0 is found to be optimum at all stages. This

effectively means however low a count is, still use it rather than backing off a level.

5.4.1 Description of the Algorithm

The algorithm is then as follows:
1. If* f(v,nl,p,n2) >0

f(1,v,n1,p,n2)

2. Else if f(v,nl,p) + f(v,p,n2) + f(nl,p,n2) >0

f(17v7n17p) + f(17v7p7n2) + f(]'7n]‘7p7n2)

p(1|v7n1,p,n2) = f(v,nl,p) —+ f(’l},p, TL2) + f(n]-7p7n2)

3. Else if f(v,p) + f(nl,p) + f(p,n2) >0

f(L,v,p) + f(1,nl,p) + f(1,p,n2)
f(v,p) + f(nl,p) + f(p,n2)

3eg. A simple average for triples would be defined as

p(1]v,nl, p,n2) =

f(,v,nl,p) + f(,v,p,n2) + f(1,n1,p,n2)
f(v,nl,p) f(v,p,n2) f(nl,p,n2)

3

ﬁtTiple(”’U, nl,p, n2) =

“At stages 1 and 2 backing off was also continued if p(1|v,nl,p,n2) = 0.5. ie. the counts were ‘neutral’
with respect to attachment at this stage.

137

4. Else if f(p) >0

p(1l]v,nl, p,n2) =
5. Else p(1|v,nl,p,n2) = 1.0 (default is noun attachment).

The decision is then:

If p(1]v,nl,p,n2) > 0.5 choose noun attachment.

Otherwise choose verb attachment.

Note that this back-off method differs slightly from the method in [Katz 87], in that the
denominator count rather than the numerator is conditioned upon by each If statement,

and the numerator counts are not discounted.

5.5 Results

The figure below shows the results for the method on the 3097 test sentences, also giving

the total count and accuracy at each of the backed-off stages.

Stage Total Number | Number Correct | Percent Correct
Quadruples 148 134 90.5
Triples 764 688 90.1
Doubles 1965 1625 82.7
Singles 216 155 71.8
Defaults 4 4 100.0
Totals 3097 2606 84.1

5.5.1 Results with Morphological Analysis

In an effort to reduce sparse data problems the following processing was run over both test

and training data:
e All 4-digit numbers were replaced with the string ‘YEAR’.

e All other strings of numbers (including those which had commas or decimal points)

were replaced with the token ‘NUM’.

138

The verb and preposition fields were converted entirely to lower case.

In the nl and n2 fields all words starting with a capital letter followed by one or

more lower case letters were replaced with ‘NAME’.

All strings ‘NAME-NAME’ were then replaced by ‘NAME’.

All verbs were reduced to their morphological stem using the morphological analyser

described in [Karp et al. 94].

These modifications are similar to those performed on the corpus used by [Brill and Resnik 94].
The result using this modified corpus was 84.5%, an improvement of 0.4% on the

previous result.

Stage Total Number | Number Correct | Percent Correct
Quadruples 242 224 92.6
Triples 977 858 87.8
Doubles 1739 1433 82.4
Singles 136 99 72.8
Default 3 3 100.0
Totals 3097 2617 84.5

5.5.2 Comparison with Other Work

Results from [Ratnaparkhi et al. 94], [Brill and Resnik 94] and the backed-off method are
shown in the table below®. All results are for the IBM data. These figures should be taken

in the context of the lower and upper bounds of 72.2%-88.2% proposed in section 5.2.3.

Method Percentage Accuracy
[Ratnaparkhi et al. 94] (words only) .7
[Ratnaparkhi et al. 94] (words and classes) 81.6
[Brill and Resnik 94] (words only) 81.9
Backed-off (no processing) 84.1
Backed-off (morphological processing) 84.5

*Results for [Brill and Resnik 94] with words and classes were not available on the IBM data

139

5.6 A Closer Look at Backing-Off

5.6.1 Low Counts are Important

A possible criticism of the backed-off estimate is that it uses low count events without
any smoothing, which has been shown to be a mistake in similar problems such as n-gram
language models. In particular, quadruples and triples seen in test data will frequently be
seen only once or twice in training data.

An experiment was made with all counts less than 5 being put to zero,® effectively
making the algorithm ignore low count events. In [Ratnaparkhi et al. 94] a cut-off ‘between
3 and 5’ is used for all events. The training and test data were both the unprocessed,

original data sets. The results were as follows:

Stage Total Number | Number Correct | Percent Correct
Quaduples 39 38 97.4
Triples 263 243 92.4
Doubles 1849 1574 85.1
Singles 936 666 71.2
Defaults 10 5 50.0
Totals 3097 2526 81.6

The decrease in accuracy from 84.1% to 81.6% is clear evidence for the importance of

low counts.

5.6.2 Tuples with Prepositions are Better

We have excluded tuples which do not contain a preposition from the model. This section
gives results which justify this.

The table below gives accuracies for the sub-tuples at each stage of backing-off. The ac-
curacy figure for a particular tuple is obtained by modifying the algorithm in section 5.4.1 to
use only information from that tuple at the appropriate stage. For example for (v,nl,n2),

stage 2 would be modified to read

Specifically: if for a subset z of the quadruple f(z) < 5, then make f(z) = f(1,z) = f(0,z) = 0.

140

If f(v,nl,n2) >0,
f(1,v,n1,n2)
flv,nl,n2)

All other stages in the algorithm would be unchanged. The accuracy figure is then

p(1jv,nl,p,n2) =

the percentage accuracy on the test cases where the (v,nl,n2) counts were used. The

development set with no morphological processing was used for these tests.

Triples Doubles Singles
Tuple | Accuracy || Tuple | Accuracy || Tuple | Accuracy
nl p n2 90.9 nl p 82.1 p 72.1
v p n2 90.3 VP 80.1 nl 55.7
vnl p 88.2 p n2 75.9 v 52.7
v nl n2 68.4 nl n2 65.4 n2 474
v nl 59.0
v n2 53.4

At each stage there is a sharp difference in accuracy between tuples with and without
a preposition. Moreover, if the 14 tuples in the above table were ranked by accuracy, the

top 7 tuples would be the 7 tuples which contain a preposition.

5.7 Conclusions

The backed-off estimate scores appreciably better than other methods which have been
tested on the Wall Street Journal corpus. The accuracy of 84.5% is close to the human
performance figure of 88% using the 4 head words alone. A particularly surprising result
is the significance of low count events in training data. The algorithm has the additional

advantages of being conceptually simple, and computationally inexpensive to implement.

5.8 Further Discussion

5.8.1 Results with Limited Context

The parsers of chapters 6 and 7 use lexical information in making PP attachment decisions,

but are effectively restricted to conditioning on the contexts (N1, P) and (V, P) and their

141

subsets. To measure the impact on accuracy of this reduced context, we implemented the

following modified algorithm:

L. If f(v,p) + f(nl,p) >0

f(v,p) + f(nl,p)

p(1l]v,nl, p,n2) =

2. Else if f(p) > 0

f(L,p)
f(p)

p(llv,nl,p,n2) =

3. Else p(1l|v,nl,p,n2) = 1.0 (default is noun attachment).

The resulting accuracy was 83.0%. This result is encouraging, in that the drop in accuracy

from 84.1% is not too significant.

5.8.2 Results for Hindle and Rooth’s Method

Although Hindle and Rooth’s method was originally developed for unsupervised training,
we can design a supervised model that has very similar parameters. Importantly, the
parser in chapter 7 also uses very similar parameters in the case of PP attachment. For
this reason, we would like to measure the accuracy of this Hindle and Rooth’s model, and
see how it compares to the PP attachment models in this chapter.

The model can be formulated as follows. It will define a joint probability, P(A,V, N1, P, N2).
The attachment decision is “Noun” if P(A = noun,V, N1, P, N2) > P(A = verb,V,N1, P, N2),

“Verb” otherwise. The joint probability is first re-written using the chain rule:
P(A,V,N1,P,N2) = P(V)P(N1)P(A|V,N1)P(P|A,V,N1)P(N2|P,A,V,N1) (5.10)
Next, we make the following independence assumptions:

P(AlV,N1) = P(A|N1) (5.11)
P(P|A,V,N1) = P(P|A,V)if A = Verb, P(P|A, N1) otherwise (5.12)

P(N2|P,A,V,N1) = P(N2) (5.13)

142

The terms P(V), P(N1) and P(N2) do not involve A, and can therefore be discarded
when making the attachment decision. The final decision is then “Noun” if P(A =
noun|N1)P(P|A = noun,N1) > P(A = verb|N1)P(P|A = verb,V). This model form
is similar to Hindle and Rooth’s. It has similar probabilities of seeing the preposition
given the noun/verb, and P(A = noun|N1) is the equivalent of Hindle and Rooth’s stop
probability.

The probabilities were smoothed by holding a count of 1 out for the backed off estimate,
in each case backing off to ignore either N1 or V. The results for this model on the IBM

test set were 81.3% accuracy.

143

Chapter 6

A Statistical Parser Based on

Bigram Lexical Dependencies

The major part of this chapter was originally published as [Collins 96]. It remains largely
unchanged and when it differs we make a note at that point in the text. In the final
discussion section we give more recent analysis in light of the mathematical results and

representation proposals of chapters 2 and 3.

6.1 Introduction

The previous chapter showed that lexical information is crucial for prepositional phrase
attachment decisions, and it follows that lexical information is also useful when resolving
other cases of ambiguity such as coordination, relative clause modification, noun-noun
compounds, and so on. However, many early approaches to probabilistic parsing (see the
previous work discussion in chapter 4) conditioned probabilities on non-terminal labels
and part of speech tags alone. The SPATTER parser [Magerman 95, Jelinek et al. 94] was
the first probabilistic parser to use lexical information for parsing wide-domain text, and
recovered labeled constituents in Wall Street Journal text with above 84% accuracy — a
dramatic improvement over the 70.6%/74.8% recall/precision figures for a non-lexicalized
probabilistic context-free grammar (a result quoted in [Charniak 97]).

This paper describes a new parser which is much simpler than SPATTER, yet performs

144

at least as well when trained and tested on the same Wall Street Journal data. The method
uses lexical information directly by modeling head-modifier! relations between pairs of
words. In this way it is similar to the previous work described in sections 4.7 and 4.8.1 of

this work.

6.2 The Statistical Model

The aim of a parser is to take a tagged sentence as input (for example Figure 6.1(a)) and
produce a phrase-structure tree as output (Figure 6.1(b)). A statistical approach to this
problem consists of two components. First, the statistical model assigns a probability to
every candidate parse tree for a sentence. Formally, given a sentence S and a tree 7',
the model estimates the conditional probability P(7T'|S). The most likely parse under the
model is then:

Thest = arg max P(T|S) (6.1)

Second, the parser is a method for finding Tjes. This section describes the statistical
model, while section 6.3 describes the parser.

The key to the statistical model is that any tree such as Figure 6.1(b) can be represented
as a set of baseNPs? and a set of dependencies as in Figure 6.1(c). We call the set of
baseNPs B, and the set of dependencies D; Figure 6.1(d) shows B and D for this example.
For the purposes of our model, 7' = (B, D), and:

P(T|S) = P(B,D|S) = P(B|S) x P(D|S, B) (6.2)

S is the sentence with words tagged for part of speech. That is, S =< (wy, t1), (we, t2)...(wy, ty) >.
For POS tagging we use the maximum-entropy tagger described in [Ratnaparkhi 96]. The
tagger performs at around 97% accuracy on Wall Street Journal Text, and is trained on
the first 40,000 sentences of the Penn Treebank [Marcus et al. 93].

Given S and B, the reduced sentence S is defined as the subsequence of S which is

formed by removing punctuation and reducing all baseNPs to their head-word alone. Thus

!By ‘modifier’ we mean the linguistic notion of either an argument or adjunct.
2A baseNP or ‘minimal’ NP is a non-recursive NP, i.e. none of its child constituents are NPs. The term
was first used in [Ramshaw and Marcus 95].

145

John/NNP Smith/NNP, the/DT president/NN of/IN IBM/NNP,
nounced/VBD his/PRP$ resignation/NN yesterday /NN .

S
NP VP
NP NP /]\
/\
A NP PP VBD NP NP
N IN/\NP — |
NNP NNP DT NN | PRP$ NN NN
\ \ \ \ NNP \ \ \
John Smith the president of I1BM announced his resignation yesterday
(c)
NP S VP VBD VP NP
NP NP NP NPNPPP INPPNP \L \L VBD VP NP
v v 1\ I v
[John Smith] [the president] of [IBM] announced [his resignation] [yesterday]

B={ [John Smith] , [the president], [IBM], [hisresignation], [yesterday] }

NP S VP NP NP NP NP NP PP IN PP NP VBD VP NP
! [
D={ Smith announced , Smith president , president of, of IBM , announced resignation
VBD VP NP
announced yesterday }

Figure 6.1: An overview of the representation used by the model. (a) The tagged sentence;
(b) A candidate parse-tree (the correct one); (c) A dependency representation of (b).
Square brackets enclose baseNPs (heads of baseNPs are marked in bold). Arrows show
modifier — head dependencies. Section 6.2.1 describes how arrows are labeled with non-
terminal triples from the parse-tree. Non-head words within baseNPs are excluded from
the dependency structure; (d) B, the set of baseNPs, and D, the set of dependencies, are

extracted from (c).

146

an-

the reduced sentence is an array of word/tag pairs, S =< (wy, 1), (Ws, to)...(Wp, tr) >,

where m < n. For example, for Figure 6.1(a)

Example 1.
S = < (Smith, NNP),{(president, NN),{of, IN),(IBM,NNP),

(announced,V BD), (resignation, NN), (yesterday, NN) >

Sections 6.2.1 to 6.2.4 describe the dependency model. Section 6.2.5 then describes the
baseNP model, which uses bigram tagging techniques similar to [Ramshaw and Marcus 95,

Church 88].

6.2.1 The Mapping from Trees to Sets of Dependencies

The dependency model is limited to relationships between words in reduced sentences
such as Example 1. The mapping from trees to dependency structures is central to the
dependency model. It is defined in two steps:

1. For each constituent P —< C;...C,, > in the parse tree a simple set of rules® iden-
tifies which of the children C} is the ‘head-child’ of P. For example, NN would be identified
as the head-child of NP — <DET JJ JJ NN>, VP would be identified as the head-child
of S — <NP VP>. Head-words propagate up through the tree, each parent receiving
its head-word from its head-child. For example, in S — <NP VP>, S gets its head-word,
announced, from its head-child, the VP.

S(announced)

NP(Smith) VP(announced)
NP(Smith) NP(president)
—
NP(president) PP(of) VBD(announced) NP(resignation) NP(yesterday)
[N [[
IN VYP
NNP NN NN NN
| | N‘NP | |
Smith president of IBM announced resignation yesterday

Figure 6.2: Parse tree for the reduced sentence in Example 1. The head-child of each
constituent is shown in bold. The head-word for each constituent is shown in parentheses.

2. Head-modifier relationships are now extracted from the tree in Figure 6.2. Fig-

ure 6.3 illustrates how each constituent contributes a set of dependency relationships. VBD

3The rules are specified in Appendix A. These rules are also used to find the head-word of baseNPs,
enabling the mapping from S and B to S.

147

is identified as the head-child of VP — <VBD NP NP>. The head-words of the two NPs,
resignation and yesterday, both modify the head-word of the VBD, announced. Depen-
dencies are labeled by the modifier non-terminal, NP in both of these cases, the parent
non-terminal, VP, and finally the head-child non-terminal, VBD. The triple of non-terminals
at the start, middle and end of the arrow specify the nature of the dependency relationship

— <NP,S,VP> represents a subject-verb dependency, <PP,NP,NP> denotes prepositional

phrase modification of an NP, and so on®.

VP(announced)

VBD VP NP

/’\ e VBD VP NP
VveD y]
I I
NN NN
| |

announced resignation yesterday

announced resignation yesterday

Figure 6.3: Each constituent with n children (in this case n = 3) contributes n — 1 depen-
dencies.
Each word in the reduced sentence, with the exception of the sentential head ‘an-

nounced’, modifies exactly one other word. We use the notation®

AF(j) = (hy, Rj) (6.3)

to state that the jth word in the reduced sentence is a modifier to the h;jth word, with
relationship Rjﬁ. AF stands for ‘arrow from’. R; is the triple of labels at the start, middle
and end of the arrow. For example, w; = Smath in this sentence, and ws = announced,
so AF(1) = (5, <NP,S,VP>).

D is now defined as the m-tuple of dependencies: D = {(AF (1), AF(2)...AF(m)}. Note
that the tree T' can be recovered from its associated set of dependencies, D. The linear order
of the words in the sentence, combined with the relation labels on the arrows, describes
how the dependencies combine to form constituency structure. For example, resignation,

announced and Smith are all dependent on announced in figure 6.2, with relationships

“The triple can also be viewed as representing a semantic predicate-argument relationship, with the three
elements being the type of the argument, result and functor respectively. This is particularly apparent
in Categorial Grammar formalisms [Wood 93], which make an explicit link between dependencies and
functional application.

®We preserve the notation from the original publication of this chapter, i.e., [Collins 96]. This differs
from the notation in chapter 3 of this thesis, which would write the dependency as (w; — wp;, R;).

®For the head-word of the entire sentence h; = 0, with Rj=<Label of the root of the parse tree >. So
in this case, AF(5) = (0,< S >).

148

(NP, VP, VBD), (NP, VP, VBD), and (NP, S, VP) respectively. Only one structure over
the order Smith announced resignation yesterday could have produced these dependencies.
The model assumes that the dependencies are independent, so that:

P(D|S,B) = ﬁ P(AF(5)|S,B) (6.4)
j=1

6.2.2 Calculating Dependency Probabilities

This section describes the way P(AF(j)|S, B) is estimated. The same sentence is very
unlikely to appear both in training and test data, so we need to back-off from the entire
sentence context. We believe that lexical information is crucial to attachment decisions,
80 it is natural to condition on the words and tags. Let V be the vocabulary of all words
seen in training data, 7 be the set of all part-of-speech tags, and TRAZN be the training
set, a set of reduced sentences. We define the following functions:

e C({a,b), (c,d)) for a,c € V, and b,d € T is the number of times (a,b) and (c,d)

are seen in the same reduced sentence in training data.” Formally,

C(<a7b>7 (C,d)) =
S A (81K = (ab), S[1] = (e, d)) (65)

S e TRAIN
k,=1.|S|, I£k
where h(z) is an indicator function that is 1 if x is true, 0 if z is false.

e C (R, (a,b), (c,d)) is the number of times (a,b) and (c,d) are seen in the same

reduced sentence in training data, and (a,b) modifies (c,d) with relationship R. Formally,

C(R7 <a7b>7 <C,d>) =
Y WSk = {a,b), S[] = (¢,d), AF(k) = (I, R))

5 ¢ TRAIN
ki=1..|3], I£k

(6.6)

e F'(R|(a,b), (c,d)) is the probability that (a,b) modifies (c,d) with relationship R,

given that (a,b) and (c,d) appear in the same reduced sentence. The maximum-likelihood

"Note that we count multiple co-occurrences in a single sentence, e.g. if S = (< a,b >, < ¢,d >, < ¢,d >)
then C(< a,b >, < ¢,d>) =C(< ¢,d >, < a,b>) =2.

149

estimate of F'(R|(a,b), (c,d)) is:

F(R|(a,b), (c,d)) = Cg&;ab’>b> ’<c<c’>d ;) (6.7)
We can now make the following approximation:
P(AF(j) = (hj, Rj) | S, B) =
F(R; | (w;,t5) , (@n,,tn,)) (6.8)

Zk:l..m,k;ﬁj,pep F(p | (11_)]', E]>) (wka fk))
where P is the set of all triples of non-terminals. The denominator is a normalising factor

which ensures that

Y P(AF(j) = (k,p) | 8,B) =1
k=1..m,k#j,peP

From (6.4) and (6.8):

P(D|S, B) ~ (6.9)
ﬁ F(R]|<w]7t_]>7 (whwt_hj>)
j=1 Zk:l..m,k;ﬁj,pePF(p| (ij f])) <wk7 t_k>)

The denominator of (6.9) is constant, so maximising P(D|S, B) over D for fixed S, B is
equivalent to maximising the product of the numerators, N'(D|S, B). (This considerably
simplifies the parsing process):
KO ~ - -
N(DIS,B) = [] F(RB; | (wj, 1), (wn;tn,)) (6.10)
j=1

6.2.3 The Distance Measure

An estimate based on the identities of the two tokens alone is problematic. Additional
context, in particular the relative order of the two words and the distance between them,
will also strongly influence the likelihood of one word modifying the other. For exam-
ple consider the relationship between ‘sales’ and the three tokens of ‘of” in the following

sentence

Example 2. Shaw, based in Dalton, Ga., has annual sales of about $ 1.18 billion, and has
economies of scale and lower raw-material costs that are expected to boost the profitability

of Armstrong ’s brands, sold under the Armstrong and Evans-Black names .

150

In this sentence ‘sales’ and ‘of’ co-occur three times. The parse tree in training data
indicates a relationship in only one of these cases, so this sentence would contribute an
estimate of % that the two words are related. This seems unreasonably low given that
‘sales of’ is a strong collocation. The latter two instances of ‘of’ are so distant from ‘sales’
that it is unlikely that there will be a dependency.

This suggests that distance is a crucial variable when deciding whether two words
are related. It is included in the model by defining an extra ‘distance’ variable, A, and
extending C, F and F' to include this variable. For example, C ({a,b), (c,d),A) is the
number of times (a,b) and (c,d) appear in the same sentence at a distance A apart.

(6.11) is then maximised instead of (6.10):

m
D|SB H R | w]7t3> (whjafhj>7Aj,hj) (611)

A simple example of A; ;. would be A; . = h; — j. However, other features of a sentence,
such as punctuation, are also useful when deciding if two words are related. We have
developed a heuristic ‘distance’ measure which takes several such features into account.
The current distance measure Ajp; is the combination of 6 features, or questions (we
motivate the choice of these questions qualitatively — section 6.4 gives quantitative results
showing their merit):

Question 1 Does the h;th word precede or follow the jth word? English is a language
with strong word order, so the order of the two words in surface text will clearly affect
their dependency statistics.

Question 2 Are the h;th word and the jth word adjacent? English is largely right-
branching and head-initial, which leads to a large proportion of dependencies being between
adjacent words ®. Table 6.1 shows just how local most dependencies are.

Question 3 Is there a verb between the h;th word and the jth word? Conditioning
on the exact distance between two words by making A; ;. = h; — j leads to severe sparse
data problems. But Table 6.1 shows the need to make finer distance distinctions than
just whether two words are adjacent. Consider the prepositions ‘to’, ‘in’ and ‘of’ in the

following sentence:

8For example in ‘(John (likes (to (go (to (University (of Pennsylvania)))))))’ all dependencies are between
adjacent words.

151

Distance 1 <2 <5 <10
Percentage 74.2 86.3 95.6 99.0

Table 6.1: Percentage of dependencies vs. distance between the head words involved.
These figures count baseNPs as a single word, and are taken from WSJ training data.

Number of verbs 0 <=1 <=2
Percentage 941 98.1 99.3

Table 6.2: Percentage of dependencies vs. number of verbs between the head words in-
volved.

Example 3. 0il stocks escaped the brunt of Friday ’s selling and several were able to
post gains , including Chevron , which rose 5/8 to 66 3/8 in Big Board composite trading

of 2.4 million shares .

The prepositions’ main candidates for attachment would appear to be the previous
verb, ‘rose’, and the baseNP heads between each preposition and this verb. They are less
likely to modify a more distant verb such as ‘escaped’. Question 3 allows the parser to
prefer modification of the most recent verb — effectively another, weaker preference for
right-branching structures. Table 6.2 shows that 94% of dependencies do not cross a verb,
giving empirical evidence that question 3 is useful.

Questions 4, 5 and 6

e Are there 0, 1, 2, or more than 2 ‘commas’ between the h;th word and the jth word?

(3%

(All symbols tagged as a *,” or ‘:’ are considered to be ‘commas’).

e Is there a ‘comma’ immediately following the first of the h;th word and the jth word?

e Is there a ‘comma’ immediately preceding the second of the A th word and the jth

word?

People find that punctuation is extremely useful for identifying phrase structure, and
the parser described here also relies on it heavily. Commas are not considered to be words
or modifiers in the dependency model — but they do give strong indications about the parse

structure. Questions 4, 5 and 6 allow the parser to use this information.

152

6.2.4 Sparse Data

The maximum likelihood estimator in (6.7) is likely to be plagued by sparse data problems

— C({(wj, t;) , (Wn;,tn,;)Ajn,;) may be too low to give a reliable estimate, or worse still it

may be zero leaving the estimate undefined. We use a backing-off strategy (similar to the

method in Chapter 5) to smooth these probabilities.

There are four estimates, F1, Fo, F3 and Ey, based respectively on: 1) both words and

both tags;

tags alone.
E = Z_i

where?
n = C
o = C
b3 = C
by = C
m = C
2 = C
ny = C
m = C

2) w; and the two POS tags; 3) wy, and the two POS tags; 4) the two POS

By=% E=0 B =1 (6.12)
(W, t5) s (Wnystn;) > Djn,;)

(Wi, t5) 5 (tn,) > Djn;)

(), (@n;sthy;), Ajiny)

() s (Eny) s Ajiny)

Rj, (wj, ;) (Wny,th;), Ajn;)

Ry, (wj, 45}, (), Ajny)

Rj, (tj), (Dn;,th;) s Ajn;)

Ry, (t;) (thy)» Ajon;) (6.13)

Estimates 2 and 3 compete — for a given pair of words in test data both estimates

may exist and they are equally ‘specific’ to the test case example.

Chapter 5 suggests

the following way of combining them, which favours the estimate appearing more often in

training data:

9

)= CU;,), (@, En;), Ajny)
zeV
ZZC ((z,t;), y,th) Ajp)
zeV yeV

where V is the set of all words seen in training data; the other definitions of C' follow similarly.

153

_ Mt
09 + 03

Eos (6.14)

This gives three estimates: FE;, Es3 and Ey, a similar situation to trigram language
modeling for speech recognition [Jelinek 90], where there are trigram, bigram and unigram
estimates. [Jelinek 90] describes a deleted interpolation method, which combines these

estimates to give a ‘smooth’ estimate, and the model uses a variation of this idea:

If F; exists, i.e. 01 >0

F(Rj | (ujjvt_j% <whj7t_hj> 7Aj:hj) =

A X B+ (1 —)\1) X Fog (615)

Else If F»3 exists, i.e. do + d3 >0

F(Rj | (ujjvt_j% <whj7t_hj> 7Aj:hj) =

Ao X Fog + (1 —)\2) X Fy (616)
Else
F(RJ | (U_)]’ EJ>) (whjaihj> 7Aj,hj) = E4 (617)

[Jelinek 90] describes how to find A values in (6.15) and (6.16) which maximise the

likelihood of held-out data. We have taken a simpler approach, namely:

01
A= 0L +1
0o + 03
Ay = ————— 6.18
2 Sy + 03 + 1 (6.18)

These A values have the desired property of increasing as the denominator of the more
‘specific’ estimator increases. We think that a proper implementation of deleted interpola-
tion is likely to improve results, although basing estimates on co-occurrence counts alone

has the advantage of reduced training times.

154

6.2.5 The BaseNP Model

The overall model would be simpler if we could do without the baseNP model and frame
everything in terms of dependencies. However, the baseNP model is needed for two rea-
sons. First, while adjacency between words is a good indicator of whether there is some
relationship between them, this indicator is made substantially stronger if baseNPs are re-
duced to a single word. Second, it means that words internal to baseNPs are not included
in the co-occurrence counts in training data. Otherwise, in a phrase like ‘The Securities
and Exchange Commission closed yesterday’, pre-modifying nouns like ‘Securities’ and
‘Exchange’ would be included in co-occurrence counts, when in practice there is no way
that they can modify words outside their baseNP.

The baseNP model can be viewed as tagging the gaps between words with S(tart),
C(ontinue), E(nd), B(etween) or N (ull) symbols, respectively meaning that the gap is at
the start of a BaseN P, continues a BaseN P, is at the end of a BaseN P, is between two
adjacent baseN Ps, or is between two words which are both not in Base N Ps. We call the

gap before the ith word G; (a sentence with n words has n — 1 gaps). For example,

[John Smith | [the president | of [IBM | has announced [his resignation | [yesterday | =

John C Smith B the C president E of S IBM E has N announced S his C resignation B
yesterday

The baseNP model considers the words directly to the left and right of each gap, and
whether there is a comma between the two words (we write ¢; = 1 if there is a comma,
¢; = 0 otherwise). Probability estimates are based on counts of consecutive pairs of words
in unreduced training data sentences, where baseNP boundaries define whether gaps fall
into the S, C', E, B or N categories. The probability of a baseNP sequence in an unreduced
sentence S is then:

II P(Gy | wizi, ticy, wi ti, ¢;) (6.19)

1=2...n

The estimation method is analogous to that described in the sparse data section of this
paper. The method is similar to that described in [Ramshaw and Marcus 95, Church 88],

where baseNP detection is also framed as a tagging problem.

155

6.2.6 Summary of the Model
The probability of a parse tree T', given a sentence .S, is:
P(T|S) = P(B,D|S) = P(B|S) x P(D|S, B)

The denominator in Equation (6.9) is not actually constant for different baseNP se-
quences, but we make this approximation for the sake of efficiency and simplicity. In
practice this is a good approximation because most baseNP boundaries are very well de-
fined, so parses which have high enough P(B|S) to be among the highest scoring parses
for a sentence tend to have identical or very similar baseNPs. Parses are ranked by the
following quantity!V:

P(B|S) x N(D|S, B) (6.20)

Equations (6.19) and (6.11) define P(B|S) and N'(D|S, B). The parser finds the tree which

maximises (6.20) subject to the hard constraint that dependencies cannot cross.

6.2.7 Some Further Improvements to the Model

This section describes two modifications which improve the model’s performance.

¢ In addition to conditioning on whether dependencies cross commas, a single constraint
concerning punctuation is introduced. If for any constituent Z in the chart Z — <. .X Y..>
two of its children X and Y are separated by a comma, then the last word in Y must be
directly followed by a comma, or must be the last word in the sentence. In training data
96% of commas follow this rule. The rule also has the benefit of improving efficiency by
reducing the number of constituents in the chart.

e The model we have described thus far takes the single best sequence of tags from the
tagger, and it is clear that there is potential for better integration of the tagger and parser.
We have tried two modifications. First, the current estimation methods treat occurrences
of the same word with different POS tags as effectively distinct types. Tags can be ignored
when lexical information is available by defining

C(a,c) = Z C ({a,b), (c,d)) (6.21)

b,deT

101 fact we also model the set of unary productions, U, in the tree, which are of the form P —< C; >.
This introduces an additional term, P(U|B, S), into (6.20).

156

where 7 is the set of all tags. Hence C (a, ¢) is the number of times that the words ¢ and ¢
occur in the same sentence, ignoring their tags. The other definitions in (6.13) are similarly
redefined, with POS tags only being used when backing off from lexical information. This
makes the parser less sensitive to tagging errors.

Second, for each word w; the tagger can provide the distribution of tag probabilities
P(t;]S) (given the previous two words are tagged as in the best overall sequence of tags)
rather than just the first best tag. The score for a parse in equation (6.20) then has an
additional term, [];, P(¢;|S), the product of probabilities of the tags which it contains.

Ideally we would like to integrate POS tagging into the parsing model rather than

treating it as a separate stage. This is an area for future research.

MODEL < 40 Words (2245 sentences)
LR | LP |[CBs|0CBs|<2CBs
) 84.9% | 84.9% | 1.2 | 57.2% | 80.8%
2) 85.4% | 85.5% | 1.21 | 58.4% | 82.4%
(3) 85.5% | 85.7% | 1.19 | 59.5% | 82.6%
(4) 85.8% | 86.3% | 1.14 | 59.9% | 83.6%
SPATTER || 84.6% | 84.9% | 1.26 | 56.6% | 81.4%

MODEL < 100 Words (2416 sentences)
LR | LP |[CBs|0CBs | <2CBs

1) 84.3% | 84.3% | 1.63 | 54.7% | 77.8%
(2) 84.8% | 84.8% | 1.41 | 55.9% | 79.4%
(3) 85.0% | 85.1% | 1.39 | 56.8% | 79.6%
(4) 85.3% | 85.7% | 1.32 | 57.2% | 80.8%
SPATTER || 84.0% | 84.3% | 1.46 | 54.0% | 78.8%

Table 6.3: Results on Section 23 of the WSJ Treebank. (1) is the basic model; (2) is the
basic model with the punctuation rule described in section 6.2.7: (3) is model (2) with
POS tags ignored when lexical information is present; (4) is model (3) with probability
distributions from the POS tagger. LR /LP = labeled recall/precision. CBs is the average
number of crossing brackets per sentence. 0 CBs, < 2 CBs are the percentage of sentences
with 0 or < 2 crossing brackets respectively.

157

VP

T

VBD NP e VBD NP
| T~ | T~
announced hisresignation announced hisresignation
Score=S1 Score=S2 Score=S1* S2*

P(Gap=S | announced, his) *
P(<np,vp,vbd> | resignation, announced)

Figure 6.4: Diagram showing how two constituents join to form a new constituent. Each
operation gives two new probability terms: one for the baseNP gap tag between the two
constituents, and the other for the dependency between the head words of the two con-
stituents.

6.3 The Parsing Algorithm

The parsing algorithm is a simple bottom-up chart parser. There is no grammar as such,
although in practice any dependency with a triple of non-terminals which has not been
seen in training data will get zero probability. Thus the parser searches through the space
of all trees with non-terminal triples seen in training data. Probabilities of baseNPs in the
chart are calculated using (6.19), while probabilities for other constituents are derived from
the dependencies and baseNPs that they contain. A dynamic programming algorithm is
used: if two proposed constituents span the same set of words, have the same label, head,
and distance from the head to the left and right end of the constituent, then the lower
probability constituent can be safely discarded. Figure 6.4 shows how constituents in the

chart combine in a bottom-up manner.

6.4 Results

The parser was trained on sections 02 - 21 of the Wall Street Journal portion of the Penn
Treebank [Marcus et al. 93] (approximately 40,000 sentences), and tested on section 23
(2,416 sentences). For comparison SPATTER [Magerman 95, Jelinek et al. 94] was also
tested on section 23. We use the PARSEVAL measures [Black et al. 91] to compare per-

formance:

number of correct constituents in proposed parse
number of constituents in proposed parse

number of correct constituents in proposed parse

number of constituents in treebank parse

Labeled Precision =

Labeled Recall =

158

Distance Lexical LR LP CBs
Measure | Information

Yes Yes 85.0% | 85.1% | 1.39
Yes No 76.1% | 76.6% | 2.26
No Yes 80.9% | 83.6% | 1.51

Table 6.4: The contribution of various components of the model. The results are for all
sentences of < 100 words in section 23 using model (3). For ‘no lexical information’ all
estimates are based on POS tags alone. For ‘no distance measure’ the distance measure is
Question 1 alone (i.e. whether w; precedes or follows wy,,).

Crossing Brackets = number of constituents which violate constituent boundaries with

a constituent in the treebank parse.

For a constituent to be ‘correct’ it must span the same set of words (ignoring punctu-
ation, i.e. all tokens tagged as commas, colons or quotes) and have the same label'! as a
constituent in the treebank parse. Four configurations of the parser were tested: (1) The
basic model; (2) The basic model with the punctuation rule described in section 6.2.7;
(3) Model (2) with tags ignored when lexical information is present, as described in 6.2.7;
and (4) Model (3) also using the full probability distributions for POS tags. We should
emphasize that test data outside of section 23 was used for all development of the model,
avoiding the danger of implicit training on section 23. Table 6.3 shows the results of the
tests. Table 6.4 shows results which indicate how different parts of the system contribute

to performance.

6.4.1 Performance Issues

All tests were made on a Sun SPARCServer 1000E, using 100% of a 60Mhz SuperSPARC
processor. The parser uses around 180 megabytes of memory, and training on 40,000
sentences (essentially extracting the co-occurrence counts from the corpus) takes under 15
minutes. Loading the hash table of bigram counts into memory takes approximately 8
minutes.

Two strategies are employed to improve parsing efficiency. First, a constant probability

HSPATTER collapses ADVP and PRT to the same label, for comparison we also removed this distinction
when calculating scores.

159

threshold is used while building the chart — any constituents with lower probability than
this threshold are discarded. If a parse is found, it must be the highest ranked parse by
the model (as all constituents discarded have lower probabilities than this parse and could
not, therefore, be part of a higher probability parse). If no parse is found, the threshold is
lowered and parsing is attempted again. The process continues until a parse is found.
Second, a beam search strategy is used. For each span of words in the sentence the
probability, Py, of the highest probability constituent is recorded. All other constituents
spanning the same words must have probability greater than % for some constant beam
size B — constituents which fall out of this beam are discarded. The method risks intro-
ducing search-errors, but in practice efficiency can be greatly improved with virtually no

loss of accuracy. Table 6.5 shows the trade-off between speed and accuracy as the beam is

narrowed.

Beam Speed LR LP CBs
Size [| Sentences/minute
1000 118 84.9% | 85.1% | 1.39
150 166 84.8% | 85.1% | 1.38
20 217 84.7% | 85.0% | 1.40
3 261 84.1% | 84.5% | 1.44
1.5 283 83.7% | 84.1% | 1.48
1.2 289 83.5% | 83.9% | 1.50

Table 6.5: The trade-off between speed and accuracy as the beam-size is varied. Model
(3) was used for this test on all sentences < 100 words in section 23.

6.5 Further Discussion

6.5.1 Representational Issues

If we examine this chapter’s model in the light of the representation proposals of chapter
3, a number of points become clear:

e The model contains all of the representation proposals, with the exception of subcat-

egorization frames. (Unfortunately, the model structure as it stands does not readily

allow the addition of subcategorization.)

160

e Fortunately, as argued in section 3.3.7, the distance variable gives a close approxima-
tion to subcategorization (this almost certainly saves the model). Unfortunately, the
distance measure is the second one described in section 3.3.7, and therefore breaks
down — particularly as a model of subcategorization — in some cases.

e The model is limited to conditioning on properties of the surface string alone, rather
than on any previously built structure. This is a quite severe limitation (and precludes
the incorporation of subcategorization and wh-movement, two refinements in the next

chapter’s model).

6.5.2 Mathematical Issues

There are also a few mathematical problems with the model:

e The normalization factor in equation 6.8 means that the estimate cannot be justified as
maximume-likelihood estimation; see section 2.3.3 for more discussion of this problem.
Furthermore, even with this normalization factor the model is still deficient, due to
structures with crossing dependencies receiving some probability.

e The model has no principled way of dealing with unary rules, currently a probability
P(Rule | word, tag)'? is multiplied into the parse score for each unary rule, but this

is rather ad-hoc.

6.5.3 Summary

In summary, this chapter’s model includes most of the representation proposals in chapter
3, and this is its strength. Its main weaknesses are some mathematical problems, and a
model structure that prevents the representation of subcategorization, wh-movement, or a

“correct” distance measure.

12The probability, given that a particular (word,tag) pair is seen in a sentence, that a unary rule Rule is
seen with (word,tag) as a head somewhere in the parse tree.

161

Chapter 7

Three Generative, Lexicalized

Models for Statistical Parsing
7.1 Introduction

The problems with the previous chapter’s model, described in section 6.5, lead us to a new
approach to the parsing problem. The models in this chapter define a joint probability
P(T,S) over Tree-Sentence pairs. A history-based model is used: a parse tree is repre-
sented as a sequence of decisions, the decisions being made in a head-centered, top-down
derivation of the parse tree. Representing a parse-tree in this way allows independence
assumptions that lead to parameters conditioned on lexical heads: head-projection, sub-
categorization, complement/adjunct placement, dependency, distance, and wh-movement
(gap propagation) parameters.

We first describe three parsing models based on this approach, giving results on the
Penn WSJ treebank. We then give a detailed breakdown of the results, in terms of accuracy
on different kinds of constituents and attachment ambiguities — the intention being to get
a better idea of the parser’s strengths and weaknesses. The next chapter gives a much
fuller discussion of the modeling choices made, their influence on accuracy, and also gives
comparisons to related work.

The three new models are:

e In Model 1 we show how to extend Probabilistic Context Free Grammars (PCFGs)

to lexicalized grammars in a way that results in a quite similar model to that described

162

in Chapter 6. Most importantly, it again has parameters corresponding to dependen-
cies between pairs of head-words. We also show how to incorporate the “distance”
measure into these models, by generalizing the model to a history-based approach.
The advantages of the new model over the work of the previous chapter are:

— The model is not deficient (i.e., > P(T,S) = 1); Unary rules are handled in a
quite natural way by the model.

— The distance measure is slightly different, and is improved. For example, the
adjacency variable now corresponds directly to right-branching structures.

— The model shows an accuracy improvement over the models in Chapter 6 of
1.5%/1.9% recall/precision. The later models (2 and 3) show an overall improve-
ment of 2.2%/2.4% recall/precision.

— The models in Chapter 6 were constrained to conditioning on features of the surface
string alone, whereas the models in this chapter can potentially condition on any
(previously generated) structure: we effectively make use of this in models 2 and
3.

— Part-of-speech tagging is naturally incorporated into the model.

— The model defines a joint probability measure P(T,S), and can therefore be used
as a language model for applications such as speech recognition or machine trans-
lation. It also means that it can be trained in an unsupervised manner using
the EM algorithm [Dempster, Laird and Rubin 77|, unlike models that only de-
fine conditional probabilities P(T" | S).

e In Model 2, we extend the parser to make the complement/adjunct distinction, which
will be important for most applications using the output from the parser (for example,
distinguishing “IBM” as a complement, from “yesterday”, a temporal adjunct, in
“yesterday IBM bought Lotus”).

Model 2 is also extended to have parameters corresponding directly to probability dis-
tributions over subcategorization frames for head-words; this leads to an improvement
in accuracy.

e In Model 3 we give a probabilistic treatment of wh-movement, which is derived from

the analysis in Generalized Phrase Structure Grammar [Gazdar et al. 95]. The output

163

of the parser is now enhanced to show trace co-indexations in wh-movement cases.
The parameters in this model are interesting in that they correspond directly to the
probability of propagating GPSG-style slash features through parse trees, potentially

allowing the model to learn island constraints.

In summary, the work in this chapter makes two advances over previous models. First,
Model 1 performs significantly better than the model in Chapter 6, and Models 2 and 3
give further improvements — our final results are 88.3/88.0% constituent precision/recall,
an average improvement of 2.3% over results in Chapter 6. Second, the parsers in Chap-
ter 6 and [Charniak 97, Ratnaparkhi 97, Goodman 97, Magerman 95, Jelinek et al. 94]
produce trees without information about wh-movement or subcategorization. Most NLP
applications will need this information to extract predicate-argument structure from parse

trees.

7.1.1 Probabilistic Context-Free Grammars

Probabilistic context-free grammars are the starting point for the models in this chapter.
For this reason we briefly recap the theory behind non-lexicalized PCFGs, before moving
to the lexicalized case. (See chapter 2 for a full discussion of PCFG models.)

In general, a statistical parsing model defines the conditional probability, P(T"| S), for
each candidate parse tree T for a sentence S. The parser itself is an algorithm that searches
for the tree, Tpess, that maximises P(T | S). A generative model uses the observation that
maximising P (T, S) is equivalent to maximising P(T | S): *

P(T,S)

Thest = arg max P(T|S)=arg max PE)

= arg mj@xP(T, S) (7.1)

P(T,S) is then defined by attaching probabilities to a top-down derivation of the tree.
Each context-free rule is of the format LHS — RHS (LHS stands for “Left hand side”,
RHS stands for “Right hand side”). In a PCFG, for a tree derived by n applications of
context-free rules LHS; —» RHS;, 1 <i <n,

P(T,S)= [[P(RHS;|LHS)) (7.2)

i=1..n

P(T,S)
P(S)

1P (9) is constant, hence maximising is equivalent to maximising P(T’, S).

164

Internal rules Lexical rules
TOP -> S JJ -> Last
S -> NP NP VP | NN -> week
TOP NP -> JJ NN NNP -> 1IBM
| NP -> NNP VBD -> bought
S VP -> VBDNP |NNP -> Lotus
/’\ NP -> NNP

NP NP VP

P | P
JJ NN NNP VBD NP

| | | |
Last week IBM bought NNP

Lotus

Figure 7.1: A non-lexicalized parse tree, and a list of the rules it contains.

The rules are either internal to the tree, where LH S is a non-terminal and RH S is a string
of one or more non-terminals; or lexical, where LH S is a part-of-speech tag and RHS is
a word. See figure 7.1 for an example.

A central problem in PCFGs is to define the conditional probability P(RHS | LHS)
for each rule LHS — RHS in the grammar. A simple way to do this is to take counts

from a treebank and then to use the maximum likelihood estimate

Count(LHS — RHS)
Count(LHS)

P(RHS | LHS) = (7.3)

7.1.2 Lexicalized PCFGs

A PCFG can be lexicalized? by associating a word w and a part-of-speech (POS) tag t
with each non-terminal X in the tree. See figure 7.2 for an example tree.

The PCFG model can be applied to these lexicalized rules and trees in exactly the
same way as before. Whereas before the non-terminals were simple, for example “S”
or “NP”, they are now extended to include a word and part-of-speech tag, for example
“S(bought,VBD)” or “NP(IBM,NNP)”. Thus we write a non-terminal as X (x), where
z = (w,t), and X is a constituent label. Formally, nothing has changed, we have just

vastly increased the number of non-terminals in the grammar (by up to a factor of |V|x|T],

2We find lexical heads in Penn treebank data using the rules described in Appendix A.

165

TOP

S(bought)
NP (week) NP(IBM) VP (bought)
/\ |
J|J N|N N1|VP VBD NP(Lotus)
| |
Lastweel IBM hought ~ NNP
|
Lotus
TOP -> S(bought)
S(bought) -> NP (week) NP (IBM) VP (bought)
NP (week) -> JJ(Last) NN (week)
NP (IBM) -> NNP(IBM)
VP(bought) -> VBD(bought) NP(Lotus)
NP (Lotus) -> NNP(Lotus)

Figure 7.2: A lexicalized parse tree, and a list of the rules it contains. For brevity we omit
the POS tag associated with each word.

where |V| is the number of words in the vocabulary, and |7 is the number of part of speech
tags).

While nothing has changed from a formal point of view, the practical consequences
of expanding the number of non-terminals quickly become apparent when attempting to
define a method for parameter estimation. The simplest solution would be to use the
maximume-likelihood estimate as in equation 7.3, for example estimating the probability of

S(bought) -> NP(week) NP(IBM) VP(bought) as

P(NP(week) NP(IBM) VP(bought) | S(bought)) =
Count(S (bought) — NP(week) NP(IBM) VP (bought))
Count(S(bought))

(7.4)

But the addition of lexical items makes the statistics for this estimate very sparse: the
count for the denominator is likely to be relatively low, and the number of outcomes
(possible lexicalized RH Ss) is huge, meaning that the numerator is very likely to be zero.
Predicting the whole lexicalized rule in one go is too big a step.

One way to overcome these sparse data problems is to break down the generation of

166

the RHS of each rule into a sequence of smaller steps, such that:

1. The steps are small enough for the parameter estimation problem to be tractable (pro-
viding that smoothing techniques are used to mitigate remaining sparse data prob-
lems).

2. The independence assumptions made are linguistically plausible. Model 1 uses a de-
composition where parameters corresponding to lexical dependencies are a natural
result, and also incorporates a preference for right-branching structures through con-
ditioning on “distance”; Model 2 extends the decomposition to include a step where
subcategorization frames are chosen probabilistically; Model 3 handles wh-movement
by adding parameters corresponding to slash categories being passed from the parent

of the rule to one of its children, or being discharged as a trace.

167

7.2 Model 1

7.2.1 The Basic Model

This section describes how the generation of the RH S of rule is broken down into a sequence
of smaller steps in model 1. The first thing to note is that each rule in a lexicalized PCFG
has the form?:

P(h) = Ly (In)er Ly (1) H () Ry (1) oo Ry (7m) (7.5)

H is the head-child of the phrase, which inherits the head-word A from its parent P.
Ly...L, and R;...R,, are left and right modifiers of H. Either n or m may be zero,
and n = m = 0 for unary rules. Figure 7.2 shows a tree which will be used as an
example throughout this chapter. We will extend the left and right sequences to include a
terminating STOP symbol, allowing a Markov process to model the left and right sequences.
Thus Lyp4+1 = Rpy41 = STOP. (See section 2.4 for a discussion of the use of Markov models
for probabilities over sequences.)

For example, in S(bought ,VBD) — NP(week,NN) NP(IBM,NNP) VP(bought,VBD):

H=vpP Ly = NP Ly = NP
L3 = STOP Ry = STOP h = (bought, VBD)

I} = (IBM, NNP) [y = (week, NN)

The probability of a rule can be rewritten (exactly) using the chain rule of probabilities:

P(Lngr(lns1)-- L (L) H(B) Ry (r1).. Ring1 (Tme) | P(R)) =
Pr(H | P(h)) X

II PuLi() | Li(ly)...Li—y (lim1), P(R), H) x
i=1...n+1

H Pr(Rj (T‘j) | Ll(ll)...Ln+1(ln+1), R1 (Tl)---Rj—l(rj—l)a P(h), H) (76)
j=l..m+1

(the subscripts h, [and r are used to denote the head, left modifier and right modifier

parameters respectively).

3With the exception of the top rule in the tree, which has the form TOP — H(h).

168

Next, we make the assumption that the modifiers are generated independently of each

other,

Pi(Li(l;) | L1(ly)...Li—1(li—1), P(h),H) = Pi(Li(l;) | P(h),H)
(7.7)
Pr(Rj(Tj) | Ll(ll)...Ln+1(ln+1),Rl(Tl)...Rj_l(Tj_l),P(h),H) = Pr(Rj(Tj) | P(h),H)
(7.8)

In summary, the generation of the RHS of a rule such as (7.5), given the LHS, has
been decomposed into three steps?:

1. Generate the head constituent label of the phrase, with probability Py (H | P, h).

2. Generate modifiers to the left of the head with probability [T,_; .1 Pr(Li(l;)| P, h, H),
where L;41(l,4+1) = STOP. The STOP symbol is added to the vocabulary of non-
terminals, and the model stops generating left modifiers when it is generated.

3. Generate modifiers to the right of the head with probability [T,_; .1 Pr(R:i(r:)|P, h, H).
Ryyi1(rm+1) is defined as STOP.

For example, the probability of the rule S(bought) -> NP(week) NP(IBM) VP(bought)

would be estimated as
P(VP | S,bought) x P;(NP(IBM) | S,VP,bought) x
P; (NP (week) | S,VP,bought) x P;(STOP | S,VP,bought) x

P,.(STOP | S, VP ,bought)

7.2.2 History-Based Models

The next section describes the addition of distance to the model, but first we extend the
model to be “history-based”, an extension that the distance model uses. ([Black et al. 92b]
introduced history-based models for parsing; section 2.7 discusses these models.) Equa-
tions 7.7 and 7.8 made the independence assumption that each modifier is generated inde-

pendently of the others. In general, though, each modifier could depend on any function

*An exception is the first rule in the tree, TOP — H(h), which has probability Pror(H,h|TOP)

169

TOP

S(bought)
7777 NP (IBM) VP (bought)
| /\
NNP VB NP(Lotus)

| | |
IBM pought NNP
|

Lotus

Figure 7.3: A partially completed tree derived depth-first. 7777 marks the position of the
next modifier to be generated — it could be a Non-terminal/head-word/head-tag triple,
or the STOP symbol. The distribution over possible symbols in this position could be
conditioned on any previously generated structure, i.e., any structure appearing in the
figure.

® of the previous modifiers, head/parent category and head word.

Pi(Li(l;) | Li(lh).--Li—1(li—1), P(h),H) =
Pi(Li(l;) | @ (L1(ly)...Li—1(li-1), P(h), H))

PT(RJ(’I”J) | Ll(ll)...Ln+1(ln+1),Rl(Tl)...ijl(’l”jfl),P(h),H) =
Pr(R;(rj) | @ (L1(l)---Lnt1(lnt1)s Ra(r1)...Rj—1(rj—1), P(h), H))
(7.10)

In equations 7.7 and 7.8, ® was chosen to ignore everything but P, H and h.

Furthermore, if the top down derivation order is fully specified, then the probability of
generating a modifier can be conditioned on any of the structure that has been previously
generated. The remainder of this chapter assumes that the derivation order is depth-first
— that is, each modifier recursively generates the sub-tree below it before the next modifier

is generated. Figure 7.3 gives an example that illustrates this.

170

7.2.3 Adding Distance to the Model

The models in Chapter 6 showed that the distance between words standing in head-modifier
relationships was important, in particular that it is important to capture a preference
for right-branching structures (which almost translates into a preference for dependencies
between adjacent words), and a preference for dependencies not to cross a verb.

Thus far the model has assumed that the modifiers are generated independently of each
other (equations 7.7 and 7.8). Distance can be incorporated into the model by increasing
the amount of dependence between the modifiers. If the derivation order is fixed to be
depth-first, as in the general case of history-based models discussed in the preceding section,
the model can condition on any structure below the preceding modifiers.

For the moment we exploit this by making the approximations

Pl(Li(li) | H, P, h, Ll(ll)---Li—l(li—l)) == 'Pl(Lz(lz) | H, P, h, distancel(i - 1))
(7.11)
Pr(Ri(r;) | H,P,h, Ry (r1)...R;—1(ri—1)) = Pr(Ri(ri) | H, P, h,distance, (i — 1))

(7.12)

where distance; and distance, are functions of the surface string below the previous mod-
ifiers. (see figure 7.4). The distance measure is similar to that in Chapter 6, a vector with
the following 2 elements: (1) is the string of zero length? (Allowing the model to learn a
preference for right-branching structures); (2) does the string contain a verb? (Allowing
the model to learn a preference for modification of the most recent verb).5 See section
3.3.7 for motivation for the distance measure; see section 8.1 for further discussion of the

distance measure within the models of this chapter.

°In the models described in [Collins 97], there was a third question concerning punctuation: (3) Does
the string contain 0, 1, 2 or > 2 commas? (where a comma is anything tagged as “,” or “”). The model
described in this chapter has a cleaner incorporation of punctuation into the generative process, as described
in section 7.5.3.

171

P(h)

H(h) R1(rl) R2(r2) R3(r3)

h
\<— distance *ﬂ

Figure 7.4 The mnext child, Rs(rs), is generated with probability
P(Rs(rs) | P,H,h,distance,(2)). The distance is a function of the surface string
below previous modifiers R; and Ry. In principle the model could condition on any
structure dominated by H, Ry or Rs (or, for that matter, on any structure previously
generated elsewhere in the tree).

7.3 Model 2: The complement/adjunct distinction and sub-

categorization

The tree in figure 7.2 illustrates the importance of the complement/adjunct distinction.
It would be useful to identify “IBM” as a subject, and “Last week” as an adjunct (tem-
poral modifier), but this distinction is not made in the tree, as both NPs are in the same
position® (sisters to a VP under an S node). From here on we will identify complements”
by attaching a “-C” suffix to non-terminals. Figure 7.5 shows the tree in figure 7.2 with

added complement markings.

TOP
|
S(bought)
NP (week) NP-C(IBM) VP (bought)
| |
Last week IBM

VBD NP-C(Lotus)

| |
bought Lotus

Figure 7.5: A tree with the “-C” suffix used to identify complements. “IBM” and “Lotus”
are in subject and object position respectively. “Last week” is an adjunct.

A post-processing stage could add this detail to the parser output, but we give two

reasons for making the distinction while parsing:

SExcept “IBM” is closer to the VP, but note that “IBM” is also the subject in “IBM last week bought
Lotus”.

"We use the term complement in a broad sense that includes both complements and specifiers under the
terminology of Government and Binding.

172

1. Identifying complements is complex enough to warrant a probabilistic treatment. Lex-

ical information is needed — for example, knowledge that “week” is likely to be a
temporal modifier. Knowledge about subcategorization preferences — for example
that a verb takes exactly one subject — is also required. (For example, “week” can
sometimes be a subject, as in Last week was a good one, so the model must balance
the preference for having a subject against the relative improbability of “week” being
the head-word of a subject.)
These problems are not restricted to NPs, compare “The spokeswoman said (SBAR that
the asbestos was dangerous)” vs. “Bonds beat short-term investments (SBAR because
the market is down)”, where an SBAR headed by “that” is a complement, but an SBAR
headed by “because” is an adjunct.

2. Making the complement/adjunct distinction while parsing may help parsing accuracy.
The assumption that complements are generated independently of each other often

leads to incorrect parses. See figure 7.6 for further explanation.

1(a) Incorrect 1(b) Correct
S S
NP-C A2
NP.C NP-C VP /\ P
| | was ADJP
Dreyfus the best fund meP NP NP |

| | low

low Dreyfus the best fund

2(a) Incorrect 2(b) Correct
S S
NP-C VP
NP-C A3 |
| The issue /\
The issue was NP-C
was NP-C vPC NP/\VP
| |
bill i
P funding NP-C abill NP-C
|
Congress Congress

Figure 7.6: Two examples where the assumption that modifiers are generated indepen-
dently of each other leads to errors. In (1) the probability of generating both “Drey-
fus” and “fund” as subjects, P(NP-C(Dreyfus) | S,VP,was) * P(NP-C(fund) | S,VP,was)
is unreasonably high. (2) is similar: P(NP-C(bill),VP-C(funding) | VP,VB,was) =
P(NP-C(bill) | VP,VB,was) * P(VP-C(funding) | VP,VB,was) is a bad independence as-
sumption.

173

Identifying Complements and Adjuncts in the Penn Treebank

We add the “-C” suffix to all non-terminals in training data that satisfy the following

conditions:

1. The non-terminal must be: (1) an NP, SBAR, or S whose parent is an S; (2) an NP,
SBAR, S, or VP whose parent is a VP; or (3) an S whose parent is an SBAR.

2. The non-terminal must not have one of the following semantic tags: ADV, VOC, BNF,
DIR, EXT, LOC, MNR, TMP, CLR or PRP. See [Marcus et al. 94] for an explanation of
what these tags signify. For example, the NP “Last week” in figure 7.2 would have
the TMP (temporal) tag; and the SBAR in “(SBAR because the market is down)”, would
have the ADV (adverbial) tag.

In addition, the first child following the head of a prepositional phrase is marked as a

complement.

Probabilities over Subcategorization Frames

Model 1 could be retrained on training data with the enhanced set of non-terminals, and it
might learn the lexical properties which distinguish complements and adjuncts (“IBM” vs
“week”, or “that” vs. “because”). However, it would still suffer from the bad independence
assumptions illustrated in figure 7.6. To solve these kinds of problems, the generative
process is extended to include a probabilistic choice of left and right subcategorization
frames:

1. Choose a head H with probability Py (H | P, h).

2. Choose left and right subcat frames, LC' and RC, with probabilities P;.(LC' | P, H, h)
and Pr.(RC | P,H,h). Each subcat frame is a multiset® specifying the complements
that the head requires in its left or right modifiers.

3. Generate the left and right modifiers with probabilities P;(L;,1; | H, P, h, distance; (i —
1), LC) and P, (R;,r; | H, P, h,distance, (i — 1), RC) respectively. Thus the subcat re-
quirements are added to the conditioning context. As complements are generated they

are removed from the appropriate subcat multiset. Most importantly, the probability

8 A multiset, or bag, is a set which may contain duplicate non-terminal labels.

174

of generating the STOP symbol will be 0 when the subcat frame is non-empty, and the
probability of generating a complement will be 0 when it is not in the subcat frame;

thus all and only the required complements will be generated.

The probability of the phrase S(bought) -> NP(week) NP-C(IBM) VP(bought) is now:

Py (VP | S,bought) X P;.({NP-C} | S,VP,bought) x P,.({} | S,VP,bought) X
P,(NP-C(IBM) | S,VP,bought, {NP-C}) x P,(NP (week) | S,VP,bought, {}) x

P;(STOP | S, VP, bought, {}) x P,(STOP | S,VP,bought, {})

Here the head initially decides to take a single NP-C (subject) to its left, and no com-
plements to its right. NP-C(IBM) is immediately generated as the required subject, and
NP-C is removed from LC, leaving it empty when the next modifier, NP (week) is gen-
erated. The incorrect structures in figure 7.6 should now have low probability because

P.({NP-C,NP-C} | S,VP,bought) and P,.({NP-C,VP-C} | VP,VB,was) are small.

7.4 Model 3: Traces and Wh-Movement

Another obstacle to extracting predicate-argument structure from parse trees is wh-movement.
This section describes a probabilistic treatment of extraction from relative clauses. Noun
phrases are most often extracted from subject position, object position, or from within

PPs:

Example 1. The store (SBAR that TRACE bought Lotus)
Example 2. The store (SBAR that IBM bought TRACE)

Example 3. The store (SBAR that IBM bought Lotus from TRACE)

It might be possible to write rule-based patterns that identify traces in a parse tree.
However, we argue again that this task is best integrated into the parser: the task is
complex enough to warrant a probabilistic treatment, and integration may help parsing
accuracy. A couple of complexities are that modification by an SBAR does not always

involve extraction (e.g., “the fact (SBAR that besoboru is played with a ball and a bat)”),

175

NP (store)

NP (store) SBAR(that)(+gap)
|
The store
WHNP (that) S(bought)(+gap)
|
WDT
th|at NP-C(IBM) VP (bought)(+gap)
|
IBM
VBD TRACE NP (week)
| |
bought last week
(1) Np -> NP SBAR (+gap)
(2) SBAR(+gap) -> WHNP S-C(+gap)
(3) S(+gap) -> NP-C VP(+gap)
(4) VP(+gap) -> VB TRACE NP

Figure 7.7: A +gap feature can be added to non-terminals to describe wh-movement. The
top-level NP initially generates an SBAR modifier, but specifies that it must contain an NP
trace by adding the +gap feature. The gap is then passed down through the tree, until it
is discharged as a TRACE complement to the right of bought.

and it is not uncommon for extraction to occur through several constituents, (e.g., “The
changes (SBAR that he said the government was prepared to make TRACE)”).

The second reason for an integrated treatment of traces is to improve the parameter-
ization of the model. In particular, the subcategorization probabilities are smeared by
extraction. In examples 1, 2 and 3 above ‘bought’ is a transitive verb; but without knowl-
edge of traces, example 2 in training data will contribute to the probability of ‘bought’
being an intransitive verb.

Formalisms similar to GPSG [Gazdar et al. 95] handle wh-movement by adding a gap
feature to each non-terminal in the tree, and propagating gaps through the tree until
they are finally discharged as a trace complement (see figure 7.7). In extraction cases the

Penn treebank annotation co-indexes a TRACE with the WHNP head of the SBAR, so it is

176

straightforward to add this information to trees in training data.

Given that the LHS of the rule has a gap, there are 3 ways that the gap can be passed
down to the RHS:

Head The gap is passed to the head of the phrase, as in rule (3) in figure 7.7.

Left, Right The gap is passed on recursively to one of the left or right modifiers of the
head, or is discharged as a TRACE argument to the left /right of the head. In rule (2)
it is passed on to a right modifier, the S complement. In rule (4) a TRACE is generated
to the right of the head VB.

We specify a parameter Pg(G | P, h, H) where G is either Head, Left or Right. The

generative process is extended to choose between these cases after generating the head of
the phrase. The rest of the phrase is then generated in different ways depending on how
the gap is propagated: In the Head case the left and right modifiers are generated as
normal. In the Left, Right cases a gap requirement is added to either the left or right
SUBCAT variable. This requirement is fulfilled (and removed from the subcat list) when
a trace or a modifier non-terminal which has the +gap feature is generated. For example,

Rule (2), SBAR(that) (+gap) -> WHNP(that) S-C(bought) (+gap), has probability

Py (WHNP | SBAR, that) x Pg(Right | SBAR,WHNP, that) x Prc({} | SBAR,WHNP, that) x
Pre({S-C} | SBAR,WHNP, that) x Pg(S-C(bought) (+gap) | SBAR,WHNP, that, {S-C, +gap}) x

Pr(STOP | SBAR,WHNP, that, {}) x Pr(STOP | SBAR,WHNP,that, {})
Rule (4), VP(bought) (+gap) -> VB(bought) TRACE NP(week), has probability

P (VB | VP, bought) x Pg(Right | VP,bought,VB) x Prc({} | VP,bought ,VB) x
Pro({NP-C} | VP, bought,VB) x Pr(TRACE | VP, bought VB, {NP-C, +gap}) x
Pr(NP (week) | VP, bought, VB, {}) x P (STOP | VP,bought, VB, {}) x

Pr(STOP | VP,bought,VB, {})

In rule (2) Right is chosen, so the +gap requirement is added to RC. Generation of
S-C(bought) (+gap) fulfills both the S-C and +gap requirements in RC. In rule (4)
Right is chosen again. Note that generation of TRACE satisfies both the NP-C and +gap

subcat requirements.

177

(a) NPB (b) NPB (c) NPB

Pierre Vinken
NPB New England Journal

ADJP Loews Corp. tozg\’s

New York-based

Figure 7.8: Three examples of structures with baseNPs
7.5 Special Cases

Sections 7.2 to 7.4 described the basic framework for the parsing models in this chapter.
This section describes a handful of special cases: modifications to the basic models that

are linguistically motivated, and give an increase in accuracy.

7.5.1 Non-recursive NPs

We define non-recursive NPs (from here on referred to as baseNPs, and labeled “NPB”
rather than “NP”) as NPs that do not directly dominate an NP themselves, unless that NP
is a possessive NP (i.e. it directly dominates a POS-tag “POS”). Figure 7.8 gives some
examples. BaseNPs deserve special treatment for three reasons:

e The boundaries of baseNPs are often strongly marked: particularly the start points of
baseNPs, which are often marked with a determiner or another distinctive item such
as an adjective. Because of this, the probability of generating the STOP symbol should
be greatly increased when the previous modifier is, for example, a determiner. As
they stand, the independence assumptions in the models lose this information. The

probability of NPB(dog) -> DT(the) NN(dog) would be estimated as

Py, (NN | NPB,dog) x P;(DT (the) | NPB,NN,dog) x

P,(STOP | NPB,NN,dog) x P,(STOP | NPB,NN,dog)
In making the independence assumption
P,(STOP | DT (the), NPB,NN,dog) = P,(STOP | NPB,NN,dog)

the model will fail to learn that the STOP symbol is very likely to follow a determiner.
As a result, the model will assign unreasonably high probability to NPs such as [NP

yesterday the dog] in sentences such as [yesterday the dog barked).

178

The annotation standard in the treebank leaves the internal structure of baseNPs
underspecified. For example, both pet food volume (where pet modifies food and food
modifies volume) and wvanilla ice cream (where both wvanilla and ice modify cream)
would have the structure NPB -> NN NN NN. Because of this, there is no reason to
believe that modifiers within NPBs are dependent on the head rather than the previous
modifier. In fact, if it so happened that a majority of phrases were like pet food volume,
then conditioning on the previous modifier rather than the head would be preferable.
In general it is important (in particular for the distance measure to be effective) to
have different non-terminal labels for what are effectively different X-bar levels. See

section 8.2.2 for further discussion.

For these reasons the following modifications were made to the models:

The non-terminal label for baseNPs is changed from NP to NPB. For consistency, when-
ever an NP is seen with no pre or post modifiers, an NPB level is added. For example,
[S [NP the dog] [VP barks]] would be transformed to [S [NP [NPB the dog]
] [VP barks]]. These “extra” NPBs are removed before scoring the output of the

parser against the treebank.

The independence assumptions are different when the parent non-terminal is an NPB.

Specifically, equations 7.11 and 7.12 are modified to be
Pi(L;i(;) | H,P,h,Li(ly)...Li—1(li—1)) = Pi(Li(l;) | P, Li—1(li-1))
(7.13)
Pr(Ri(Ti) | H, P, h, R1 (Tl)---Ri—l(Ti—l)) = 'Pr(Rz(’l“z) | P, Ri—l(ri—l))
(7.14)
The modifier and previous-modifier non-terminals are always adjacent, so the distance
variable is constant and is omitted. For the purposes of this model, Ly(ly) and Rg(ro)
are defined to be H(h). The probability of the previous example is now
Py (NN | NPB,dog) x P;(DT (the) | NPB,NN,dog) x

P,(STOP | NPB,DT, the) x P,.(STOP | NPB,NN,dog)

Presumably 7P;(STOP | NPB,DT, the) will be very close to 1.

179

N RN
the man his dog
(c) VP(likes)
VP (likes) CcC VP (hates)

/’\ | T
and hates

. . bananas
likes ice cream

Figure 7.9: (a) the generic way of annotating coordination in the treebank. (b) and (c)
show specific examples (with baseNPs added as described in section 7.5.1). Note that the
first item of the conjunct is taken as the head of the phrase.

7.5.2 Coordination

Coordination constructions are another example where the independence assumptions in
the basic models fail badly (at least given the current annotation method in the treebank).
Figure 7.9 shows how coordination is annotated in the treebank.” To use an example to
illustrate the problems, take the rule NP(man) -> NP(man) CC(and) NP(dog), which has

probability

P, (NP | NP, man) x P;(STOP | NP,NP,man) X
P,(CC(and) | NP,NP,man) X P,(NP(dog) | NP,NP,man) X

P,(STOP | NP,NP,man)

The independence assumptions mean that the model fails to learn that there is always
exactly one phrase following the coordinator (CC). The basic probability models will give
much too high probability to unlikely phrases such as NP -> NP CCor NP -> NP CC NP NP.
For this reason we alter the generative process to allow generation of both the coordinator
and the following phrase in one step; instead of just generating a non-terminal at each

step, a non-terminal and a binary-valued coord flag are generated. coord=1 if there is a

®See Appendix A for a description of how the head rules treat phrases involving coordination.

180

coordination relationship. For the preceding example this would give probability

P (NP | NP,man) x P;(STOP | NP,NP,man) X
P,(NP(dog), coord=1|NP,NP,man) (7.15)

P, (STOP | NP,NP ,man) X P..(CC,and | NP,NP,NP,man,dog)

There is now a new type of parameter, P,., for the generation of the coordinator word and
POS-tag. The generation of coord=1 along with NP (dog) in the example implicitly requires
generation of a coordinator tag/word pair through the P.. parameter. The generation of
this tag/word pair is conditioned on the two words in the coordination dependency (man
and dog in the example), and the label on their relationship (NP,NP,NP in the example,
representing NP coordination).

The coord flag is implicitly 0 when normal non-terminals are generated, for example

the phrase S(bought) -> NP(week) NP(IBM) VP(bought) now has probability

Pr(VP | S,bought) x P;(NP(IBM),coord=0 |S,VP,bought) X
P, (NP (week) ,coord=0 | S,VP,bought) x P;(STOP | S,VP,bought) X

P, (STOP | S, VP, bought) (7.16)

7.5.3 Punctuation

This section describes our treatment of “punctuation” in the model, where “punctuation” is
used to refer to words tagged as a comma, or colon. Previous work — the models described
in chapter 6 and the earlier version of these generative models described in [Collins 97] —
conditioned on punctuation as surface features of the string, treating it quite differently
from lexical items. In particular, the model in [Collins 97] failed to generate punctuation,
a deficiency of the model. This section describes how punctuation is integrated into the
generative models.

Our first step, for consistency, is to raise punctuation as high in the parse trees as pos-

sible. Punctuation at the beginning or end of sentences is removed from the training/test

181

NP VP

/\ joined NP

NPB , ADJP) |
Pierre Vinken 61 years old the board
S
NP : VP
/’\ joined NP
NPB ; ADJP |
TN I ﬁ
Pierre Vinken 61 years old the board

Figure 7.10: A parse tree before and after the punctuation transformations

data altogether. All punctuation items apart from those tagged as comma or colon (i.e.
items tagged “” or .) are removed altogether. These transformations mean that punctu-
ation always appears between two non-terminals, as opposed to appearing at the end of a
phrase. See figure 7.10 for an example.

Punctuation is then treated in a very similar way to coordination: our intuition is that
there is a strong dependency between the punctuation mark and the following phrase.
Punctuation is therefore generated with the following phrase through a punc flag which
is similar to the coord flag (a binary-valued feature equal to 1 if a punctuation mark is

generated with the following phrase).

182

Under this model, NP (Vinken) -> NPB(Vinken) ,(,) ADJP(old) would have proba-
bility

Py, (NPB | NP, Vinken) x P;(STOP | NP,NPB,Vinken) X

(
P,(ADJP(0ld) ,coord=0,punc=1| NP ,NPB,Vinken) X
P, (STOP | NP,NPB,bought) X
(

Pp(, , | NP,NPB,ADJP,Pierre,o0ld) (7.17)

P, is a new parameter type for generation of punctuation tag/word pairs. The generation
of punc=1 along with ADJP(0ld) in the example implicitly requires generation of a punc-
tuation tag/word pair through the P, parameter. The generation of this tag/word pair
is conditioned on the two words in the punctuation dependency (Pierre and old in the

example), and the label on their relationship (NP,NPB,ADJP in the example.)

7.5.4 Sentences with empty (PRO) subjects

Sentences in the treebank occur frequently with PRO subjects which may or may not be
controlled: as the treebank annotation currently stands the non-terminal is S whether or
not a sentence has an overt subject. This is a problem for the subcategorization probabili-
ties in models 2 and 3 — the probability of having zero subjects, P;.({} | S, VP, wverb) will
be fairly high because of this. In addition, sentences with and without subjects appear in
quite different syntactic environments. For these reasons we modify the non-terminal for
sentences without subjects to be SG. See figure 7.11. The resulting model has a cleaner divi-
sion of subcategorization: P;.({NP-C} | S, VP, wverb) =~ 1 and P;.({NP-C} | SG, VP, wverb) =
0. The model will learn probabilistically the environments in which S and SG are likely to

appear.

7.5.5 The Punctuation Rule

The hard constraint concerning punctuation, originally described in section 6.2.7, is also
used in the models of this chapter. It would be preferable to develop a probabilistic

analogue of this rule, but we leave this to future research.

183

T 7

S VP | Py
/d\ VP is dangerous
NP.SBJ P is dangerous T
| P flying planes

-NONE- flying planes

() S
SG VP
| P
VP is dangerous

flying planes

Figure 7.11: (a) the treebank annotates sentences with empty subjects with an empty
-NONE- element under subject position; (b) in training (and for evaluation), this null
element is removed; (c) in models 2 and 3 sentences without subjects are changed to have
a non-terminal SG.

184

Back-off || Pu(H |) Pa(G |) Pri(Li(lt;), C,p|) Pra(lw; |)
Level Prc(LC|...) | Pri(Ri(rt:),e,p|-..) Pra(rw; | ...)
Prc(RC ...)
1 P, w, ¢ P,H w,t | PHw¢tA LC | L,l,cp P, Hwt A, LC
2 P, t P, H, ¢ P, H, t, A, LC Li, lt;, ¢, p, P, H, t, A, LC
3 P P, H P, H, A, LC It;

Table 7.1: The conditioning variables for each level of back-off. For example, Py estimation
interpolates e; = Py (H | P, w,t), e = Py(H | P,t), and e3 = Py (H | P). A is the distance
measure,

7.6 Practical Issues

7.6.1 Parameter Estimation

Table 7.1 shows the various levels of back-off for each type of parameter in the model.
Note that we decompose Pr,(L;i(lw;,lt;),c,p | P,H,w,t,A, LC) (where lw; and [t; are the
word and POS tag generated with non-terminal L;, ¢ and p are the coord and punc flags

associated with the non-terminal, A is the distance measure) into the product
PLl(Li(lti), C,D | P, H,w,t, A,LC) X PLQ(l’LUi | Li, lti,C,p, P, H,w,t, A,LC)

These two probabilities are then smoothed separately. ([Eisner 96b] originally used POS

tags to smooth a generative model in this way.) In each case the final estimate is

e= \ey+ (1 — /\1)(/\262 + (1 — Ag)eg)

where e, es and e3 are maximum likelihood estimates with the context at levels 1, 2 and
3 in the table, and A1, A2 and A3 are smoothing parameters where 0 <)\; < 1. We use the
smoothing method described in section 2.9.4: if the more specific estimate is % — that
is, fi is the value of the denominator count — and the number of unique outcomes in the

distribution is wu;, then
fi

No— JE
" fi 45

(7.18)

The constant 5 was optimized on the development set, section 0 of the treebank (in practice

it was found that any value in the range 2-5 gave a very similar level of performance).

185

7.6.2 Dealing with Unknown Words

All words occurring less than 5 times in training data, and words in test data which have
never been seen in training, are replaced with the “UNKNOWN” token. This allows the

model to robustly handle the statistics for rare or new words.

7.6.3 Part of Speech Tagging

Part of speech tags are generated along with the words in the models, so tagging is fully
integrated. In effect, all possible tag sequences are considered. When parsing, the POS
tags allowed for each word are limited to those which have been seen in training data for
that word (any word/tag pairs not seen in training would give an estimate of zero in the
Pro and Pge distributions). For unknown words, the output from the tagger described in
[Ratnaparkhi 96] is used as the single possible tag for that word. (A method such as the
unknown-word model of [Weischedel et al. 93] — which allows multiple possible tags for
unknown words, probabilistically generating the word-features of unknown words — would
almost certainly be preferable, in that it would fully integrate POS tagging for unknown

words into the parsing model.)

7.7 The Parsing Algorithm

A chart parser is used to find the maximum probability tree for each sentence. Figure 7.12
shows four basic operations that can be used to create new edges from existing edges in
the chart; figure 7.13 sketches the full algorithm, with calls to these four operations. The
algorithm is described in detail in Appendix B (Model 1) and Appendix C (Model 2).

7.7.1 An Analysis of Parsing Complexity

Appendix D derives upper bounds for the parsing complexity of the algorithm in figure 7.13.
Note, however, that the beam search method means that the parsing algorithm is almost
certainly more efficient in practice. (In fact, our feeling is that the running time of the
algorithm depends much more on the effectiveness of the pruning method, rather than the

asymptotic complexity of the algorithm. [Caraballo and Charniak 98, Goodman 97b] both

186

discuss strategies for pruning the search space of a probabilistic parser.) The complexity

analysis assumes the following definitions:
e 1 is the number of words in a sentence.
e N is the number of non-terminals in the grammar, excluding POS tags.
e T is the maximum number of POS tags for any word in the vocabulary.
e D is the number of values for the left and right distance variables.

e D is the number of values regarding distance that need to be stored for edges that
have their STOP probabilities (for the models of this chapter, D = 2; a flag specifying

whether or not an edge contains a verb is all that is needed).

e L is the number of distinct left-subcategorization states seen in conditioning contexts

in training data.

e R is the number of distinct right-subcategorization states seen in conditioning contexts

in training data.

With these definitions, the complexity of the algorithm is O(n°T?N3*D?DLR).
Appendix D also shows that a tighter bound can be derived if we assume the following

definition of the set X:

X ={(X,Y,L,LR) | (Parent =X, Head-label =Y, left-subcat = L) and
(Parent = X, Head-label =Y, right-subcat = R)
are both seen as conditioning contexts in training data}

(7.19)

In the worst case, X = N?LR, but in practice X may be much smaller than N?LR. An
O(N?LR) factor within O(n°T?N3D?DLR) is then reduced to O(|X|); the overall parsing
complexity is O(n’|X|T?ND?D).

187

(a) OUT = add-single(edge E,label P)

H(+) - P()
P |
TR
Prob(E) = X Prob(OUT) = X xPy(H | P,...

(b) OUT = join_2_edges_follow(edge El,edge E2)

P(-) + Ri(+) = P(-)
.
H Rl . . H Rl .. Ri
Prob(E1) = X Prob(E2) =Y Prob(OUT) = X x Y x Pr(Ri(r;)| P,H,...)

(c) OUT = join_2_edges_precede(edge El,edge E2)

Li(+) + P(-) = P(-)
/\ /’\
. L1 H . Li .. Ll H .
Prob(E1l) = X Prob(E2) =Y Prob(OUT) =X x Y x Pr(L;(l;) | P, H, ...)

(d) OUT = add_stops(edge E)

PO = P(H)
A TN

Prob(E) =X Prob(OUT) = X xPL(STOP]....) x Pr(STOP|)

Figure 7.12: Four operations where a new constituent, 0OUT, is formed from either two
existing edges, E1 and E2, or a single edge, E. Figure 7.13 gives pseudo-code that makes
calls to these four operations. (4) means a constituent is complete (i.e. it includes the
stop probabilities), (—) means a constituent is incomplete. In (a), a new constituent is
started by projecting a complete rule upwards; in (b) and (c), a constituent takes either a
right or left modifier; in (d), STOP probabilities are added to complete the constituent.

188

edge parse()

{
//initialize adds edges for all word/tag pairs in the sentence, and
//adds their projections through add_singles and add_stops,
//giving the ‘base’ of the bottom-up parse
initialize();

//assume n is the number of words in the sentence
for span = 2 ton
for start = 1 to n-spant+l

{

end = start + span -1;

//this step combines pairs of edges
for split = start to end-1
{
foreach edge el in chart[start,split] such that el.stop =
foreach edge e2 in chart[split+1,end] such that e2.stop
join_2_edges_follow(el,e2);

FALSE
TRUE

foreach edge el in chart[start,split] such that el.stop == TRUE
foreach edge €2 in chart[split+l,end] such that e2.stop == FALSE
join_2_edges_precede(el,e2);
}
//Allow at most MAXU consecutive unary rules
for 1 = 1 to MAXU
{
//this step adds stop probabilities
foreach edge e in chart[start,end] such that e.stop == FALSE
add_stops(e);

//this step adds unary projections upwards
foreach edge e in chart[start,end] such that e.stop == TRUE
foreach non-terminal P in the grammar

add_single(e,P);

//assume TOP is the start symbol (must be at the top of the tree)
X = edge with highest probability spanning words 1...n, with label TOP;
return X;

Figure 7.13: A sketch of the parsing algorithm. The functions join_2_edges_follow,
join_2_edges_precede, add_single and add_stops are illustrated in figure 7.12.

189

MODEL < 40 Words (2245 sentences)

LR | LP [CBs|0CBs|<2CBs

[Magerman 95] || 84.6% | 84.9% | 1.26 | 56.6% | 81.4%
Chapter 6 85.8% | 86.3% | 1.14 | 59.9% 83.6%

[Goodman 97] || 84.8% | 85.3% | 1.21 | 57.6% | 81.4%

[Charniak 97) || 87.5% | 87.4% | 1.00 | 62.1% | 86.1%

Model 1 87.9% | 88.2% | 0.95 | 65.8% 86.3%
Model 2 88.5% | 88.7% | 0.92 | 66.7% | 87.1%
Model 3 88.6% | 88.7% | 0.90 | 67.1% 87.4%
MODEL < 100 Words (2416 sentences)

LR | LP |CBS|OCBS|§2CBS

[Magorman 95 || 84.0% | 84.3% | 1.46 | 54.0% | 78.8%

Chapter 6 85.3% | 85.7% | 1.32 | 57.2% 80.8%

[Charniak 97] 86.7% | 86.6% | 1.20 | 59.5% | 83.2%
[Ratnaparkhi 97] || 86.3% | 87.5% | 1.21 | 60.2% —

Model 1 87.5% | 87.7% | 1.09 | 63.4% | 84.1%
Model 2 88.1% | 88.3% | 1.06 | 64.0% | 85.1%
Model 3 88.0% | 88.3% | 1.05 | 64.3% | 85.4%

Table 7.2: Results on Section 23 of the WSJ Treebank. LR/LP = labeled recall/precision.
CBs is the average number of crossing brackets per sentence. 0 CBs, < 2 CBs are the
percentage of sentences with 0 or < 2 crossing brackets respectively. All the results in
this table are for models trained and tested on the same data, using the same evaluation
metric. (Note that these results show a slight improvement over those in [Collins 97]; the
main model changes were the improved treatment of punctuation (section 7.5.3) together
with the addition of the P, and P, parameters.)

7.8 Results

The parser was trained on sections 02 - 21 of the Wall Street Journal portion of the Penn
Treebank [Marcus et al. 93] (approximately 40,000 sentences), and tested on section 23
(2,416 sentences). We use the PARSEVAL measures [Black et al. 91] to compare perfor-

mance:

number of correct constituents in proposed parse
number of constituents in proposed parse

number of correct constituents in proposed parse

number of constituents in treebank parse

Labeled Precision =

Labeled Recall =
Crossing Brackets = number of constituents which violate constituent boundaries with

a constituent in the treebank parse.

190

For a constituent to be ‘correct’ it must span the same set of words (ignoring punctu-
ation, i.e. all tokens tagged as commas, colons or quotes) and have the same label'® as a
constituent in the treebank parse. Table 7.2 shows the results for Models 1, 2 and 3.

The precision/recall of the traces found by Model 3 was 93.8%/90.1% (out of 437 cases
in section 23 of the treebank), where three criteria must be met for a trace to be “correct”:
(1) it must be an argument to the correct head-word; (2) it must be in the correct position
in relation to that head word (preceding or following); (3) it must be dominated by the
correct non-terminal label. For example, in figure 7.7 the trace is an argument to bought,
which it follows, and it is dominated by a VP. Of the 437 cases, 341 were string-vacuous
extraction from subject position, recovered with 96.3%/98.8% precision/recall; and 96 were

longer distance cases, recovered with 81.4%/59.4% precision/recall 1.

7.8.1 A Closer look at the Results

In this section we look more closely at the parser, by evaluating its performance on specific
constituents or constructions. The intention is to get a better idea of the parser’s strengths
and weaknesses. First, table 7.3 has a breakdown of precision and recall by constituent
type.

A breakdown of accuracy by constituent type isn’t all that informative though, as it fails
to capture the idea of attachment accuracy. For this reason we also evaluate the parser’s
precision and recall in recovering dependencies between words: accuracy on different kinds
of attachments can then be investigated. A dependency is defined as a triple with the
following elements (see figure 7.14 for an example tree and its associated dependencies):
1) Relation A (Parent, Head, Modifier, Direction) 4-tuple, where the four elements

are the parent, head and modifier non-terminals involved in the dependency, and the

direction of the dependency (L for left, R for right). For example, (S, VP, NP-C, L)

would indicate a subject-verb dependency. In coordination cases there is a fifth element

'9[Magerman 95] collapses ADVP and PRT to the same label, for comparison we also removed this distinction
when calculating scores.

1UWe exclude infinitival relative clauses from these figures, for example “I called a plumber TRACE to
fix the sink” where ‘plumber’ is co-indexed with the trace subject of the infinitival. The algorithm scored
41%/18% precision/recall on the 60 cases in section 23 — but infinitival relatives are extremely difficult
even for human annotators to distinguish from purpose clauses (in this case, the infinitival could be a
purpose clause modifying ‘called’) (Ann Taylor, p.c.)

191

Proportion | Count Label Recall | Precision
42.21 15146 NP 91.15 90.26
19.78 7096 VP 91.02 91.11
13.00 4665 S 91.21 90.96
12.83 4603 PP 86.18 85.51
3.95 1419 SBAR 87.81 88.87
2.59 928 ADVP 82.97 86.52
1.63 584 ADJP 65.41 68.95
1.00 360 WHNP 95.00 98.84
0.92 331 QP 84.29 78.37
0.48 172 PRN 32.56 61.54
0.35 126 PRT 86.51 85.16
0.31 110 SINV 83.64 88.46
0.27 98 NX 12.24 66.67
0.25 88 WHADVP | 95.45 97.67
0.08 29 NAC 48.28 63.64
0.08 28 FRAG 21.43 46.15
0.05 19 WHPP 100.00 | 100.00
0.04 16 ucCP 25.00 28.57
0.04 16 CONJP 56.25 69.23
0.04 15 SQ 53.33 66.67
0.03 12 SBARQ 66.67 88.89
0.03 9 RRC 11.11 33.33
0.02 7 LST 57.14 100.00
0.01 3 X 0.00 —
0.01 2 INTJ 0.00 —

Table 7.3: Recall and precision for different constituent types, for section 0 of the treebank
with model 2. Label is the non-terminal label; Proportion is the percentage of constituents
in the treebank section 0 that have this label; Count is the number of constituents that
have this label.

192

of the tuple, CC: (NP, NP, NP, R CC) would be an instance of NP coordination.

In addition, the relation is “normalized” to some extent. First, all POS tags are
replaced with the token TAG: this is so that POS tagging errors do not lead to errors in
dependencies'?. Second, any complement markings on the parent or head non-terminal
are removed. For example, (NP-C, NPB, PP, R) is replaced by (NP, NPB, PP, R). This
prevents parsing errors where a complement has been mistaken to be an adjunct (or
vice versa) leading to more than one dependency error. (In figure 7.14, if the NP the
man was mistakenly identified as an adjunct then without normalisation this would
lead to two dependency errors: both the PP dependency and the verb-object relation

would be incorrect. With normalization, only the verb-object relation is incorrect.)
2) Modifier The index of the modifier word in the sentence.

3) Head The index of the head word in the sentence.

Under this definition, gold-standard and parser-output trees can be converted to sets of
dependencies, and precision/recall can be calculated on these dependencies. Dependency
accuracies are given for section 0 of the treebank in figure 7.15. Tables 7.4 and 7.5 give a
breakdown of the accuracies by dependency type.

Tables 7.6 and 7.7 show the dependency accuracy for 8 sub-types of dependency, which

together account for 94% of all dependencies. These sub-types are:

Complement to a verb: 93.76/92.96 recall/precision. This type includes any rela-
tions of the form (S VP **) where ** is any complement, or (VP TAG **) where
** is any complement except VP-C (i.e., auxiliary-verb—verb dependencies are ex-
cluded). The most frequent verb complements, Subject-verb and Object-verb, are

recovered with over 95% and 92% precision/recall respectively.

Other complements: 94.47/94.12 recall/precision. This type includes any depen-
dencies where the modifier is a complement, and the dependency does not fall into the
complement to a verb type.

PP Modification: 82.29/81.51 recall/precision. Any dependency where the modi-
fier is a PP.

12The justification for this is that there is an estimated 3% error rate in the hand-assigned POS tags in
the treebank [Ratnaparkhi 96], and we didn’t want this noise to contribute to dependency errors.

193

Coordination: 61.47/62.20 recall/precision.

Modification within baseNPs: 93.20/92.59 recall/precision. Any dependency where
the parent is NPB.

Modification to NPs: 73.20/75.49 recall/precision. Any dependency where the par-
ent is NP, the head is NPB, and the modifier is not a PP.

Sentential Head: 94.99/94.99 recall/precision. Dependency involving the head-word
of the entire sentence.

Adjunct to a verb: 75.11/78.44 recall/precision. Any dependency where the par-
ent is VP, the head is TAG, and the modifier is not a PP; or where the parent is S,
the head is VP, and the modifier is not a PP.

A conclusion to draw from these accuracies is that the parser is doing very well at
recovering the core structure of sentences: complements, sentential heads, and baseNP
relationships (NP chunks) are all recovered with over 90% accuracy. The main sources of
error are adjuncts. Coordination is especially difficult, most likely because it often involves

a dependency between two content-words, leading to very sparse statistics.

194

TOP
|

////ji\\\\

NP-C VP
|
NPB /\
| VB NP-C
PRP |
| Saw
Io NPB PP
/\
DT NN TN
| | Il|\I NP|’—C
they mang . NPB
/\
DT NN

thes telescopeg

“Raw” Dependencies Normalized Dependencies
Relation Modifier | Head || Relation Modifier | Head
S VP NP-C L 0 1 S VP NP-C L 0 1
TOP TOP S R 1 -1 TOP TOP S R 1 -1
NPB NN DT L 2 3 NPB TAG TAG L 2 3
VP VB NP-C R 3 1 VP TAG NP-C R 3 1
NP-C NPB PP R 4 3 NP NPB PP R 4 3
NPB NN DT L) 6 NPB TAG TAG L) 6
PP IN NP-C R 6 4 PP TAG NP-C R 6 4

Figure 7.14: A tree and its associated dependencies. Note that in “normalizing” depen-
dencies, all POS tags are replaced with “TAG”, and the NP-C parent in the third relation
is replaced with NP.

195

Evaluation Precision | Recall
No Labels 91.0% | 90.9%
No Complements 88.5% | 88.5%
All 88.3% 88.3%

Figure 7.15: Dependency accuracy on Section 0 of the treebank with Model 2. No Labels
means that only the dependency needs to be correct, the relation may be wrong; No
Complements means all complement (-C) markings are stripped before comparing relations;
All means complement markings are kept on the modifying non-terminal.

R CP P Count | Relation Rec Prec
1 | 29.65 | 29.65 | 11786 | NPB TAG TAG L 94.60 | 93.46
2 | 40.55 | 10.90 | 4335 | PP TAG NP-C R 94.72 | 94.04
3 | 48.72 | 8.17 3248 | S VP NP-C L 95.75 | 95.11
4 | 54.03 | 5.31 2112 | NP NPB PP R 84.99 | 84.35
5 | 59.30 | 5.27 2095 | VP TAG NP-C R 92.41 | 92.15
6 | 64.18 | 4.88 1941 | VP TAG VP-C R 97.42 | 97.98
7 | 68.71 | 4.53 1801 | VP TAG PP R 83.62 | 81.14
8 | 73.13 | 4.42 1757 | TOP TOP S R 96.36 | 96.85
9 | 74.53 | 1.40 558 VP TAG SBAR-C R 94.27 | 93.93
10 | 75.83 | 1.30 518 QP TAG TAG R 86.49 | 86.65
11 | 77.08 | 1.25 495 NP NPB NP R 74.34 | 75.72
12 | 7828 | 1.20 477 SBAR TAG S-C R 94.55 | 92.04
13 | 7948 | 1.20 476 NP NPB SBAR R 79.20 | 79.54
14 | 80.40 0.92 367 VP TAG ADVP R 74.93 | 78.57
15 | 81.30 | 0.90 358 NPB TAG NPB L 97.49 | 92.82
16 | 82.18 | 0.88 349 VP TAG TAG R 90.54 | 93.49
17 | 82.97 | 0.79 316 VP TAG SG-C R 92.41 | 88.22
18 | 83.70 | 0.73 289 NP NP NP R CC 55.71 | 53.31
19 | 84.42 | 0.72 287 S VP PP L 90.24 | 81.96
20 | 85.14 | 0.72 286 SBAR WHNP SG-C R | 90.56 | 90.56
21 | 85.79 | 0.65 259 VP TAG ADJP R 83.78 | 80.37
22 | 86.43 | 0.64 255 S VP ADVP L 90.98 | 84.67
23 | 86.95 | 0.52 205 NP NPB VP R 77.56 | 72.60
24 | 87.45 0.50 198 ADJP TAG TAG L 75.76 | 70.09
25 | 87.93 | 0.48 189 NPB TAG TAG R 74.07 | 75.68

Table 7.4: Accuracy of the 25 most frequent dependency types in section 0 of the treebank,
as recovered by model 2. R = rank; CP = cumulative percentage; P = percentage; Rec =
Recall; Prec = precision.

196

R Cp P Count | Relation Rec Prec
26 | 88.40 | 0.47 187 VP TAG NP R 66.31 | 74.70
27 | 88.85 | 0.45 180 VP TAG SBAR R 74.44 | 72.43
28 | 89.29 | 0.44 174 VP VP VP R CC 74.14 | 72.47
29 | 89.71 | 0.42 167 NPB TAG ADJP L 65.27 | 71.24
30 | 90.11 | 0.40 159 VP TAG SG R 60.38 | 68.57
31| 90.49 | 0.38 150 VP TAG S-C R 74.67 | 78.32
32 | 90.81 | 0.32 129 SSSRCC 72.09 | 69.92
33 | 91.12 | 0.31 125 PP TAG SG-C R 94.40 | 89.39
34 | 91.43 | 0.31 124 QP TAG TAG L 77.42 | 83.48
35 | 91.72 | 0.29 115 S VP TAG L 86.96 | 90.91
36 | 92.00 | 0.28 110 NPB TAG QP L 80.91 | 81.65
3719227 | 0.27 106 SINV VP NP R 88.68 | 95.92
38 | 92.53 | 0.26 104 S VP S-CL 93.27 | 78.86
39 | 92.79 | 0.26 102 NP NP NP R 30.39 | 25.41
40 | 93.02 | 0.23 90 ADJP TAG PP R 75.56 | 78.16
41 | 93.24 | 0.22 89 TOP TOP SINV R 96.63 | 94.51
42 | 93.45 | 0.21 85 ADVP TAG TAG L 74.12 | 73.26
43 | 93.66 | 0.21 83 SBAR WHADVP S-C R | 97.59 | 98.78
44 | 93.86 | 0.20 81 S VP SBAR L 88.89 | 85.71
45 | 94.06 | 0.20 79 VP TAG ADVP L 51.90 | 49.40
46 | 94.24 | 0.18 73 SINV VP S L 95.89 | 92.11
47 | 94.40 | 0.16 63 NP NPB SG R 88.89 | 81.16
48 | 94.55 | 0.15 58 S VP PRN L 25.86 | 48.39
49 | 94.70 | 0.15 58 NX TAG TAG R 10.34 | 75.00
50 | 94.83 | 0.13 53 NP NPB PRN R 45.28 | 60.00

Table 7.5: Accuracy of the 26-50’th most frequent dependency types in section 0 of the
treebank, as recovered by model 2. R = rank; CP = cumulative percentage; P = percent-
age; Rec = Recall; Prec = precision

197

| Type | Sub-type | Description | Count | Recall | Precision ||

Complement to a verb S VP NP-C L Subject 3248 95.75 95.11
VP TAG NP-C R Object 2095 92.41 92.15
6495 = 16.3% of all cases || VP TAG SBAR-C R 558 94.27 93.93
VP TAG SG-C R 316 92.41 88.22
VP TAG S-C R 150 74.67 78.32
S VP S-CL 104 93.27 78.86
S VP SG-C L 14 78.57 68.75
TOTAL 6495 93.76 92.96
Other complements PP TAG NP-C R 4335 94.72 94.04
VP TAG VP-C R 1941 97.42 97.98
7473 = 18.8% of all cases || SBAR TAG S-C R 477 94.55 92.04
SBAR WHNP SG-C R 286 90.56 90.56
PP TAG SG-C R 125 94.40 89.39
SBAR WHADVP S-C R 83 97.59 98.78
PP TAG PP-C R 51 84.31 70.49
SBAR WHNP S-C R 42 66.67 84.85
SBAR TAG SG-C R 23 69.57 69.57
PP TAG S-C R 18 38.89 63.64
SBAR WHPP S-C R 16 100.00 100.00
S ADJP NP-C L 15 46.67 46.67
PP TAG SBAR-C R 15 100.00 88.24
TOTAL 7473 94.47 94.12
PP modification NP NPB PP R 2112 84.99 84.35
VP TAG PP R 1801 83.62 81.14
4473 = 11.2% of all cases || S VP PP L 287 90.24 81.96
ADJP TAG PP R 90 75.56 78.16
ADVP TAG PP R 35 68.57 52.17
NP NP PP R 23 0.00 0.00
PP PP PP L 19 21.05 26.67
NAC TAG PP R 12 50.00 100.00
TOTAL 4473 82.29 81.51
Coordination NP NP NP R 289 55.71 53.31
VP VP VP R 174 74.14 72.47
763 = 1.9% of all cases SSSR 129 72.09 69.92
ADJP TAG TAG R 28 71.43 66.67
VP TAG TAG R 25 60.00 71.43
NX NX NX R 25 12.00 75.00
SBAR SBAR SBAR R 19 78.95 83.33
PP PP PP R 14 85.71 63.16
TOTAL 763 61.47 62.20

Table 7.6: Accuracy for various types/sub-types of dependency (part 1). Ounly sub-types
occurring more than 10 times are shown.

198

[Type | Sub-type Description | Count | Recall | Precision ||

Mod’n within BaseNPs NPB TAG TAG L 11786 | 94.60 93.46
NPB TAG NPB L 358 97.49 92.82
12742 = 29.6% of all cases || NPB TAG TAG R 189 74.07 75.68
NPB TAG ADJP L 167 65.27 71.24
NPB TAG QP L 110 80.91 81.65
NPB TAG NAC L 29 51.72 71.43
NPB NX TAG L 27 14.81 66.67
NPB QP TAG L 15 66.67 76.92
TOTAL 12742 | 93.20 92.59
Mod’n to NPs NP NPB NP R Appositive 495 74.34 75.72
NP NPB SBAR R Relative clause 476 79.20 79.54
1418 = 3.6% of all cases NP NPB VP R Reduced relative 205 77.56 72.60
NP NPB SG R 63 88.89 81.16
NP NPB PRN R 53 45.28 60.00
NP NPB ADVP R 48 35.42 54.84
NP NPB ADJP R 48 62.50 69.77
TOTAL 1418 73.20 75.49
Sentential head TOP TOP S R 1757 96.36 96.85
TOP TOP SINV R 89 96.63 94.51
1917 = 4.8% of all cases TOP TOP NP R 32 78.12 60.98
TOP TOP SG R 15 40.00 33.33
TOTAL 1917 | 94.99 94.99
Adjunct to a verb VP TAG ADVP R 367 74.93 78.57
VP TAG TAG R 349 90.54 93.49
2242 = 5.6% of all cases VP TAG ADJP R 259 83.78 80.37
S VP ADVP L 255 90.98 84.67
VP TAG NP R 187 66.31 74.70
VP TAG SBAR R 180 74.44 72.43
VP TAG SG R 159 60.38 68.57
S VP TAG L 115 86.96 90.91
S VP SBAR L 81 88.89 85.71
VP TAG ADVP L 79 51.90 49.40
S VP PRN L 58 25.86 48.39
S VP NP L 45 66.67 63.83
S VP SG L 28 75.00 52.50
VP TAG PRN R 27 3.70 12.50
VP TAG S R 11 9.09 100.00
TOTAL 2242 75.11 78.44

Table 7.7: Accuracy for various types/sub-types of dependency (part 2). Only sub-types
occurring more than 10 times are shown.

199

Chapter 8

Discussion

This chapter discusses and motivates the models in chapter 7 in more detail. We first con-
sider the distance measure: its effect on accuracy, and cases where it helps to discriminate
between rival analyses. We then look at the underlying assumptions that the models make
about the tree annotation style. Next, we look more closely at why it is important to
break rules down, rather than to simply read a context-free grammar from the treebank.

Finally, we consider related work.

8.1 More about the Distance Measure

The distance measure, whose implementation was described in section 7.2.3, deserves more
discussion and motivation. In this section we consider it from three perspectives: its influ-
ence on parsing accuracy; an analysis of distributions in training data that are sensitive to
the distance variables; and some examples of sentences where it is useful in discriminating

between competing analyses.

8.1.1 The Impact of the Distance Measure on Accuracy

Table 8.1 shows the results for models 1 and 2 with and without the adjacency and verb

distance measures. It’s clear that the distance measure improves accuracy.

200

IMODEL || A | V || LR | LP

‘CBS‘OCBS‘SQCBS H

Model 1 | NO | NO || 75.0% | 76.5% | 2.18 | 38.5% 66.4
Model 1 || YES | NO | 86.6% | 86.7% | 1.22 | 60.9% 81.8
Model 1 || YES | YES || 87.8% | 88.2% | 1.03 | 63.7% 84.4
Model 2 | NO | NO | 85.1% | 86.8% | 1.28 | 58.8% 80.3
Model 2 | YES | NO || 87.7% | 87.8% | 1.10 | 63.8% 83.2
Model 2 || YES | YES || 88.7% | 89.0% | 0.95 | 65.7% 85.6

Table 8.1: Results on Section 0 of the WSJ Treebank. A = YES, V = YES mean that
the adjacency/verb conditions respectively were used in the distance measure. LR/LP =
labeled recall/precision. CBs is the average number of crossing brackets per sentence. 0
CBs, < 2 CBs are the percentage of sentences with 0 or < 2 crossing brackets respectively.

(a) PP (b) SBAR
IN NP NP WHNP S S
| P | | | |
among NPB PP NF|)B that show up researchers said
| |
a group IN workers
|
of

Figure 8.1: Two examples of bad parses produced by model 1 with no distance or subcat-
egorization conditions (Modell(No,No) in table 8.1). In (a) one PP has two complements,
the other has none; in (b) the SBAR has two complements. In both examples either the
adjacency condition or the subcategorization parameters will correct the errors, so these
are examples where the adjacency and subcategorization variables overlap in their utility.

What is most striking is just how badly model 1 performs without the distance mea-
sure. Looking at the parser’s output, the reason for this is that the adjacency condi-
tion in the distance measure is approximating subcategorization information. In partic-
ular, in phrases such as PPs and SBARs (and, to a lesser extent, in VPs) which almost
always take exactly one complement to the right of their head, the adjacency feature
encodes this mono-valency through parameters P(STOP|PP/SBAR, adjacent) = 0 and
P(STOP|PP/SBAR, not adjacent) = 1. Figure 8.1.1 shows some particularly bad struc-
tures returned by model 1 with no distance variables. (See section 3.3.7 for more discussion

of how the distance variable approximates subcategorization.)

The other surprise is that subcategorization can be very useful, but that the distance

201

measure has masked this utility. One interpretation in moving from the least parameter-
ized model Modell(No,No) to the fully parameterized model Model2(Yes,Yes) is that the
adjacency condition adds around 11% in accuracy; the verb condition adds another 1.5%;
and subcategorization finally adds a mere 0.8%. Under this interpretation subcategoriza-
tion information isn’t all that useful (and this was my original assumption, as historically
this was the order in which I had added features to the model).

But under another interpretation subcategorization is very useful: in moving from
Modell(No,No) to Model2(No,No) we see a 10% improvement due to subcategorization
parameters; adjacency then adds a 1.5% improvement; and the verb condition adds a final
1% improvement.

From an engineering point of view, given a choice of whether to add just distance or
subcategorization to the model, distance is preferable. But linguistically it is clear that
adjacency can only approximate subcategorization, and that subcategorization is more
“correct” in some sense. In free word order languages distance may not approximate
subcategorization at all well — a complement may appear to either the right or left of the

head, confusing the adjacency condition.

8.1.2 Frequencies in Training Data

Tables 8.2 and 8.3 show the effect of distance on the distribution of modifiers in two of
the most frequent syntactic environments: NP and verb modification. The distribution
varies a great deal with distance. Most striking is the way that the probability of STOP
increases with increasing distance: from 71% to 89% to 98% in the NP case, from 8% to
60% to 96% in the verb case. Each modifier probability generally decreases with distance.
For example, the probability of seeing a PP modifier to an NP decreases from 17.7% to
5.57% to 0.93%.

8.1.3 The Adjacency Condition and Right-Branching Structures

Both the adjacency and verb components of the distance measure allow the model to
learn a preference for right-branching structures. First, consider the adjacency condition.

Table 8.4 shows some examples where right-branching structures are more frequent. Using

202

A=TRUE,V=FALSE || A=FALSE,V=FALSE || A=FALSE,V=TRUE
Y%age ? Y%age ? %age ?
70.78 STOP 88.53 STOP 97.65 STOP
17.7 PP 5.07 PP 0.93 PP
3.54 SBAR 2.28 SBAR 0.55 SBAR
3.43 NP 1.55 NP 0.35 NP
2.22 VP 0.92 VP 0.22 VP
0.61 SG 0.38 SG 0.09 SG
0.56 ADJP 0.26 PRN 0.07 PRN
NP 0.54 PRN 0.22 ADVP 0.04 ADJP
o~ 0.36 ADVP 0.15 ADJP 0.03 ADVP
NPB ? 0.08 TO 0.09 -RRB- 0.02 S
| 0.08 CONJP 0.02 ucCP 0.02 -RRB-
- 0.03 UCP 0.01 X 0.01 X
0.02 JJ 0.01 RRC 0.01 VBG
0.01 VBN 0.01 RB 0.01 RB
0.01 RRC
0.01 FRAG
0.01 CD
0.01 -LRB-

Table 8.2: Distribution of non-terminals generated as post-modifiers to an NP (see tree
to the left), at various distances from the head. A=TRUE means the modifier is adjacent
to the head, V=TRUE means there is a verb between the head and the modifier. The
distributions were calculated from the first 10000 events for each of the distributions in
sections 2-21 of the treebank.

the statistics from tables 8.2 and 8.3, the probability of the alternative structures can
be calculated — the results are given below. The right-branching structures get higher
probability (although this is before the lexical dependency probabilities are multiplied
in, so this “prior” preference for right-branching structures can be over-ruled by lexical
preferences). If the distance variables were not conditioned on, the product of terms for
the two alternatives would be identical, and the model would have no preference for one
structure over another.

Probabilities for the two alternative PP structures in table 8.4 (excluding probability
terms that are constant across the two structures. A=1 means distance is adjacent, A=0

means not adjacent):

Right-branching
P(PP|NP, NPB, A=1)P(STOP|NP, NPB, A=0)
P(PP|NP, NPB, A=1)P(STOP|NP, NPB, A=0)

= 0.177 % 0.8853 x 0.177 * 0.8853 = 0.02455 (8.1)

203

A=TRUE,V=FALSE || A=FALSE,V=FALSE || A=FALSE,V=TRUE
Y%oage ? Y%oage ? %age ?
39 NP-C 59.87 STOP 95.92 STOP
15.8 PP 22.7 PP 1.73 PP
8.43 SBAR-C 3.3 NP-C 0.92 SBAR
8.27 STOP 3.16 SG 0.5 NP
5.35 SG-C 2.71 ADVP 0.43 SG
5.19 ADVP 2.65 SBAR 0.16 ADVP
5.1 ADJP 15 SBAR-C 0.14 SBAR-C
3.24 S-C 1.47 NP 0.05 NP-C
2.82 RB 1.11 SG-C 0.04 PRN
2.76 NP 0.82 ADJP 0.02 S-C
2.28 PRT 0.2 PRN 0.01 VBN
0.63 SBAR 0.19 PRT 0.01 VB
0.41 SG 0.09 S 0.01 UCP
0.16 VB 0.06 S-C 0.01 SQ
VP 0.1 S 0.06 -RRB- 0.01 S
N 0.1 PRN 0.03 FRAG 0.01 FRAG
VB 7 0.08 UCP 0.02 -LRB- 0.01 ADJP
| 0.04 VBZ 0.01 X 0.01 -RRB-
0.03 VBN 0.01 VBP 0.01 -LRB-
0.03 VBD 0.01 VB
0.03 FRAG 0.01 UCP
0.03 -LRB- 0.01 RB
0.02 VBG 0.01 INTJ
0.02 SBARQ
0.02 CONJP
0.01 X
0.01 VBP
0.01 RBR
0.01 INTJ
0.01 DT
0.01 -RRB-

Table 8.3: Distribution of non-terminals generated as post-modifiers to a verb within a VP
(see tree to the left), at various distances from the head. A=TRUE means the modifier is
adjacent to the head, V=TRUE means there is a verb between the head and the modifier.
The distributions were calculated from the first 10000 events for each of the distributions
in sections 2-21. Auxiliary verbs (verbs taking a VP complement to their right) were
excluded from these statistics.

204

Non Right-branching

P(PP|NP, NPB, A=1)P(PP|NP, NPB, A=0)
P(STOP|NP, NPB, A=0)P(STOP|NP, NPB, A=1)

= 0.177 % 0.0557 * 0.8853 * 0.7078 = 0.006178 (8.2)

Probabilities for the SBAR case in table 8.4, assuming the SBAR contains a verb (V=0

means modification does not cross a verb, V=1 means it does):

Right-branching

P(PP|NP,NPB,A=1,V=0)P(SBAR|NP,NPB,A=1,V=0)
P(STOP|NP,NPB,A=0,V=1)P(STOP|NP,NPB,A=0,V=1)

= 0.177 % 0.0354 x 0.9765 * 0.9765 = 0.005975 (8.3)
Non Right-branching

P(PP|NP,NPB,A=1)P(STOP|NP,NPB,A=1)
P(SBAR|NP,NPB,A=0)P(STOP|NP,NPB,A=0,V=1)

= 0.177 % 0.7078 x 0.0228 x 0.9765 = 0.002789 (8.4)

8.1.4 The Verb Condition and Right-Branching Structures

Table 8.5 shows some examples where the verb condition is important in differentiating the
probability of two structures. In both cases an adjunct can attach either high or low, but
the high attachment results in a dependency crossing a verb, and has lower probability.
An alternative to the surface string feature would be a predicate such as “were any of
the previous modifiers in X7, where X is a set of non-terminals that are likely to contain a
verb, such as VP, SBAR, S or SG. This would allow the model to handle cases like the first
example in table 8.5 correctly. The second example shows why it is preferable to condition
on the surface string. In this case the verb is “invisible” to the top level, as it is generated

recursively below the NP object.

205

68% 32%
NP NP
NPB PP
P NPB PP PP
IN NP N
Py IN ﬁp
NPB PP NPB
61% 39%
NP NP
NPB PP
T NPB PP SBAR
N NP N NP
//A\\A |
NPB SBAR NPB

Table 8.4: Some alternative structures for the same surface sequence of chunks (NPB PP
PP in the first case, NPB PP SBAR in the second case), where the adjacency condition
distinguishes between the two structures. The percentages are taken from sections 2-21 of
the treebank. In both cases right-branching structures are more frequent.

95% 5%
VP VP
v e ///////1\\\\\\\
|
///A\\\ VP
TO VP PN
TO VP
PN
\% NP PP v NP
67% 33%
VP VP
= Np ///////T\\\\\\\
TN \Y% NP PP
NPB VP N
NPB VP
PN
\% X PP vV X

Table 8.5: Some alternative structures for the same surface sequence of chunks, where the
verb condition in the distance measure distinguishes between the two structures. In both
cases the low-attachment analyses will get higher probability under the model, due to the
low probability of generating a PP modifier involving a dependency that crosses a verb.
(X stands for any non-terminal.)

206

8.1.5 Structural vs. Semantic Preferences

One hypothesis would be that lexical statistics are really what is important in parsing:
that arriving at a correct interpretation for a sentence is simply a matter of finding the
most semantically plausible analysis, and that the statistics related to lexical dependencies
approximate this notion of plausibility. Implicitly, we’d be just as well off (maybe even
better off) if statistics were calculated between items at the predicate-argument level, with
no reference to structure. The distance preferences under this interpretation are just a way
of mitigating sparse data problems: when the lexical statistics are too sparse, then falling
back on some structural preference is not ideal, but is at least better than chance. This
hypothesis is suggested by the results on PP attachment, which showed that models will
perform better given lexical statistics, and that a straight structural preference is merely
a fall-back.

But some examples suggest this is not the case: that, in fact, many sentences have
several equally semantically plausible analyses, but that structural preferences distinguish

strongly between them. Take the following example (from [Pereira and Warren 80]):
Example 1. John was believed to have been shot by Bill

Surprisingly, this sentence has two analyses — Bill can be the deep subject of either
“believed” or “shot”. Yet people have a very strong preference for Bill to be doing the
shooting, so much so that they may even miss the second analysis. (To see that the
dispreferred analysis is semantically quite plausible, consider Bill believed John to have
been shot.)

As evidence that structural preferences can even over-ride semantic plausibility, take

the following example (from [Pinker 94]):
Example 2. Flip said that Squeaky will do the work yesterday

This sentence is a garden path: the structural preference for “yesterday” to modify
the most recent verb is so strong that it is easy to miss the (only) semantically plausible
interpretation, paraphrased below as Flip said yesterday that Squeaky will do the work.

The model makes the correct predictions in these cases. In example 1, the statistics in

table 8.3 show that a PP is 9 times as likely to attach low than high when two verbs are

207

candidate attachment points (the chances of seeing a PP modifier are 15.8% and 1.73% in
columns 1 and 3 of the table respectively). In example 2, the probability of seeing an NP
(adjunct) modifier to do in a non-adjacent but non-verb-crossing environment is 2.11% in
sections 2-21 of the treebank (8 out of 379 cases); in contrast the chance of seeing an NP
adjunct modifying said across a verb is 0.026% (1 out of 3778 cases). The difference is a

factor of almost 80.

8.2 The Importance of the Choice of Tree Representation

Figures 8.2 and 8.3 show some alternative styles of syntactic annotation. The Penn tree-
bank annotation style tends to leave trees quite flat, typically with one level of structure
for each X-bar level; at the other extreme are completely binary-branching representa-
tions. The two annotation styles are in some sense equivalent, in that it is easy to define a
one-to-one mapping between them. But crucially, two different annotation styles may lead
to quite different parsing accuracies for a given model, even if the two representations are
equivalent under some one-to-one mapping.

A parsing model does not need to be tied to the annotation style of the treebank on
which it is trained. The following procedure can be used to transform trees in both training

and test data to a new representation:
1. Transform training data trees to the new representation and train the model.

2. Recover parse trees in the new representation when running the model over test data

sentences.
3. Convert the test output back to the treebank representation for scoring purposes.

As long as there is a one-to-one mapping between the treebank and the new repre-
sentation, nothing is lost in doing this. [Goodman 97] and [Johnson 97] both suggest this
strategy: [Goodman 97| converts the treebank to binary branching trees; [Johnson 97] con-
siders conversion to a number of different representations, and discusses how this influences
accuracy for non-lexicalized PCFGs.

The models developed in chapter 7 have tacitly assumed the Penn-treebank style of

annotation, and will perform badly given other representations (such as binary branching

208

vV Yl Y2

Figure 8.2: Alternative annotation styles for a sentence S with a verb head V, left modifiers
X1...X2, and right modifiers Y1...Y2. (a) is the Penn treebank style of analysis: one level
of structure for each bar level. (b) is an alternative but equivalent binary branching

representation.
(a) NP (a’) NP
NP Y1 Y2 NPB Y1 Y2
X2 X1 N X2 X1 N

(b) NP
/\
NP Y2
/\
NP Y1
/\
X2

N

X1 N
Figure 8.3: Alternative annotation styles for a noun phrase with a noun head N, left
modifiers X1...X2, and right modifiers Y1...Y2. (a) is the Penn treebank style of analysis:
one level of structure for each bar level, although notice that the non-recursive as well as
recursive noun phrases are labeled NP. (b) is an alternative but equivalent binary branching

representation. (a’) is our modification of the Penn treebank style to differentiate recursive
and non-recursive NPs (in some sense NPB is a bar 1 structure, NP is a bar 2 structure).

209

trees). This section makes this point more explicit: describing exactly what annotation
style is suitable for the models of chapter 7, and showing how other annotation styles will
cause problems. This dependence on Penn—treebank style annotations does not imply that
the models are inappropriate for a treebank annotated in a different style — in this case
we simply recommend transforming the trees to flat, one-level per X-bar level trees before
training the model, as in the 3-step procedure outlined above.

Other models in the literature are also very likely to be sensitive to annotation style.
[Charniak 97)’s models will most likely perform quite differently with binary branching
trees (for example, his current models will learn that rules such as VP -> V SG PP are
very rare, but with binary branching structures this context-sensitivity will be lost). The
models of [Magerman 95, Ratnaparkhi 97] use contextual predicates which would most
likely need to be modified given a different annotation style. [Goodman 97)’s models are
the exception, as he already specifies that the treebank should be transformed to his chosen

representation, binary branching trees.

8.2.1 Representation Affects Structural, not Lexical, Preferences

The alternative representations in figures 8.2 and 8.3 have the same lexical dependencies
(providing that the binary-branching structures are centered about the head of the phrase,
as in the examples). The difference between the representations involves structural prefer-
ences such as the right-branching preferences encoded by the distance measure. A binary
branching tree representation makes the distance measure as described in chapter 7 useless
as a preference for right branching structures.

To see this, consider the examples in figure 8.4. In each binary branching example the
generation of the final modifying PP is “blind” to the distance between it and the head
that it modifies. At the top level of the tree it is apparently adjacent to the head; crucially
the closer modifier (SG in (a), the other PP in (b)) is hidden lower in the tree structure. So
the model will be unable to differentiate generation of the PP in adjacent vs. non-adjacent
or non-verb-crossing vs. verb-crossing environments, and the structures in figure 8.4 will
get unreasonably high probability.

This does not mean that distance preferences cannot be encoded in a binary branching

210

PCFG. [Goodman 97] achieves this by adding distance features to the non-terminals. The
spirit of this implementation is that the top level rules VP -> VP PP and NP -> NP PP
would be modified to VP -> VP(+rverb) PP and NP -> NP(+rmod) PP, where (4rverb)
means a phrase where the head has a verb in its right-modifiers, and (4+rmod) means
a phrase that has at least one right-modifier to the head. The model will learn from
training data that P(VP — VP(4rverb) PP|VP) « P(VP — VP(-rverb) PP|VP), i.e.,

that a prepositional phrase modification is much more likely when it does not cross a

verb.

(a) BB VP (b) BB NP
/\ /\
VP PP NP PP
N N
V SG NP PP

(a’) FLAT VP (b’) FLAT NP
vV SG PP NPB PP PP

Figure 8.4: BB = binary branching structures; FLAT = Penn treebank style annotations.
In each case the binary branching annotation style prevents the model from learning that
these structures should receive low probability due to the long distance dependency asso-
ciated with the final PP (in bold).

8.2.2 The Importance of Differentiating Non-recursive vs. Recursive

NPs

Figure 8.5 shows the modification to the Penn treebank annotation to relabel baseNPs as
NPB. It also illustrates a problem that arises if this distinction is not made: structures
such as that in figure 8.5(b) receive high probability even if they are never seen in training
data. ([Johnson 97] notes that this structure has higher probability than the correct, flat
structure, given counts taken from the treebank for a standard PCFG.) The model is fooled
by the binary branching style into modeling both PPs as being adjacent to the head of the
noun-phrase, so 8.5(b) will get very high probability.

211

(a) NP (a’) NP

R R

NP Y1 Y2 NPB Y1 Y2
X2 X1 N X2 Xl N
(b) NP
/\
NP PP
N
NP PP

Figure 8.5: (a) The way the Penn treebank annotates NPs. (a’) Our modification to the
annotation, to differentiate recursive (NP) vs. non-recursive (NPB) noun phrases. (b) a
structure that is never seen in training data, but will receive much too high probability
from a model trained on trees of style (a).

(a) ADJP (b) ADVP
ADJP SBAR ADVP SBAR
| N | |
far higher than expected more stringently than expected

Figure 8.6: Examples of other phrases in the Penn treebank where non-recursive and
recursive phrases are not differentiated.

This problem does not only apply to NPs — other phrases such as adjectival phrases
(ADJPs) or adverbial phrases (ADVPs) also have non-recursive (bar 1) and recursive (bar
2) levels, which are not differentiated in the Penn treebank. See figure 8.6 for examples.
Ideally these cases should be differentiated too: we did not implement this change because
it is unlikely to make much difference to accuracy given the relative infrequency of these
cases (excluding coordination cases, and looking at the 80,254 instances in sections 2-21 of
the Penn treebank where a parent and head non-terminal were the same: 94.5% were the
NP case; 2.6% were cases of coordination where a punctuation mark was the coordinator!;

only 2.9% were similar to those in figure 8.6).

8.2.3 Summary

To summarise, the models in this chapter assume:

Yfor example, (S (S John eats apples) ; (S Mary eats bananas))

212

1. Tree representations are “flat”: i.e., one level per X-bar level.

2. Different X-bar levels have different labels (in particular, non-recursive vs. recursive

levels are differentiated, at least for the most frequent case of NPs).

8.3 The Need to Break Down Rules

The parsing approaches described in the previous two chapters have both concentrated
on breaking down context-free rules in the treebank into smaller components. In the
previous chapter, rules were initially broken down to bare-bones Markov processes: context
dependency was built back up through the distance measure and subcategorization. Even
with this additional context, the models are still able to recover rules in test data that
have never been seen in training data.

An alternative, proposed in [Charniak 97], is to limit parsing to those context free
rules seen in training data. A lexicalized rule is predicted in two steps. First, the whole
context-free rule is generated. Second, the lexical items are filled in. The probability of a

rule is estimated as?:

P(Lyp(ly)...L1 (L) H(h)Ry(1)... Ry (1) | P(h)) =
P(Ln...LiHRy...Ry) | P(h)) x

H 'Pl(lz | Li,P, h) X

i=1...n

H Pr(Tj | Rj,P,h) X
j=l..m

(8.5)

The estimation technique used in [Charniak 97] for the CF rule probabilities interpolates
several estimates, the lowest being P(Ly,...L1HR;...R,;) | P). Any rules not seen in
training data will get zero probability under this model. Parse trees in test data will be
limited to include rules seen in training.

A problem with this approach is coverage. As shown in this section, many test data

sentences will require rules that have not been seen in training. Hence the motivation for

2Charniak’s model also conditions on the parent of the non-terminal being expanded, we omit this here
for brevity.

213

breaking down rules into smaller components. This section motivates the need to break
down rules from four perspectives: first, we discuss how the Penn treebank annotation
style leads to a very large number of grammar rules; second, we assess the extent of the
coverage problem by looking at rule frequencies in training data; third, we run experiments
to assess the impact of the coverage problem on accuracy; fourth, we discuss how breaking

rules down may improve estimation as well as coverage.

8.3.1 The Penn Treebank Annotation Style Leads to Many Rules

The “flatness” of the Penn treebank annotation style has already been discussed in sec-
tion 8.2. The flatness of the trees leads to a very large (and constantly growing) number
of rules. The prime reason for this is that the number of adjuncts to a head is potentially
unlimited, for example there can be any number of PP adjuncts to a head verb. A binary-
branching (Chomsky adjunction) grammar can generate an unlimited number of adjuncts
with very few rules. For example, the following grammar generates any sequence VP -> V

NP PPx:

VP -> V NP

VP -> VP PP

In contrast, the Penn treebank style would create a new rule for each number of PPs seen

in training data. The grammar would be

VP -> V NP

VP -> V NP PP

VP -> V NP PP PP

VP -> V NP PP PP PP

. and so on

Other adverbial adjuncts, such as adverbial phrases or adverbial SBARs, can also modify
a verb several times; and all of these different types of adjuncts can be seen together in

the same rule. The result is a combinatorial explosion in the number of rules. To give a

214

flavour of this, here is a random sample of rules that occurred only once in sections 2-21

of the Penn treebank, and were of the format VP —> VB modifierx:

VP -> VB NP NP NP PRN

VP -> VB NP SBAR PP SG ADVP
VP -> VB NP ADVP ADVP PP PP
VP -> VB RB

VP -> VB NP PP NP SBAR

VP -> VB NP PP SBAR PP

It is not only verb phrases that cause this kind of combinatorial explosion: other phrases,
in particular non-recursive noun phrases, also contribute a huge number of rules. The next
section considers the distributional properties of the rules in more detail.

Note that there is good motivation for the Penn treebank’s decision to represent rules
in this way, rather than with rules expressing Chomsky adjunction (i.e., a schema where
complements and adjuncts are separated, through rule types (VP — VB {complement }*)
and (VP — VP {adjunct})). First, it allowed the argument/adjunct distinction for PP
modifiers to verbs to be left undefined: this decision was found to be very difficult for
annotators. Second, in the surface ordering (as opposed to deep structure), adjuncts
are often found closer to the head than complements, thereby yielding structures that fall
outside the Chomsky adjunction schema. (For example, a rule such as (VP — VB NP-C PP
SBAR-C) is found very frequently in the Penn treebank; SBAR complements nearly always

extrapose over adjuncts.)

8.3.2 Quantifying the Coverage Problem

In order to quantify the coverage problem, rules were collected from sections 2-21 of the
Penn treebank. Punctuation was raised as high as possible in the tree, and the rules did
not have complement markings or the distinction between baseNPs and recursive NPs.
939,382 rule tokens were collected in this way; there were 12,409 distinct rule types. We
also collected the count for each rule. Table 8.6 shows some statistics for these rules.

A majority of rules in the grammar — 6,765, or 54.5% — occurred only once. These

rules account for 0.72% of rules by token. That is, if a rule was drawn at random from

215

Rule Count || No. of Rules | Percentage || No. of Rules | Percentage
by Type by Type by token by token
1 6765 54.52 6765 0.72
2 1688 13.60 3376 0.36
3 695 5.60 2085 0.22
4 457 3.68 1828 0.19
5 329 2.65 1645 0.18
6 ... 10 835 6.73 6430 0.68
11 ... 20 496 4.00 7219 0.77
21 ... 50 501 4.04 15931 1.70
o1 ... 100 204 1.64 14507 1.54
> 100 439 3.54 879596 93.64

Table 8.6: Statistics for rules taken from sections 2-21 of the treebank, where complement
markings were not included on non-terminals.

the 939,382 rule tokens in sections 2-21 of the treebank, there would be a 0.72% chance
of that being the only instance of that rule. On the other hand, when drawing a rule at
random from the 12,409 rules in the grammar induced from those sections, there would be
a 54.5% chance of that rule having occurred only once.

The percentage by token of the 1-count rules is an indication of the coverage problem.
From this estimate, 0.72% of all rules (or 1 in 139 rules) required in test data would never
have been seen in training. It was also found that 15.0% (1 in 6.67) of all sentences had
at least one rule that occurred just once. This gives an estimate that roughly 1 in 6.67
sentences in test data will not be covered by a grammar induced from 40,000 sentences in
the treebank.

If the complement markings are added to the non-terminals, and the baseNP /non-
recursive NP distinction is made, then the coverage problem is made worse. Table 8.7
gives the statistics in this case. 17.1% of all sentences (1 in 5.8 sentences) contained at

least one 1-count rule.

8.3.3 The Impact of Coverage on Accuracy

Parsing experiments were used to assess the impact of the coverage problem on parsing
accuracy. Section 0 of the treebank was parsed with models 1 and 2 as before, but the

parse trees were restricted to include rules already seen in training data. Table 8.8 shows

216

Rule Count || No. of Rules | Percentage || No. of Rules | Percentage
by Type by Type by token by token
1 7865 55.00 7865 0.84
2 1918 13.41 3836 0.41
3 815 5.70 2445 0.26
4 528 3.69 2112 0.22
5 377 2.64 1885 0.20
6..10 928 6.49 7112 0.76
11 ... 20 595 4.16 8748 0.93
21 ... 50 552 3.86 17688 1.88
o1 ... 100 240 1.68 16963 1.81
> 100 483 3.38 870728 92.69

Table 8.7: Statistics for rules taken from sections 2-21 of the treebank, where complement
markings were included on non-terminals.

MODEL Accuracy
LR | LP [CBs [0CBs [<2 CBs
Model 1 87.9 | 88.3 | 1.02 | 63.9 84.4
Model 1 (restricted) || 87.4 | 86.7 | 1.19 | 61.7 81.8
Model 2 88.8 189.0 | 094 | 65.9 85.6
Model 2 (restricted) || 87.9 | 87.0 | 1.19 | 62.5 82.4

Table 8.8: Results on Section 0 of the WSJ Treebank. “restricted” means the model is
restricted to recovering rules that have been seen in training data. LR/LP = labeled
recall/precision. CBs is the average number of crossing brackets per sentence. 0 CBs,
< 2 CBs are the percentage of sentences with 0 or < 2 crossing brackets respectively.

the results. Restricting the rules leads to a 0.5/1.6% decrease in recall/precision for model
1, and a 0.9/2.0% decrease for model 2.
8.3.4 Breaking Down Rules Improves Estimation

Coverage problems are not the only motivation for breaking down rules. The method may
also improve estimation. To illustrate this, consider the rules headed by told, whose counts
are shown in table 8.9. Estimating the probability P(Rule | VP, told) using [Charniak 97]’s

method would interpolate two maximum-likelihood estimates:

AP, (Rule | VP, told) 4 (1 — A)P,(Rule | VP) (8.6)

217

Estimation interpolates between the specific, lexically sensitive distribution in table 8.9,
and the non-lexical estimate based on just the parent non-terminal, VP. There are many
different rules in the more specific distribution (26 different rule types, out of 147 tokens
where told was a VP head); and there are several 1-count rules (11 cases). From these
statistics A would have to be relatively low. There’s a high chance of a new rule for “told”
being required in test data, therefore a reasonable amount of probability mass must be left
to the backed-off estimate P,,;(Rule | VP).

This estimation method is missing a crucial generalisation: in spite of there being many
different rules, the distribution over subcategorization frames is much sharper. “told” is
seen with only 5 subcategorization frames in training data — the large number of rules is
almost entirely due to adjuncts or punctuation appearing after or between complements.

The estimation method in model 2 effectively estimates the probability of a rule as
Pi.(LC | VP, told) * P,.(RC | VP, told) * P(Rule | VP, told, LC, RC) (8.7)

The left and right subcategorization frames, LC and RC, are chosen first. The entire rule is
then generated by Markov processes.

Once armed with the P, and P,. parameters, the model has the ability to learn the
generalisation that “told” appears with a quite limited, sharp distribution over subcat-
egorization frames. Say these parameters are again estimated through interpolation, for

example
AP (LC | VP, told) + (1 — A) Py (LC | VP) (8.8)

In this case A can be quite high. Only 5 subcategorization frames (as opposed to 26 rule
types) have been seen in the 147 cases. The lexically specific distribution P,,,;(LC | VP, told)
can therefore be quite highly trusted. Relatively little probability mass is left to the backed-
off estimate.

In summary, from the distributions in table 8.9, the model should be quite uncertain
about what rules “told” can appear with. However, it should be relatively certain about
the subcategorization frame. Introducing subcategorization parameters allows the model
to generalise in an important way about rules. We have carefully isolated the “core” of

rules — the subcategorization frame — that the model should be certain about.

218

Count | Rule

70 VP told -> VBD NP-A SBAR-A

23 VP told -> VBD NP-A

VP told -> VBD NP-A SG-A

VP told -> VBD NP-A NP SBAR-A
VP told -> VBD NP-A : S-A

VP told -> VBD NP-A PP SBAR-A
VP told -> VBD NP-A PP

VP told -> VBD NP-A NP

VP told -> VBD NP-A PP NP SBAR-A
VP told -> VBD NP-A PP PP

VP told -> VBD NP-A NP PP

Count | Subcat Frame

VP told -> VBD NP-A , SBAR-A 23 }ﬂi:ﬁ; SBAR-A}
VP told -> VBD NP-A , S-A
(a) VP told -> VBD ()| 9 {NP-A, S-A}
8 (NP-A, SG-A}

VP told -> ADVP VBD NP-A SBAR-A 9 0
VP told -> VBD NP-A SG-A SBAR

VP told -> VBD NP-A SBAR-A PP 147 TOTAL
VP told -> VBD NP-A SBAR , PP

VP told -> VBD NP-A PP SG-A

VP told -> VBD NP-A PP NP

VP told -> VBD NP-A PP : S-A

VP told -> VBD NP-A NP : S-A

VP told -> VBD NP-A ADVP SBAR-A

VP told -> VBD NP-A ADVP PP NP

VP told -> VBD NP-A ADVP

VP told -> VBD NP-A , PRN , SBAR-A
147 TOTAL

= e e = e = =N NN NN DN WS ROt

Table 8.9: (a) Distribution over rules with “told” as the head (from sections 2-21 of the
treebank); (b) Distribution over subcategorization frames with “told” as the head.

We should note that Charniak’s method will certainly have some advantages in estima-
tion: it will capture some statistical properties of rules that our independence assumptions

will lose (e.g., the distribution over the number of PP adjuncts seen for a particular head).

219

8.4 Comparison to Related Work on Parsing the Penn WSJ
Treebank

8.4.1 [Charniak 97]

The model described in [Charniak 97] has two types of parameters:

Lexical Dependency Parameters Charniak’s dependency parameters are similar to

the L2 parameters of section 7.6.1. Whereas our parameters are
Pro(lw; | Li, lt;, c,p, P,H,w,t, A, LC)
Charniak’s parameters in our notation would be
Pra(lw; | Li, P,w)

For example, the dependency parameter for an NP headed by profits being the subject
of the verb rose would be P(profits|NP, S, rose).
Rule Parameters The second type of parameters are associated with context free rules
in the tree. As an example, take the S node in the following tree:
VP (said)

N
VB S(rose)

| |
said ?

This non-terminal could expand with any of the rules S — (in the grammar. The
rule probability is defined as P(S — f|rose, S,V P). So the rule probability depends

on the non-terminal being expanded, its headword, and also its parent.

The next few sections give further explanation of the differences between Charniak’s
models and the models of this thesis.
Additional Features of Charniak’s Model

There are some notable additional features of Charniak’s model. First, the rule proba-
bilities are conditioned on the parent of the non-terminal being expanded. Our models

do not include this information, although distinguishing recursive from non-recursive NPs

220

can be considered a reduced form of this information. (See section 8.2.2 for a discussion
of this distinction; the arguments in that section are also motivation for Charniak’s choice
of conditioning on the parent.)

Second, Charniak uses word-class information to smooth probabilities, and reports a
0.35% improvement from this feature.

Finally, Charniak uses 30 million words of text for unsupervised training. A parser is
trained from the treebank, and used to parse this text; statistics are then collected from
this machine-parsed text and merged with the treebank statistics to train a second model.

This gave a 0.5% improvement in performance.

The Dependency Parameters of Charniak’s Model

While similar to ours, Charniak’s dependency parameters are conditioned on less infor-
mation. Whereas our parameters are Pro(lw; | Ly, lt;, c,p, P, H,w,t,A, LC"), Charniak’s
parameters in our notation would be Pro(lw; | L;, P,w). The additional information is as

follows:

H The head non-terminal label (VP in the profits/rose example). At first glance this might
seem redundant — for example an S will usually take a VP as its head. However, in
some cases the head label can vary, for example an S can take another S as its head
in coordination cases.

It;,t The POS tags for the head and modifier words. This allows our model to use POS
tags as word-class information. Charniak’s model may be missing an important gen-
eralization in this respect.

¢ The coordination flag. This distinguishes, for example, coordination cases from apposi-
tives: Charniak’s model will have the same parameter — P(modi fier|head, N P, N P)

— in both of these cases.

p, A, LC/RC The punctuation, distance and subcategorization variables. It is difficult

to tell without empirical tests whether these features are important.

221

The Rule Parameters of Charniak’s Model

The rule parameters in Charniak’s model are effectively decomposed into our L1 parame-
ters (section 7.6.1), the head parameters, and — in models 2 and 3 — the subcategorization
and gap parameters. This decomposition allows our model to assign probability to rules

not seen in training data: see section 8.3 for extensive discussion.

Right-Branching Structures in Charniak’s Model

Our models have used distance features to encode preferences for right-branching struc-
tures. Charniak’s model does not represent this information explicitly, but instead learns
it implicitly through rule probabilities. For example, for an NP PP PP sequence the pref-
erence for a right-branching structure is encoded through a much higher probability for
the rule NP — NP PP rather than NP — NP PP PP. (Notice that conditioning on the rule’s
parent is needed to disallow the structure [NP [NP PP] PPI]; see [Johnson 97] for further
discussion.)

This strategy does not encode all of the information in the distance measure. The
distance measure effectively penalises rules NP — NPB NP PP where the middle NP con-
tains a verb: in this case the PP modification results in a dependency that crosses a verb.
Charniak’s model is unable to distinguish cases where the middle NP does/doesn’t contain

a verb (i.e., the PP modification does/doesn’t cross a verb).

8.4.2 [Jelinek et al. 94, Magerman 95, Ratnaparkhi 96]

We now make a detailed comparison to the history-based models of [Ratnaparkhi 97] and
[Jelinek et al. 94, Magerman 95]. A strength of these models is undoubtedly the powerful
estimation techniques that they use: maximum entropy modeling (in [Ratnaparkhi 97]),
or decision trees (in [Jelinek et al. 94, Magerman 95]). A weakness, we will argue in this
section, is the method of associating parameters with parser moves. We give examples
where this leads to the parameters unnecessarily fragmenting the training data in some
cases, or ignoring important context in other cases.

We first analyze the model of [Magerman 95] through three common examples of am-

biguity: PP attachment, coordination and appositives. In each case a word sequence S has

222

two competing structures — 7 and T, — with associated decision sequences (d1, ..., dy,)

and (eq, ..., ey,) respectively. Thus the probability of the two structures can be written as

P(n|S) =][I P(dildr..di-1,S) (8.9)
i=1..n

P(T2|S) == H P(e¢|el...ei_1,S) (810)
i=1..m

It will be useful to isolate the decision between the two structures to a single probability
term. Let the value j be the minimum value of ¢ such that d; # e;. Then we can rewrite

the two probabilities:

P(ni|S) =][Pldildi.dio1, S) x P(djldr...dj1,8) x [] P(dildy...di-1, S)
i=1...7—1 1=j+1..n
(8.11)
P(T2|S) = H P(ei|61...€i_1,S) X P(€j|€1...ej_1,5) X H P(€i|€1...€i_1,5)
i=1...7—1 1=j+1..m
(8.12)

The first thing to note is that [[,—; ;4 P(dildi...di-1,5) = [l;=1. j_1 Pleiler...ei-1, S),
so that these probability terms are irrelevant to the decision between the two structures.
We make one additional assumption, that

H P(d;|dy...di—1,S) =~ H P(ejler...eji—1,5) = 1
i=j+1..n i=j+1..m
This is justified for the examples in this section, because once the jth decision is made,
the following decisions are practically deterministic. (Equivalently, we are assuming that
P(T1|S) + P(T3|S) = 1, i.e., that very little probability mass is lost to trees other than T}
or Ty.) Given these two equalities, we have isolated the decision between the two structures
to the parameters P(d;|d;...dj_1,S) and P(ejler...ej—1,S5).

Figure 8.7 shows a case of PP attachment. The first thing to notice is that the PP
attachment decision is made before the PP is even built. The decision is linked to the NP
preceding the preposition: whether the arc above the NP should go left or right.

The next thing to notice is that at least one important feature, the verb, falls outside
of the conditioning context. (The model only considers information up to two constituents

preceding or following the location of the decision.) This could be fixed by considering

223

VB NP PP
NP PP IN Nlp
|
DT NN IN/\NP DT NN
|
DT NN
(b) VP
VB NP
NP PP
|
DT NN
IN NP
NP PP
|
DT NN IN/\NP
|
DT NN
(c)
? IN DT NN
| | | |
VB NP IN NP
P P
DT NN DT NN

Figure 8.7: (a) and (b) are two candidate structures for the same sequence of words. (c)
shows the first decision (labeled “?”) where the two structures differ. The arc above the
NP can go either left (for verb attachment of the PP) or right (for noun attachment of the
PP).

224

NP cC NP

|
/\ DT NN

NP PP
DT NN IN/\NP

|
DT NN

(b) NP
NP PP
|
DT NN
IN NP
NP ccC NP
| |
DT NN DT NN
(c)
? CC DT NN
| | |
NP IN NP
P N
DT NN DT NN

Figure 8.8: (a) and (b) are two candidate structures for the same sequence of words. (c)
shows the first decision (labeled “?”) where the two structures differ. The arc above the
NP can go either left (for high attachment (a) of the coordinated phrase) or right (for low
attachment (b) of the coordinated phrase).

additional context: but there is no fixed bound on how far the verb can be from the decision
point. Note also that in other cases the method fragments the data in unnecessary ways.
Cases where the verb directly precedes the NP, or is one place further to the left, are
treated separately.

Figure 8.8 shows a similar example, NP coordination ambiguity. Again, the pivotal
decision is made in a somewhat counter-intuitive location: at the NP preceding the coor-
dinator. At this point the NP following the coordinator has not been built, and its head
noun is not in the contextual window. Figure 8.9 shows an appositive example where the
head noun of the appositive NP is not in the contextual window when the decision is made.

These last two examples can be extended to illustrate another problem. The NP after

225

NP PP) NP
| |
DT NN IN/\NP DT NN
|
DT NN
(b) -
NP PP
|
DT NN
IN NP
NP , NP
| |
DT NN DT NN
(©
? , DT NN
| | |
NP IN NP
N P
DT NN DT NN

Figure 8.9: (a) and (b) are two candidate structures for the same sequence of words. (c)
shows the first decision (labeled “?”) where the two structures differ. The arc above the
NP can go either left (for high attachment (a) of the appositive phrase) or right (for noun
attachment (b) of the appositive phrase).

226

the conjunct or comma could be the subject of a following clause. For example, in John
likes Mary and Bill loves Jill the decision not to coordinate Mary and Bill is made just
after the NP Mary is built. At this point, the verb loves is outside the contextual window,
and the model has no way of telling that Bill is the subject of the following clause. The
model is assigning probability mass to globally implausible structures due to points of local
ambiguity in the parsing process.

Some of these problems can be fixed by changing the derivation order or the condition-
ing context. [Ratnaparkhi 97] has an additional chunking stage which means that the head

noun does fall within the contextual window for the coordination and appositive cases.

8.4.3 [Eisner 96, Eisner 96b]

[Eisner 96| describes a number of probability models with dependency parameters; in ad-
dition [Eisner 96b| describes further experiments and newer models. The second paper
describes models A, B, C, and D. Model C is quite similar to model 1 of chapter 7 (and
pre-dated model 1’s original publication in [Collins 97]). This model represents a node
in the dependency tree as a tag/word pair. Each word can have 0 or more right or left
dependents; probability distributions over different sequences are modeled using 1st order

Markov processes. The major differences between model C and our model 1 are as follows:

e There are no non-terminal labels beyond the POS tags at each node (see section 3.3.5
of this thesis for discussion of the importance of non-terminal information.)

e The dependency trees are flat, with each head taking all of its modifies at the same
level. Because of this the head parameters Py of model 1 are unnecessary in model
C.

e The Markov process is 1st order, conditioning on the previously generated tag-word
pair as well as the head. This may well be additional useful context, and will capture
some features of the distance variable: for example, the adjacency condition, or that
the STOP symbol is likely to follow a heavy phrase such as an SBAR.

e [Eisner 96b] describes the addition of distance variables to the model. The distance
of a modifier from its head is generated along with the modifier. This improves per-

formance, but leads to a probability model that does not sum to 1.

227

[Eisner 96b] reports results for dependency accuracy on a test corpus. The best results
were 92.6% accuracy, for model D. The model of chapter 6 was found to have identical
accuracy when evaluated with the same training and test data (with the modest caveat
that the chapter 6 parser was penalised by using machine generated POS tags for this test,
[Eisner 96b] used hand-labeled tags).

Model C performs at 90.4% accuracy; it is somewhat surprising that model C performs
worse than model D, given that the models have similar features, and that model C is
less deficient (i.e., it comes closer to a model that sums to 1). A likely explanation is
that the smoothing method’s used — holding a count of 3 out for backed-off estimates,
and not smoothing at all when the denominator count was greater than 8 — severely
impacted performance in model C. (Our experience has been that generative models, which
typically have many more possible outcomes for a distribution, require more back-off than
conditional models. The count of 3 is very low, and the threshold of 8 is particularly

extreme.)

8.4.4 [Goodman 97, Goodman 98]

[Goodman 97, Goodman 98] describes Probabilistic feature grammars (PFGs). Each non-
terminal in the grammar is represented as a set of feature-value pairs; the probability
P(X =Y Z|X)ofarule X - Y Z is decomposed as incremental prediction of the
feature values of Y and Z. The formalism assumes binary branching rules (without loss
of generality: a one-to-one mapping from n-ary rules to binary-branching rules is given).
As [Goodman 98] argues, the formalism has a number of computational advantages. All
conditioning variables are encoded through features, allowing a unified account of lexical
dependencies, distance features and so on. Parsing can be achieved through standard
dynamic programming algorithms, and the formalism allows efficient computation of the
inside and outside probabilities for unsupervised training, using the method in [Baker 79].
Having chosen the features on non-terminals, the parameters of the model are specified
by first choosing an order for the features being predicted, then making independence
assumptions and choosing a back-off order for smoothing. Thus these choices are likely

to have a critical effect on the parameterization of the model (as in the Belief Networks

228

example in section 1.5.1) — although [Goodman 98] places little emphasis on these choices.

In particular, the use of binary branching trees may be computationally advantageous,
but it may make a linguistically plausible parameterization difficult. [Goodman 98] (page
231), in referring to the work in [Collins 97], claims that “a PFG that is extremely similar
could be created”. Our feeling is that while it would easy enough to add the same fea-
tures to Goodman’s model, it would take considerably more ingenuity to encode the same
parameters within a PFG. As an example, the models of chapter 7 generate modifiers to
a head from inside to outside, while a binary-branching formalism effectively generates
modifiers outside to inside; once subcategorization is added this leads to quite different
parameters for the two models. Our guess is that these differences, combined with the
choice of decomposition in predicting the features on child non-terminals, are likely to be

quite important for parsing accuracy.

229

Chapter 9

Future Work

9.1 Improving Parsing Accuracy

Increased Context and Improved Estimation. The models in chapter 7 have pa-
rameters that are conditioned on a limited amount of context, making n-gram estima-
tion methods feasible. The history-based framework, as described in section 7.2.2, al-
lows the model to condition on any structure that has been previously generated. For
example, it might make sense to condition upon the previously generated child (as in
[Eisner 96]), or to condition upon features of the surface string under previous modi-
fiers (in addition to the two features encoded by the distance measure). Adding many
more features of this kind would quickly make n-gram estimation methods infeasible;
a natural choice would be to move to more sophisticated estimation methods such as
decision trees (as used in [Magerman 95, Jelinek et al. 94]) or maximum-entropy mod-
els (as in [Ratnaparkhi 97]). Thus we could combine the insights of the work in this
thesis (i.e., an emphasis on using a head-centered with the strengths of the work in
[Magerman 95, Jelinek et al. 94, Ratnaparkhi 97| (i.e., estimation techniques that can use
very rich feature sets).

Unsupervised Learning. Many parsing errors are no doubt caused by poor pa-
rameter estimates resulting from sparse data problems. Chapter 5 gave results for PP
attachment showing that over 90% accuracy could be achieved on test cases where three

or more of the head-words involved had been seen in training data (only around 30% of

230

test data examples met this criterion); but that accuracy dropped to below 72% in cases
where the preposition was the sole source of conditioning information. The breakdown of
results by dependency type in section 7.8.1 suggested that many parsing errors are due
to adjunct placement (e.g., the model recovers PP attachments with 82% precision and
recall); our guess is that many of these errors are due to sparse data problems.

Results in [Hindle and Rooth 91], and more recently in [Ratnaparkhi 98], have sug-
gested that unsupervised training for the PP attachment problem can yield results that
are competitive with those for supervised models. Two natural questions are then:

1. Given a wvery large amount of training data, could an unsupervised method give im-
proved accuracy over a supervised approach? (e.g., could it approach over 90% accu-
racy on all cases in test data, rather than just 30% of the cases?)

2. Can the methods in [Hindle and Rooth 91, Ratnaparkhi 98] be generalized to other,

or all, cases of parsing ambiguity?

9.2 Recovering Additional Information

Predicate Argument Structure. Chapter 7 stressed the need for additional parse
information (namely, complement markings and wh-movement annotations) to facilitate
the recovery of predicate-argument structure. There are several other phenomena that
have not been treated, for example: wh-movement of phrases other than complement NPs;
PRO-control (e.g., recovery of the subject of leave in cases like she promised him to leave,
she persuaded him to leave, she kept him from leaving); and non-constituent coordination
(e.g., Sam likes and Bill hates peanuts or Sam eats peanuts and Bill grapes). Some of these
phenomena (such as PRO control) may be easily recovered through post-processing of the
parser’s output; others, such as the wh-movement or coordination cases, may be complex
enough to require full integration into the statistical model.

Lexicalized grammatical formalisms such as LFG, TAG, CCG and HPSG have all
considered these phenomena in some detail; the parameters of this thesis could no doubt
be carried over to these theories, with the result that a stochastic treatment of the various

phenomena would in some sense come for free. (We actually see this as the main motivation

231

for a move to stochastic versions of these formalisms; our feeling is that moving to these
formalisms is unlikely to help parsing accuracy much, given that most of the parsing errors
have to do with ambiguity rather than syntactic constraints.)

il

“Deep” Syntactic Roles. A related point is the extraction of “deep” syntactic roles.
There is still some remaining ambiguity in the mapping from syntactic trees to semantic
roles. Take the following examples. Uncontrolled PRO is usually co-indexed with the
previous subject, as in example (1) below, but given sufficient semantic evidence it may

be co-indexed with other NPs such as the previous object, as in (2):

(1) Jan was named as president, PRO succeeding Bill.

(2) The company named Jan president, PRO succeeding Bill.

Syntactic roles within nominalizations are quite flexible in their mapping to semantic roles.
A possessive NP can be a deep-subject of the noun that it modifies, or a deep-object, or

an adjunct such as a temporal modifier:

His appointment of Clinton = deep-subject
His appointment by Clinton = = deep-object

today ’s appointment = temporal modifier
Similarly, pre-modifying nouns can take a number of semantic roles

the Clinton appointment = deep subject or object?

the January appointment= temporal modifier

The examples suggest that a combination of syntactic biases and semantic plausibility is
needed to resolve these kinds of ambiguities. The ideal would be an integrated statistical
model that simultaneously recovered syntactic structure and “deep” syntactic roles.
Information Extraction. [Miller et al. 98] describe the BBN system for the 7th
Message Understanding Conference (MUC-7). One of the tasks was to extract pairs of
entities in relationships such as the employer-employee relationship, as in the following

example:

John Smith, an IBM spokesman, said ...
= {Employee = John Smith, Employer = IBM}

232

[Miller et al. 98] describe an integrated statistical model which simultaneously recovers the
syntactic tree along with semantic roles. The syntactic part of the model is quite similar to
the models in chapter 7. [Collins and Miller 98] describe a model for extraction of events
in the MUC-6 management successions domain (IN is a person coming into a new post,

POST is the title of the position), as in the following example:

Last week Hensley West, 59 years old, was named as president,

a surprising development.

= {IN = Hensley West, POST = president}

In [Collins and Miller 98] the model is semantically driven, but syntactically naive; a pars-
ing model that recovered both syntactic and semantic information would again be prefer-

able.

9.3 Parsing Languages other than English

This thesis has described work on parsing English; other languages may raise new prob-
lems for the approach. Model 1 of chapter 7 was applied to parsing Czech [Hajic et al. 98]
in the 1998 Johns Hopkins Summer Workshop on Language Engineering. Czech has some
characteristics that make it very different from English, including a very high degree of
inflection, and much freer word order. The model recovered dependencies with 80% ac-
curacy (with around 82% accuracy for newswire articles), when trained and tested on the
Prague Dependency Treebank (PDT) [Hajic 98]. A major topic for future research is how
to deal with the high degree of inflection. This raised two problems:

e The part-of-speech tags encoded multiple fields of information — case, person, number,
gender and so on. This meant that the POS tags were potentially a very rich source
of disambiguating information, but also that there were a very large number of tags
(potentially over 3,000). The question then becomes how to leverage the information
in the tags, without running into sparse data problems. A key problem may be how
to parameterize probabilities of the form P(modifier POS|head POS).

e There are a huge number of possible word forms in Czech, leading to a large number

of words in test data being unseen in training data: again, sparse data problems are

233

prevalent. A natural area for future research concerns how to use the (much less
sparse) word stems; a key problem may be how to parameterize probabilities of the

form P(word-form|word-stem, POS tag).

234

Chapter 10

Conclusions

This thesis has considered how to parameterize the statistical parsing problem; in other
words, we have considered the following question:

e What linguistic objects (e.g., context-free rules, parse moves etc.) should the model’s

parameters be associated with? I.e., how should trees be decomposed into smaller

events?

Our hypothesis has been that probabilities should be conditioned on lexical heads, and
that they should reflect a head’s local domain of influence within a parse tree.

Chapter 3 motivated a series of lexically conditioned parameter types through ex-
ample trees where the parameters provided useful discriminative information. Chapter
5 described the first empirical indication of the utility of lexical information: a method
that considered the four head-words involved in prepositional phrase attachment decisions
correctly classified test examples with over 84% accuracy. Chapter 6 then described a
first attempt at generalizing these results to full parsing. The resulting parser made exten-
sive use of probabilities tied to pairs of words in dependency relationships, and recovered
constituent labelings with over 85% precision and recall.

Chapter 7 described the final parsing models of this thesis. The models use a history-
based approach, where a parse tree is represented by the series of decisions made in a

top-down, head-centered derivation of the tree. Independence assumptions then follow

235

naturally. The resulting models have parameters that encode the X-bar schema, subcat-
egorization, ordering of complements, placement of adjuncts, lexical dependencies, wh-
movement, and preferences for close attachment; all of these preferences are expressed by
probabilities conditioned on lexical heads.

Evaluation on Wall Street Journal text (all sentences < 100 words in length) showed
that the model recovered labeled constituents with 88.3/88.0% precision/recall. The later
models have an additional advantage over previous approaches, in that they make the
complement/adjunct distinction, and they recover wh-movement annotations. This infor-
mation should facilitate the mapping to predicate-argument structure.

While this thesis has largely concentrated on representational issues, the learning com-
ponent should not be underestimated. Once the model structure has been defined, the
learning process is remarkable in a couple of respects. First, the model incorporates a vast
amount of information. There are almost 780,000 dependency events in training data';
if backed-off counts are also considered, the model incorporates information from over 9
million events or sub-events associated with dependencies. The head-projection, subcat-
egorization and other parameters further inflate this number. Second, the model has a
tremendous ability to balance the interaction between diverse sources of disambiguating
information (e.g., lexical dependencies vs. close-attachment preferences), and to balance
fine-grained lexical statistics against coarser statistics based on part-of-speech tags, or
more structural information. The mathematical foundations, as outlined in Chapter 2,
are essential in solving the delicate task of blending these different information sources.

This brings us to our final point. Our guess is that it would be extremely difficult to
hand-craft a parser with accuracy that competes with statistical approaches: the volume of
information required, together with the complex interactions between the different types of
information, quickly becomes overwhelming for a human. On the other hand, we should not
expect statistical methods to provide the whole solution. In choosing the model structure
— in particular, in making a choice of decomposition in history-based approaches — we
have introduced a substantial bias. It is better to ackowledge this bias, and to work with

it, rather than to pretend that the learning component will learn all there is to learn.

!This count is by token — there are 390,000 distinct dependency types.

236

Most importantly, it is best to embed our prior knowledge of linguistic structure in these
modeling choices. Linguistic knowledge, then, should be brought to bear in designing the
model structure; learning becomes a problem of estimating parameter values within this

structure. Neither part of the problem should be underestimated in its importance.

237

Appendix A

A Description of The Head Rules

This appendix describes the rules used to find heads of constituents in the treebank; i.e.,
for a context-free rule (X — Y; ... Y,) these rules decide which of (Y; ... Y,)isthe
head of the rule.

Table A.1 shows the rules used for most constituents in the treebank (there are a couple
of exceptions to this table — NPs and coordinated phrases — which we will describe soon).
The rules are a modified version of those used in the SPATTER parser [Magerman 95]*.
As an example of how the table is used, for rules (X - Y; ... Y,) where X is a VP, the
algorithm would first search from the left of the sequence (Y; ... Y,) for the first Y; of
type TO; if no TOs were found it would then search for the first Y; of type VBD; if no VBDs
were found it would search for a VBP; and so on. If none of the items on the list were

found, the left-most child of the rule (Y1) would be chosen.

Rules for NPs

The rules for NPs are slightly different, and are as follows:
e If the last word is tagged POS, return (last-word);

e Else search from right to left for the first child which is an NN, NNP, NNPS, NNS, NX,

POS, or JJR.

e Else search from left to right for the first child which is an NP

!Thanks to David Magerman for allowing us to use and distribute them.

238

Else search from right to left for the first child which is a $, ADJP or PRN.

Else search from right to left for the first child which is a CD.

Else search from right to left for the first child which is a JJ, JJS, RB or QP.

Else return the last word.

Rules for Coordinated Phrases

In coordinated phrases such as (NP — NP CC NP), the first coordinated child is taken as
the head of the phrase. The second coordinated child is then taken to modify this head in
a special coordination relationship (e.g., see section 7.5.2 for how the model of chapter 7
deals with coordination). Other modifiers are also taken to modify the first head, in the
usual way (e.g., in a rule (N\P — NP; CC NP, ADJP), the ADJP is taken to modify NPy).

The head rules are then required to identify rules containing sub-sequences (Y; Y;i1
Yi+2) where: (1) Y; is the first head; (2) Y;41 is a coordinator; and (3) Y; 4o is a modifier to
the first head, in a special coordination relationship. This is accomplished in the following
steps:

e First run the rule (X — Y; ... Y,) through the usual head-rules, thereby identifying
the head of the rule, Yy.

e If h <n—2, and Y, is the non-terminal CC, then the triple (Y, Y,i1 Ypio) forms a
triple of non-terminals in a coordinating relationship (i.e., they fulfill the three criteria
described above).

e Else If h > 2, and Y, _; is the non-terminal CC, then the triple (Y, o Y, 1 Y,) forms a
triple of non-terminals in a coordinating relationship. In this case, the head is modified

to be Y _o.

239

Parent Direction | Priority List

Non-terminal

ADJP Left NNS QP NN $ ADVP JJ VBN VBG ADJP JJR NP JJS DT
FW RBR RBS SBAR RB

ADVP Right RB RBR RBS FW ADVP TO CD JJR JJ IN NP JJS NN

CONJP Right CC RB IN

FRAG Right

INTJ Left

LST Right LS:

NAC Left NN NNS NNP NNPS NP NAC EX $ CD QP PRP VBG JJ
JJS JJR ADJP FW

PP Right IN TO VBG VBN RP FW

PRN Left

PRT Right RP

QP Left $ IN NNS NN JJ RB DT CD NCD QP JJR JJS

RRC Right VP NP ADVP ADJP PP

S Left TO IN VP S SBAR ADJP UCP NP

SBAR Left WHNP WHPP WHADVP WHADJP IN DT S SQ SINV
SBAR FRAG

SBARQ Left SQ S SINV SBARQ FRAG

SINV Left VBZ VBD VBP VB MD VP S SINV ADJP NP

SQ Left VBZ VBD VBP VB MD VP SQ

ucCPp Right

A\ Left TO VBD VBN MD VBZ VB VBG VBP VP ADJP NN NNS
NP

WHADJP Left CC WRB JJ ADJP

WHADVP Right CC WRB

WHNP Left WDT WP WP$ WHADJP WHPP WHNP

WHPP Right IN TO FW

Table A.1: The head-rules used by the parser. Parent is the non-terminal on the left-
hand-side of a rule. Direction specifies whether search starts from the left or right end of
the rule. Priority gives a priority ranking, with priority decreasing when moving down the

list.

240

Appendix B

The Parsing Algorithm for Model
1 of Chapter 7

This appendix describes the parsing algorithm for Model 1 in chapter 7. Specifically:
e Section B.1 describes the edge data-type. This is central to the parsing algorithm, in
that constituents in the chart are represented using the edge data-type.
e Section B.2 describes how new edges in the chart are created from existing edges.
e Section B.3 describes how the entire chart is filled: subroutines used for initialization,
completion of entire spans of the chart, and finally full parsing.
All of the pseudo-code for the parser is given in figures B.3 to B.11. Figure B.11 gives

the highest level routine, parse(), which will parse an entire sentence.

Appendix C describes the modifications to the algorithm required for model 2.

B.1 The edge data-type

The central data-type in the chart parser is the edge data-type, which holds all the infor-
mation about a particular constituent in the chart. Table B.1 lists the elements in the edge
data-type, figure B.1 shows an example constituent and its edge representation. Figure B.2
shows how a leaf-node (POS tag/word pair) is represented.

The chart itself is a set of edges. We will assume that edges are indexed by their start

241

H Variable ‘ Type ‘ Description H
type int 0 for a leaf (POS tag with no children), 1 for a non-terminal
label string the non-terminal label
headlabel | string the non-terminal label of the head-child of the edge
headword | string the head word
headtag string the part-of-speech tag of the head-word
start int index of first word in the edge’s span
end int index of last word in the edge’s span
le context distance features to the left of the head (see below for a de-

scription of the context data-type).
rc context distance features to the right of the head
stop boolean TRUE if the edge has received its stop probabilities
prob double log probability of the edge
children | linked list | list of the children of the edge (in left to right order)

Table B.1: Variables in the edge data-type

Variable ‘ Type ‘ Description H

adj

boolean | (

adjacency) TRUE if the head has taken no modifiers

verb

boolean

TRUE if one of the modifiers to the head dominates a verb

Table B.2: Variables in the context data-type

point (first word in their span), their end point (last word in their span), and their non-

terminal label. So chart[start,end,label] is a set of all edges in the chart spanning words

start to end inclusive, with non-terminal [abel.

There are two important functions associated with edge, pseudo-code is shown in fig-

ure B.3. edges_equal(edge el,edge e2) returns TRUE if edges el and e2 are the same for

the purposes of the dynamic programming algorithm. add_edge(edge e,int start,int end)

adds e to the set chart[start, end, e.label] if it passes the dynamic programming conditions.

B.2 Subroutines that Create New Edges

There are four operations that create new edges:

join_2_edges_follow(el,e2) Figure B.4. Takes as input two edges, el and €2, and forms

a new edge, e3. el and e2 are adjacent in the chart, with e2 following ell. €2 is a

modifier to el, so e3 gets its headword from el.

i.e., if el spans words i...j, e2 spans words k...[, then k = j + 1.

242

S(fell)

NP (horse) VP (fell)
|
VB
NPB(horse) VP (raced) |
fell
D|T N|N VBN PP
the horse | |

raced past the barn

Variable | Value
type 1

label S
headlabel | VP
headword | fell
headtag VB
lc.adj FALSE
lc.verb TRUE
rc.adj TRUE
rc.verb FALSE

Figure B.1: An example constituent, and the values for its edge representation

Variable | Value
type 0
label VBN
headlabel | —
headword | raced
V]|3N headtag VBN
raced stop TRUE
lc.adj TRUE
lc.verb FALSE
rc.adj TRUE
rc.verb FALSE

Figure B.2: An example leaf-node constituent, and the values for its edge representation.

243

boolean edges_equal(edge el,edge e2)

{
if(el.type I= e2.type OR
el.label 1= e2.label OR
el.headlabel != e2.headlabel OR
el.headword != e2.headword OR
el.headtag != e2.headtag OR
el.lc 1= e2.1c OR
el.rc = e2.rc OR
el.stop = e2.stop)
return FALSE;
return TRUE;
}
void add_edge(edge e, int start, int end)
{
foreach edge x in chart[start,end,e.label]
if (equal_edge(e,x))
{
if (e.prob > x.prob)
replace x with e;
return;
}
add e to the set chart[start,end,e.label]
}

Figure B.3: Two functions associated with the edge data-type. edges_equal compares two
edges for the purposes of the dynamic programming algorithm. add_edge adds an edge to
the chart if it passes the dynamic programming condition.

244

join_2_edges_precede(el,e2) Figure B.5. Same as join_2_edges_follow, except el is a

modifier to e2, so e3 gets its headword from e2.

add_singles(e) Figure B.6. Takes as input a single edge, e, and adds all possible edges

containing a unary rule with e as the head-child.

add_stops(e) Figure B.7. Takes as input a single edge, e, which has not yet included

stop probabilities. Creates a new edge in the chart with the stop probabilities added.

B.3 Subroutines that Complete Entire Spans of the Chart

add_singles_stops(start,end) Figure B.8. This creates all new edges for span start
to end in the chart which are created through add_singles or add_stops. It is a
subroutine that is used by both initialize and complete.

initialize() Figure B.9. This initializes the chart, adding an edge for each possible
(word,tag) pair.

complete(int start,int end) Figure B.10. This adds all edges to the chart that span
words start to end inclusive. (Assumes that end — start > 0, as initialize has already

created all the single word constituents.)

parse() Figure B.11. Parses the entire sentence.

245

(a) P + Ri = P
Prob = X Prob =Y Prob =X x Y x Pr(Ri(r;) | P, H,...)
edge el edge e2 edge e3

(b)

void join_2_edges_follow(edge el,edge e2)

{
edge e3;
e3.type =1;
e3.label = el.label;
e3.headlabel = el.headlabel;
e3.headword = el.headword;
e3.headtag = el.headtag;
e3d.stop = FALSE;
e3.1lc = el.lc;
e3.rc.adj = FALSE;
e3.rc.verb = el.rc.verb OR
e2.1c.verb OR
e2.rc.verb OR
e2.headtag is a verb;
e3.start = el.start;
e3.end = e2.end;
e3.children = el.children + e2;
e3.prob = el.prob + e2.prob +
log P_r(e2.label,e2.headtag,e2.headword |
parent-label == el.label,
headchild-label == el.headlabel,
headword == el.headword,
headtag == el.headtag,
distance.adjacency == el.rc.adj,
distance.verb == el.rc.verb);
add_edge(e3,el.start,e2.end);
}

Figure B.4: join_2_edges_follow(edge el,edge e2) joins two edges el and e2 to form a
new edge e3. (a) illustrates the process. (b) gives pseudocode.

246

(a) Li + P = P

P e

L1 H . Li .. L1 H
Prob =X Prob =Y Prob =X x Y x Pr(Li(l;) | P,H,...)
edge el edge e2 edge e3

(b)

void join_2_edges_precede(edge el,edge e2)

{
edge e3;
e3.type =1;
e3.label = e2.label;
e3.headlabel = e2.headlabel;
e3.headword = e2.headword;
e3.headtag = e2.headtag;
e3d.stop = FALSE;
e3.rc = e2.rc;
e3.1lc.adj = FALSE;
e3.1lc.verb = e2.1lc.verb OR
el.lc.verb OR
el.rc.verb OR
el.headtag is a verb;
e3.start = el.start;
e3.end = e2.end;
e3.children = el + e2.children;
e3.prob = el.prob + e2.prob +
log P_1(el.label,el.headtag,el.headword |
parent-label == e2.label,
headchild-label == e2.headlabel,
headword == e2.headword,
headtag == e2.headtag,
distance.adjacency == e2.1lc.adj,
distance.verb == e2.1lc.verb);
add_edge(e3,el.start,e2.end) ;
}

Figure B.5: join_2_edges_precede(edge el,edge e2) joins two edges el and e2 to form
a new edge e3. (a) illustrates the process. (b) gives pseudocode.

247

TR |
e H
R
Prob =X Prob = X xPy(H | P,...)

(b)

void add_singles(edge e)

{
edge e3;
e3.type =1;
e3.headlabel = e.label;
e3.headword = e.headword;
e3.headtag = e.headtag;
e3d.stop = FALSE;
e3.1lc.adj = TRUE;
e3.1lc.verb = FALSE;
e3.rc.adj = TRUE;
e3.rc.verb = FALSE;
e3.start = e.start;
e3.end = e.end;
e3.children = e;
foreach X in the set of non-terminals
{
e3.label = X;
e3.prob = e.prob +
log P_h(e.label |
parent-label == X,
headword == e.headword,
headtag == e.headtag);
add_edge(e3,e.start,e.end);
}
}

Figure B.6: add_singles(edge e) adds edges with a unary rule re-writing to edge e. (a)
illustrates the process. (b) gives pseudocode.

248

Prob = X Prob = X xPL(STOP | ...) x Pr(STOP |)

void add_stops(edge e)

{

edge e3;

e3.type =1;

e3.label = e.label;

e3.headlabel = e.headlabel;

e3.headword = e.headword;

e3.headtag = e.headtag;

e3.stop = TRUE;

e3.1lc = e.lc;

e3.rc = e.rc;

e3.start = e.start;

e3.end = e.end;

e3.children = e.children;

e3.prob = e.prob +

log P_r(STOP |
parent-label == e.label,
headchild-label == e.headlabel,
headword == e.headword,
headtag == e.headtag,
distance.adjacency == e.rc.adj,
distance.verb == e.rc.verb) +
log P_1(STOP |

parent-label == e.label,
headchild-label == e.headlabel,
headword == e.headword,
headtag == e.headtag,
distance.adjacency == e.lc.adj,
distance.verb == e¢.lc.verb);

add_edge(e3,e.start,e.end);

}

Figure B.7: add_stops(edge e) forms a new edge by adding stop probabilities to edge e.
(a) illustrates the process. P(-) has stop == FALSE, P(+) has stop == TRUE. (b) gives
pseudocode. 249

void add_singles_stops(int start,int end)

{
//MAXUNARY is the maximum number of unary productions allowed
//in a row
#define MAXUNARY 5

foreach edge X in chart[start,end] such that X.stop == FALSE
add_stops (X)

for i = 1 to MAXUNARY
{
foreach edge Y created by last set of calls to add_stops
add_singles(Y)

foreach edge Y created by last set of calls to add_singles
add_stops (Y)

Figure B.8: add_singles_stops(int start, int end) adds all stop probabilities, and edges
which are created by unary rules, for the chart entries spanning words start-end. The code
makes the approximation that there can never be more than MAXUNARY unary rules
building directly on top of each other.

250

void initialize()

{
edge e;
//n is the number of words in the input sentence
for i =1 ton
{
if(word_i is an ¢ ‘unknown’’ word)
set X = {P0OS tag from tagger for word_i}
else
set X = {set of all tags seen for word_i in training data}
foreach P0S-tag T in X
{
e.type = 0;
e.label = T;
e.headword = word_i;
e.headtag = T;
e.stop = TRUE;
e.lc.adj = TRUE;
e.lc.verb = FALSE;
e.rc.adj = TRUE;
e.rc.verb = FALSE;
e.start = 1ij;
e.end =i
e.prob = 0;
add_edge(e,i,i);
add_singles_stops(i,i);
}
}
}

Figure B.9: initialize() initializes the chart.

251

void complete(int start,int end)

{
//split is the split point
for split = start to end-1
{
foreach edge el in chart[start,split] such that el.stop == FALSE
foreach edge e2 in chart[split+l,end] such that e2.stop == TRUE
join_2_edges_follow(el,e2);
foreach edge el in chart[start,split] such that el.stop == TRUE
foreach edge e2 in chart[split+l,end] such that e2.stop == FALSE
join_2_edges_precede(el,e2);
}
add_singles_stops(start,end);
}

Figure B.10: complete(int start,int end) completes all edges in the chart spanning
words start to end.

edge parse()
{

initialize();

//assume n is the number of words in the sentence
for span = 2 ton
for start = 1 to n-spant+l

{
end = start + span -1;
complete(start,end) ;

//assume TOP is the start symbol (must be at the top of the tree)
X = edge in chart[1,n,TOP] with highest probability;

return X;

Figure B.11: parse() parses a sentence, returning the edge pointing to the top of the
highest probability tree.

252

Appendix C

The Parsing Algorithm for Model
2 of Chapter 7

Model 2 introduces subcategorization features, and requires some (relatively minor) mod-
ifications to the parsing algorithm for model 1 described in appendix B. The changes
are:

e The context data-type is extended to include a subcat frame, i.e. a bag specifying
the complements that an edge still requires. Hence the lc and rc variables in the edge
data-type now contain the left and right subcategorization frames for the edge, as well
as the distance features. See table C.1.

e add_singles is modified to add subcategorization frames and probabilities. See fig-
ure C.1.

e join_2_edges_follow, join_2_edges_precede, and add_stops are modified to keep
track of the subcategorization frame, and to condition the probabilities on the subcat

frame. See figures C.2, C.3 and C.4.

e initialize() is modified to start leaf-nodes with empty subcat frames. See figure C.5.

253

void add_singles(edge e)

{
edge e3;
e3.type =1;
e3.headlabel = e.label;
e3.headword = e.headword;
e3.headtag = e.headtag;
e3d.stop = FALSE;
e3.1lc.adj = TRUE;
e3.1lc.verb = FALSE;
e3.rc.adj = TRUE;
e3.rc.verb = FALSE;
e3.start = e.start;
e3.end = e.end;
e3.children = e;
foreach X in the set of non-terminals
foreach Y in the set of possible left subcat frames
foreach Z in the set of possible right subcat frames
{
e3.label = X;
e3.1lc.subcat = Y;
e3.rc.subcat = Z;
e3.prob = e.prob +
log P_h(e.label |
parent-label == X,
headword == e.headword,
headtag == e.headtag) +
log P_lc(Y |
parent-label == X,
head-label == e.label,
headword == e.headword,
headtag == e.headtag) +
log P_rc(Z |
parent-label == X,
head-label == e.label,
headword == e.headword,
headtag == e.headtag);
add_edge(e3,e.start,e.end);
}
}

254

Figure C.1: add_singles(edge €) adds edges with a unary rule re-writing to edge e. Model
2 additionally has loops over left and right subcat frames.

void join_2_edges_follow(edge el,edge e2)

{
edge e3;
e3.type =1;
e3.label = el.label;
e3.headlabel = el.headlabel;
e3.headword = el.headword;
e3.headtag = el.headtag;
e3d.stop = FALSE;
e3.1lc = el.lc;
e3.rc.adj = FALSE;
e3.rc.verb = el.rc.verb OR
e2.1c.verb OR
e2.rc.verb OR
e2.headtag is a verb;
e3.start = el.start;
e3.end = e2.end;
e3.children = el.children + e2;
e3.1lc.subcat = el.lc.subcat;
e3.rc.subcat = e2.1c.subcat;
if e2.label is a complement
e3.rc.subcat = e3.rc.subcat - e2.label;
e3.prob = el.prob + e2.prob +
log P_r(e2.label,e2.headtag,e2.headword |
parent-label == el.label,
headchild-label == el.headlabel,
headword == el.headword,
headtag == el.headtag,
distance.adjacency == el.rc.adj,
distance.verb == el.rc.verb,
subcat == el.rc.subcat);
add_edge(e3,el.start,e2.end);
}

Figure C.2: join_2_edges_follow(edge el,edge e2) joins two edges el and e2 to form a
new edge e3. Model 2 has modifications to calculate the subcat frames for the new edge,
and add the subcat frame to the conditioning context.

255

void join_2_edges_precede(edge el,edge e2)

{
edge e3;
e3.type =1;
e3.label = e2.label;
e3.headlabel = e2.headlabel;
e3.headword = e2.headword;
e3.headtag = e2.headtag;
e3d.stop = FALSE;
e3.rc = e2.rc;
e3.1lc.adj = FALSE;
e3.1lc.verb = e2.1lc.verb OR
el.lc.verb OR
el.rc.verb OR
el.headtag is a verb;
e3.start = el.start;
e3.end = e2.end;
e3.children = el + e2.children;
e3.1lc.subcat = e2.1c.subcat;
e3.rc.subcat = e2.rc.subcat;
if el.label is a complement
e3.lc.subcat = e3.1c.subcat - el.label;
e3.prob = el.prob + e2.prob +
log P_1(el.label,el.headtag,el.headword |
parent-label == e2.label,
headchild-label == e2.headlabel,
headword == e2.headword,
headtag == e2.headtag,
distance.adjacency == e2.lc.adj,
distance.verb == e2.lc.verb,
subcat == e2.lc.subcat);
add_edge(e3,el.start,e2.end);
}

Figure C.3: join_2_edges_precede(edge el,edge €2) joins two edges el and e2 to form
a new edge e3. Model 2 has modifications to calculate the subcat frames for the new edge,

and add the subcat frame to the conditioning context.

256

void add_stops(edge e)

{

edge e3;

e3.type =1;

e3.label = e.label;

e3.headlabel = e.headlabel;

e3.headword = e.headword;

e3.headtag = e.headtag;

e3d.stop = TRUE;

e3.1lc = e.lc;

e3.rc = e.rc;

e3.start = e.start;

e3.end = e.end;

e3.children = e.children;

e3.prob = e.prob +

log P_r(STOP |
parent-label == e.label,
headchild-label == e.headlabel,
headword == e.headword,
headtag == e.headtag,
distance.adjacency == e.rc.adj,
distance.verb == e.rc.verb,
subcat == e.rc.subcat) +
log P_1(STOP |

parent-label == e.label,
headchild-label == e.headlabel,
headword == e.headword,
headtag == e.headtag,
distance.adjacency == e.lc.adj,
distance.verb == e.lc.verb,
subcat == e.lc.subcat);

add_edge(e3,e.start,e.end);

}

Figure C.4: add_stops(edge e) forms a new edge by adding stop probabilities to edge e.
Model 2 additionally conditions on the subcat frame variable (the probability of stopping
will in fact be 0 if this frame is not empty).

257

H Va.riable Type ‘ Description H

adj boolean | (adjacency) TRUE if the head has taken no modifiers
verb boolean | TRUE if one of the modifiers to the head dominates a verb
subcat bag specifies the complements still required by the edge

Table C.1: Variables in the context data-type

void initialize()

{
edge e;
//n is the number of words in the input sentence
for i =1ton
{
if(word_i is an ¢ ‘unknown’’ word)
set X = {P0OS tag from tagger for word_i}
else
set X = {set of all tags seen for word_i in training data}
foreach POS-tag T in X
{
e.type = 0;
e.label = T;
e.headword = word_i;
e.headtag = T;
e.stop = TRUE;
e.lc.adj = TRUE;
e.lc.verb = FALSE;
e.lc.subcat = empty;
e.rc.adj = TRUE;
e.rc.verb = FALSE;
e.rc.subcat = empty;
e.start = 1ij;
e.end =i
e.prob = 0;
add_edge(e,i,i);
add_singles_stops(i,i);
}
}
}

Figure C.5: initialize() initializes the chart. Model 2 additionally sets the subcat frames
to be empty.

258

Appendix D

An Analysis of Parsing Complexity
for the Models of Chapter 7

In this section we derive an upper bound for the parsing complexity of the algorithms in
Appendix B and C, sketched in figure 7.13. Note, however, that the beam search method
means that the parsing algorithm is almost certainly more efficient in practice. (In fact, our
feeling is that the running time of the algorithm depends much more on the effectiveness
of the pruning method, rather than the asymptotic complexity of the algorithm.)

Calls to the functions join_2_edges_follow, join_2_edges_precede, add_single and
add_stops take O(1) time. The calls to join_2_edges_follow and join_2_edges_precede
dominate the complexity of the algorithm, as they are most deeply nested (within 5
for/foreach loops). We can now analyse the number of calls to join_2_edges_follow.
(The analysis for join_2_edges_precede is similar, and gives the same complexity.)

join_2_edges_follow is buried within 5 loops, shown in the table below:

Complexity | Loop

O(n) for span = 2 to n

n for start = 1 to n-span+1

(
O(n for split = start to end-1
O(Dy) foreach edge el in chart[start,split] such that el.stop == FALSE
O(D3) foreach edge €2 in chart[split+1,end] such that e2.stop == TRUE

D; is an upper bound on the number of edges which do not have their STOP probabilities,

259

for a given cell in the chart. Dy is a similar bound for the number of edges with STOP

probabilities. The running time is O(n3D; D), where Dy and D are to be determined.

D.1 A First Analysis of D; and D,

D; and D3 are related to the edge representation, and in particular the features taken into

account for dynamic programming: i.e., the features compared when deciding whether two

edges are equivalent, in that the lower probability edge can be safely discarded. Table B.1

describes the representation of edges; figure B.3 describes the comparison function for the

two edges.

Assuming that an edge is a non-terminal, rather than a leaf-node (word/POS-tag pair),

the following factors are taken into account:

The head-word of the constituent. This has O(n) possibilities.

The head-tag of the constituent. This has O(T') possibilities, where 7" is the maximum
number of different tags seen with any word in the vocabulary.

The label of the constituent. This has O(N) possibilities, where N is the number of
non-terminals in the grammar, excluding POS tags.

The head-label of the constituent. This is the label of the non-terminal that is the
head of the constituent. It has O(INV) possibilities (to be exact, N + 1 possibilities;
it can be any one of the non-terminals in the grammar, or it can be the same as the
head-tag of the constituent).

The left-distance variable. We define this to have O(D) possibilities (D=3 for the
models of chapter 7, as there are flags for adjacency and the presence of a verb).

The right-distance variable. This also has O(D) possibilities.

The left-subcategorization state. We define this to have O(L) possibilities. (L is
the number of distinct left-subcategorization states seen in conditioning contexts in
training data.)

The right-subcategorization state. We define this to have O(R) possibilities. (R is
the number of distinct right-subcategorization states seen in conditioning contexts in

training data.)

260

If an edge is a leaf (a POS-tag/word pair), their are O(nT') possible values (only the
word and its part-of-speech need to be specified). For other edges, there are O(nT N?D?LR)
possible values. If we assume O(D1) = O(D3) = O(nTN?D?LR), then the overall parsing
complexity is O(n®>D1Ds) = O(nST?N*D*L?R?).

D.2 A Second Analysis of D; and D,

The complexity of the algorithm can be reduced by noting that once a constituent has its
stop probabilities, some features become irrelevant for the dynamic programming compar-
ison. Specifically,

e The head-label is not relevant.

e The distance variables can be collapsed from O(D?) to some lower bound O(D). For
example, in models 1, 2 and 3, D = 2, as a single flag — whether or not an edge
contains a verb — is the only distance feature required for a stopped edge.

e The left and right subcategorization frames are irrelevant (and will always be empty).
With these assumptions, O(D1) (the number of unstopped edges) remains as O(nTN?D?LR),
but O(D3) = O(nNTD). The running time of the entire algorithm is O(n®*D;Dy) =
O(nPT?N3*D*DLR).

D.3 A Third Analysis of D; and D,

The next thing to note is that the analysis of O(D;) has been rather pessimistic. It assumes
that all triples (parent non-terminal, head non-terminal, left-subcat state) or (parent non-
terminal, head non-terminal, right-subcat state) are possible. In reality, many of these
combinations will receive 0 probability under the model and will never be observed when
decoding. This leads to an O(N2LR) factor in the complexity which can be reduced.
Assume the following definition of the set X

X ={(X)Y,L,LR) | (Parent =X, Head-label =Y, left-subcat = L) and
(Parent = X, Head-label =Y, right-subcat = R)

are both seen as conditioning contexts in training data}

261

(D.1)

In the worst case, X = N2LR, but in practice X may be much smaller than N2LR. The
O(N2LR) factor is then reduced to O(|X|); O(D1) becomes O(nT|X|D?); and the overall
parsing complexity is O(n°|X|T2ND?D).

262

Appendix E

Efficiency Considerations when

Parsing

E.1 Beam Search

To improve efficiency it is important to “prune” constituents in the chart that are relatively
low in probability, and are therefore unlikely to be part of the highest probability parse for
a sentence. [Caraballo and Charniak 98, Goodman 97b| have discussed pruning strategies

quite extensively; this appendix describes the method used in the parsers in chapter 7.

E.1.1 The Figure of Merit

The first thing to consider is what “score” or probability should be used to rank edges in the
chart. An obvious choice is the probability stored with each edge in the chart: the “inside”
probability, or P(subtree | label, head-tag, head-word), the conditional probability of the
edge’s subtree, given its non-terminal label, head-word, and head-tag.

However, as has been argued in [Caraballo and Charniak 98, Goodman 97b], the in-
side probability alone is a poor measure of how likely an edge is to be part of the high-
est probability tree. The problem is that the measure takes no account of the prior

probability of seeing a constituent with the particular (label, head-tag, head-word) triple.

263

For example, an extremely unlikely constituent, such as a VP headed by the preposi-
tion of, might easily get a high inside probability because the conditional probability
P(subtree | VP, Preposition, of) of seeing the subtree once the (VP,preposition,of) triple
was generated could be high.
For this reason an additional “prior” probability of seeing the (label, head-tag, head-word)

triple is taken into account ([Goodman 97b] also describes the use of a prior;

[Caraballo and Charniak 98] describe rather more sophisticated ways of calculating the
prior). So the measure used to rank edges (or “figure of merit”, as named in

[Caraballo and Charniak 98]) is
Pjpside(subtree | label, head-tag, head-word) X Pp,ior(label, head-tag, head-word) (E.1)

where we decompose Ppio as

Pyrior(label, head-tag, head-word) = P(head-tag, head-word) x P(label | head-tag, head-word)
(E.2)

and the second probability term is smoothed through linear interpolation. The counts are

collected from all events where a (label, head-tag, head-word) triple is generated: either

as part of a dependency or unary event.

E.1.2 The Beam

Having defined the figure of merit for each edge, the beam strategy is relatively sim-
ple. Given that the highest score for any constituent in span start...end of the chart is
bestprob|start,end|, then any other constituent in this span of the chart must have prob-
ability > « bestprob[start,end]. « is the beam width. For the experiments in chapter 7,

_ 1
a = 15500 Was used.

E.2 Temporary Caching of Probabilities

The calls to the probability functions P;, P,, Py, P, and P,. are expensive. Each proba-
bility calculation typically requires look up of several hashed counts, and several floating

point additions/multiplications.

264

It turns out that for a particular sentence being parsed, there are often many repeated
calls to these functions calculating exactly the same parameter values. To reduce the
amount of repeated computation, a temporary cache of complete probability values is
stored for each sentence being parsed. When making a call to calculate a probability this
temporary hash table is first consulted to see if that probability has been calculated before
— if so the value is recovered immediately and returned. Otherwise, the probability is
calculated using the full set of hash look ups and floating point operations, and is stored

in the temporary cache before being returned.

265

Bibliography

[Abney 97] S. Abney. 1997. Stochastic Attribute-Value Grammars. Computational Lin-
guistics, 23(4):597-618.

[Allen 87] J. Allen. 1987. Natural Language Understanding. Benjamin/Cummings Publish-
ing.

[Alshawi 96] H. Alshawi. 1996. Head Automata and Bilingual Tiling: Translation with
Minimal Representations. Proceedings of the 34th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 167-176.

[Alshawi and Carter 94] H. Alshawi and D. Carter. Training and Scaling Preference Func-
tions for Disambiguation. Computational Linguistics, 20(4):635-648.

[Appelt et al. 93] D. Appelt, J. Hobbs, J. Bear, D. J. Israel, and M. Tyson. 1993. FAS-
TUS: a finite-state processor for information extraction from real-world text. In
Proceedings of 1JCAI-93, (Chambery, France), September 1993.

[Baker 79] J. K. Baker. 1979. Trainable Grammars for Speech Recognition. In Jared J.
Wolf and Dennis H. Klatt, editors, Speech Communication Papers Presented at
the 97th Meeting of the Acoustical Society of America, MIT, Cambridge, MA.

[Baum 71] Baum, L.E. (1971). An Inequality and Associated Maximization Technique
in Statistical Estimation for Probabilistic Functions of Markov Processes. In
Inequalities, III: Proceedings of a Symposium. (Shish, Qved ed.). New York:
Academic Press.

[BD 77] Bickel and Docksum (1977). Mathematical Statistics: Basic Ideas and Selected

Topics. Prentice Hall, Englewood Cliffs, New Jersey.

266

[Bikel et al. 97] D. M. Bikel, S. Miller, R. Schwartz, and R. Weischedel. 1997. Nymble: a
High-Performance Learning Name-finder. In Proceedings of the Fifth Conference
on Applied Natural Language Processing, pages 194-201.

[Black et al. 91] E. Black et al. 1991. A Procedure for Quantitatively Comparing the Syn-
tactic Coverage of English Grammars. In Proceedings of the February 1991
DARPA Speech and Natural Language Workshop.

[Black et al. 92a] E. Black, J. Lafferty and S. Roukos. 1992. Development and Evalua-
tion of a Broad-Coverage Probabilistic Grammar of English-Language Com-
puter Manuals. In Proceedings of the 30th Annual Meeting of the Association
for Computational Linguistics, pages 185-192.

[Black et al. 92b] E. Black, F. Jelinek, J. Lafferty, D. Magerman, R. Mercer and S. Roukos.
1992. Towards History-Based Grammars: Using Richer Models for Probabilis-
tic Parsing. In Proceedings of the 5th DARPA Speech and Natural Language
Workshop, Harriman, NY.

[Black et al. 93] E. Black, R. Garside and G. Leech. 1993. Statistically-Driven Com-
puter Grammars of English: The IBM/Lancaster Approach. Rodopi B.V.,
Amsterdam—Atlanta, GA.

[Bod 93] R. Bod. 1993. Using an Annotated Corpus as a Stochastic Grammar. In Pro-
ceedings of the Sizth Conference of the European Chapter of the ACL, pages
37-44.

[Booth and Thompson 73] T. L. Booth and R. A. Thompson. 1973. Applying Probability
Measures to Abstract Languages. IEEE Transactions on Computers, C-22(5),
pages 442-450.

[Brew 95] C. Brew. (1995). Stochastic HPSG. In Proceedings of the 7th Conference of
the European Chapter of the Association for Computational Linguistics, pages
83-89, Dublin, Ireland. University College.

[Brill 93] E. Brill. 1993. Automatic Grammar Induction and Parsing Free Text: A
Transformation-Based Approach. In Proceedings of the 21st Annual Meeting

of the Association for Computational Linguistics.

267

[Brill 95] E. Brill. 1995. Transformation-Based Error-Driven Learning and Natural Lan-
guage Processing: A Case Study in Part of Speech Tagging. Computational
Linguistics, 21(4):543-565.

[Brill and Resnik 94] E. Brill and P. Resnik. A Rule-Based Approach to Prepositional
Phrase Attachment Disambiguation. In Proceedings of the fifteenth international

conference on computational linguistics (COLING-1994), 1994.

[Briscoe and Carroll 93] T. Briscoe and J. Carroll. 1993. Generalized LR Parsing of Natu-
ral Language (Corpora) with Unification-Based Grammars. Computational Lin-
guistics, 19(1):25-60.

[Brown et al. 1992] P. F. Brown, V. Della Pietra, P. V. deSouza, J. C. Lai, and R. L. Mer-
cer. 1992. “Class-based n-gram models of natural language.” Computational
Linguistics, 18(4), pages 467-479.

[Carroll and Briscoe 95] J. Carroll and T. Briscoe. 1995. Apportioning Development Effort
in a Probabilistic LR Parsing System through Evaluation. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, University
of Pennsylvania, May 1996.

[Charniak 93] E. Charniak. 1993. Statistical language learning. Cambridge, Mass.: MIT

Press.

[Charniak et al. 93] E. Charniak, C. Hendrickson, N. Jacobson and M. Perkowitz. 1993.
Equations for Part-of-Speech Tagging. In Proceedings of the Eleventh National
Conference on Artificial Intelligence (AAAI-93).

[Charniak and Carroll 94] E. Charniak and G. Carroll. 1994. Context-Sensitive Statistics
For Improved Grammatical Language Models. In Proceedings of the 12th Na-
tional Conference on Artificial Intelligence, AAAI Press, Seattle, WA. pages
742-747.

[Charniak 96] E. Charniak. 1996. Tree-Bank Grammars. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence and Eighth Innovative Applica-
tions of Artificial Intelligence Conference, AAAI 96, TAAIL 96, August 4-8, 1996,
Portland, Oregon. pages 1031-1036.

268

[Charniak 97] E. Charniak. 1997. Statistical parsing with a context-free grammar and
word statistics. Proceedings of the Fourteenth National Conference on Artificial
Intelligence, AAAI Press/MIT Press, Menlo Park (1997).

[Caraballo and Charniak 98] S. Caraballo and E. Charniak. 1998. New figures of merit for
best-first probabilistic chart parsing. Computational Linguistics, 24(2), pages
275-298.

[Chelba and Jelinek 98] C. Chelba and F. Jelinek. 1998. Exploiting Syntactic Structure
for Language Modeling. In Proceedings of COLING-ACL 1998, Montreal.

[Chen and Goodman 96] S. Chen and J. Goodman. An Empirical Study of Smoothing
Techniques for Language Modeling. In Proceedings of the 34th Annual Meeting
of the Association for Computational Linguistics, pages 310-318.

[Chitrao and Grishman 90] M. Chitrao and R. Grishman. 1990. Statistical Parsing of Mes-
sages. In Proceedings Speech and Natural Language Workshop, Hidden Valley,
PA, pages 263266, Morgan Kaufman Publishers.

[Chomsky 57] N. Chomsky. 1957. Syntactic Structures, Mouton, The Hague.

[Chomsky 95] N. Chomsky. 1995. The Minimalist Program. Cambridge, Mass.: The MIT
Press.

[Church and Patil 82] K. Church and R. Patil. 1982. Coping with Syntactic Ambiguity or
How to Put the Block in the Box on the Table. American Journal of Computa-
tional Linguistics, 8(3-4):139-149.

[Church 88] K. Church. 1988. A Stochastic Parts Program and Noun Phrase Parser for
Unrestricted Text. Second Conference on Applied Natural Language Processing,
ACL.

[Collins and Brooks 95] M. Collins and J. Brooks. 1995. Prepositional Phrase Attachment
through a Backed-off Model. Proceedings of the Third Workshop on Very Large
Corpora, pages 27-38.

[Collins 96] M. Collins. 1996. A New Statistical Parser Based on Bigram Lexical Depen-
dencies. Proceedings of the 34th Annual Meeting of the Association for Compu-
tational Linguistics, pages 184-191.

269

[Collins 97] M. Collins. 1997. Three Generative, Lexicalised Models for Statistical Parsing.
In Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics and 8th Conference of the European Chapter of the Association for
Computational Linguistics, pages 16-23.

[Collins and Miller 98] M. Collins and S. Miller. 1998. Semantic Tagging using a Proba-
bilistic Context Free Grammar. In Proceedings of the Sizth Workshop on Very
Large Corpora.

[Dempster, Laird and Rubin 77] Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977).
Maximum Likelihood from Incomplete Data Via the EM Algorithm, Journal of
the Royal Statistical Society, Ser B, 39, 1-38.

[Dowding et al. 93] J. Dowding, J. M. Gawron, D. Appelt, J. Bear, L. Cherny, R. Moore,
D. Moran. 1993. GEMINI: A Natural Language System for Spoken-Language
Understanding. In Proceedings of the 31st Annual Meeting of the Association
for Computational Linguistics, Columbus, Ohio, pp. 54-61.

[Eisner 96] J. Eisner. 1996. Three New Probabilistic Models for Dependency Parsing: An
Exploration. Proceedings of COLING-96, pages 340-345.

[Eisner 96b] J. Eisner. 1996. An Empirical Comparison of Probability Models for Depen-
dency Grammar. Technical report IRCS-96-11, Institute for Research in Cogni-
tive Science, University of Pennsylvania.

[Frank 92] R. Frank. 1992. Syntactic Locality and Tree Adjoining Grammar: Grammati-
cal, Acquisition and Processing Perspectives. Ph.D. Thesis, University of Penn-
sylvania.

[Gale and Church 90] W. Gale and K. Church. Poor Estimates of Context are Worse than
None. In Proceedings of the June 1990 DARPA Speech and Natural Language
Workshop, Hidden Valley, Pennsylvania.

[Gazdar et al. 95] G. Gazdar, E.H. Klein, G.K. Pullum, [.A. Sag. 1985. Generalized Phrase
Structure Grammar. Harvard University Press.

[Goodman 96] J. Goodman. 1996. Efficient Algorithms for Parsing the DOP Model. In
Proceedings of the Conference on Empirical Methods in Natural Language Pro-

cessing, pages 143-152, May 1996.

270

[Goodman 96b] J. Goodman. 1996. Parsing Algorithms and Metrics. In Proceedings of the
34th Annual Meeting of the ACL, pages 177-183, Santa Cruz, CA, June 1996.

[Goodman 97] J. Goodman. 1997. Probabilistic Feature Grammars. In Proceedings of the
Fourth International Workshop on Parsing Technologies.

[Goodman 97b] J. Goodman. 1997. Global thresholding and multiple-pass parsing. In Pro-
ceedings of the Second Conference on Empirical Methods in Natural Language
Processing.

[Goodman 98] J. Goodman. 1998. Parsing Inside-Out. Ph.D. Thesis, Harvard University.

[Grishman 95] R. Grishman. 1995. The NYU System for MUC-6 or Where’s the Syntax?
In Proceedings of the Sizth Message Understanding Conference, Morgan Kauf-
mann.

[Hajic 98] J. Hajic. 1998. Building a Syntactically Annotated Corpus: The Prague Depen-
dency Treebank. In Issues of Valency and Meaning, pages 106-132, Karolinum,
Charles University Press, Prague.

[Hajic et al. 98] J. Hajic, E. Brill, M. Collins, B. Hladka, D. Jones, C. Kuo, L. Ramshaw,
O. Schwartz, C. Tillmann, and D. Zeman. Core Natural Language Processing
Technology Applicable to Multiple Languages. In 1998 Johns Hopkins Summer
Workshop on Language Engineering, Final Report.

[Hermjakob and Mooney 97] U. Hermjakob and R. J. Mooney. Learning Parse and Trans-
lation Decisions from Examples with Rich Context. In Proceedings of the 35th
Annual Meeting of the Association for Computational Linguistics and 8th Con-
ference of the European Chapter of the Association for Computational Linguis-
tics, pages 482-489.

[Hindle and Rooth 91] D. Hindle and M. Rooth. 1991. Structural Ambiguity and Lexical
Relations. In Proceedings of the 29th Annual Meeting of the Association for
Computational Linguistics.

[Hindle and Rooth 93] D. Hindle and M. Rooth. Structural Ambiguity and Lexical Rela-
tions. Computational Linguistics, 19(1):103-120, 1993.

[Hopcroft and Ullman 79] J. E. Hopcroft and J. D. Ullman. 1979. Introduction to automata

theory, languages, and computation. Reading, Mass.: Addison-Wesley.

271

[Jelinek 90] F. Jelinek. 1990. Self-organized Language Modeling for Speech Recognition. In
Readings in Speech Recognition. Edited by Waibel and Lee. Morgan Kaufmann
Publishers.

[Jelinek et al. 94] F. Jelinek, J. Lafferty, D. Magerman, R. Mercer, A. Ratnaparkhi, S.
Roukos. 1994. Decision Tree Parsing using a Hidden Derivation Model. Pro-
ceedings of the 1994 Human Language Technology Workshop, pages 272-277.

[Johnson 97] M. Johnson. 1997. The Effect of Alternative Tree Representations on Tree
Bank Grammars. In Proceedings of NeMLAP 3.

[Jones and Eisner 92a] M. A. Jones and J. M. Eisner. 1992. A probabilistic parser ap-
plied to software testing documents. In Proceedings of National Conference on
Artificial Intelligence (AAAI-92), San Jose, pages 322-328.

[Jones and Eisner 92b] M. A. Jones and J. M. Eisner. 1992. A probabilistic parser and
its application. In Proceedings of the AAAI-92 Workshop on Statistically-Based
Natural Language Processing Techniques, San Jose.

[Joshi 87] A. Joshi. 1987. An Introduction to tree adjoining grammars, in A. Manaster-
Ramis, editor, Mathematics of Language. John Benjamins, Amsterdam, 1987.

[Joshi and Srinivas 94] A. Joshi and B. Srinivas. 1994. Disambiguation of Super Parts of
Speech (or Supertags): Almost Parsing. In International Conference on Com-
putational Linguistics (COLING 94), Kyoto University, Japan, August 1994.

[Karp et al. 94] Daniel Karp, Yves Schabes, Martin Zaidel and Dania Egedi. A Freely
Available Wide Coverage Morphological Analyzer for English. In Proceedings of

the 15th International Conference on Computational Linguistics, 1994.

[Kaplan and Bresnan 82] R. Kaplan and J. Bresnan. 1982. Lexical-Functional Grammar:
A formal system for grammatical representation. In Joan Bresnan, editor, The
Mental Representation of Grammatical Relations. The MIT Press, Cambridge,
MA, pages 173-281. Reprinted in Mary Dalrymple, Ronald M. Kaplan, John
Maxwell, and Annie Zaenen, eds., Formal Issues in Lezical-Functional Gram-
mar, 29-130. Stanford: Center for the Study of Language and Information.
1995.

272

[Katz 87] S. Katz. Estimation of Probabilities from Sparse Data for the Language Model
Component of a Speech Recogniser. IEEE Transactions on Acoustics, Speech,
and Signal Processing, Vol. ASSP-35, No. 3, 1987.

[Koller, McAllester and Pfeffer 97] D. Koller, D. McAllester, and A. Pfeffer. 1997. Effec-
tive Bayesian Inference for Stochastic Programs. In Proceedings of the 14th Na-
tional Conference on Artificial Intelligence (AAAI). Providence, Rhode Island.

[Lafferty et al. 92] J. Lafferty, D. Sleator and, D. Temperley. 1992. Grammatical Trigrams:
A Probabilistic Model of Link Grammar. Proceedings of the 1992 AAAI Full
Symposium on Probabilistic Approaches to Natural Language.

[Lauer 95] M. Lauer. 1995. Corpus Statistics Meet the Noun Compound: Some Empiri-
cal Results. In Proceedings of the 33rd Annual Meeting of the Association for
Computational Linguistics, Boston, MA., pages 47-54.

[McCawley 68] J. McCawley. 1968. The Role of Semantics in Grammar. In Emmon Bach
and Robert Harms, editors, Universals in Linguistic Theory, pages 124-169.
Holt, Rinehart and Winston.

[Magerman and Marcus 91] D. Magerman and M. Marcus. 1991. Pearl: A Probabilistic
Chart Parser. Proceedings of the 1991 European ACL Conference, Berlin, Ger-
many.

[Magerman and Weir 92] D. Magerman and D. Weir. 1992. Efficiency, Robustness, and
Accuracy in Picky Chart Parsing. In Proceedings of the 30th Annual Meeting of
the Association for Computational Linguistics, pages 40-47.

[Magerman 95] D. Magerman. 1994. Natural Language Parsing as Statistical Pattern
Recognition. Ph.D. thesis, Stanford University.

[Magerman 95] D. Magerman. 1995. Statistical Decision-Tree Models for Parsing. Proceed-
ings of the 33rd Annual Meeting of the Association for Computational Linguis-
tics, pages 276-283.

[Marcus 90] M. Marcus. 1990. Session Summary (Session 9: Automatic Acquisition of
Linguistic Structure (Special session)). In Proceedings of the June 1990 DARPA
Speech and Natural Language Workshop, Hidden Valley, Pennsylvania, pages
249-250.

273

[Marcus et al. 93] M. Marcus, B. Santorini and M. Marcinkiewicz. 1993. Building a Large
Annotated Corpus of English: the Penn Treebank. Computational Linguistics,
19(2):313-330.

[Marcus et al. 94] M. Marcus, G. Kim, M. A. Marcinkiewicz, R. Maclntyre, A. Bies, M.
Ferguson, K. Katz, B. Schasberger. 1994. The Penn Treebank: Annotating Pred-
icate Argument Structure. Proceedings of the 1994 Human Language Technology
Workshop, pages 110-115.

[de Marcken 95] C. de Marcken. 1995. On the Unsupervised Induction of Phrase-Structure
Grammars. In Proceedings of the Third Workshop on Very Large Corpora.

[Miller et al. 98] S. Miller, M. Crystal, H. Fox, L. Ramshaw, R. Schwartz, R. Stone, R.
Weischedel and the Annotation Group. 1998. Algorithms that Learn to Extract
Information. BBN: Description of the SIFT System as used for MUC-7. In
Proceedings of the Seventh Message Understanding Conference.

[Nederhof et al 98] M-J. Nederhof, A. Sarkar and G. Satta. 1998. Prefix Probabilities from
Probabilistic Tree Adjoining Grammars. In Proceedings of COLING-ACL 1998,
Montreal.

[Nederhof et al 1998b] M-J. Nederhof, A. Sarkar and G. Satta. 1998. Prefix Probabilities
from Linear Indexed Grammars. In Proceedings of the Fourth Workshop on Tree
Adjoining Grammars, TAG+ 4, Philadelphia, August 1998.

[MUC-6, 1995] Proceedings of the Sizth Message Understanding Conference (MUC-6).
Morgan Kaufmann, San Mateo, CA.

[Pereira and Warren 80] F. Pereira and D. Warren. 1980. Definite Clause Grammars for
Language Analysis — A Survey of the Formalism and a Comparison with Aug-
mented Transition Networks. Artificial Intelligence, 13:231-278.

[Pereira and Schabes 92] F. Pereira and Y. Schabes. 1992. Inside-Outside Reestimation
from Partially Bracketed Corpora. In Proceedings of the 30th Annual Meeting
of the Association for Computational Linguistics, pages 128-135.

[Pinker 94] S. Pinker. 1994. The Language Instinct. Penguin Books.

[Pollard and Sag 94] C. Pollard and I. Sag. 1994. Head-Driven Phrase Structure Gram-

mar. Chicago: University of Chicago Press and Stanford: CSLI Publications.

274

[Ramshaw and Marcus 95| L. Ramshaw and M. Marcus. 1995. Text Chunking using
Transformation-Based Learning. In Proceedings of the Third Workshop on Very
Large Corpora, pages 82-94.

[Ratnaparkhi 98] A. Ratnaparkhi. 1998. Unsupervised Statistical Models for Prepositional
Phrase Attachment. In Proceedings of the Seventeenth International Conference
on Computational Linguistics, Aug. 10-14, 1998. Montreal, Canada.

[Ratnaparkhi 97] A. Ratnaparkhi. 1997. A Linear Observed Time Statistical Parser Based
on Maximum Entropy Models. In Proceedings of the Second Conference on Em-
pirical Methods in Natural Language Processing, Brown University, Providence,
Rhode Island.

[Ratnaparkhi 96] A. Ratnaparkhi. 1996. A Maximum Entropy Model for Part-Of-Speech
Tagging. Conference on Empirical Methods in Natural Language Processing,
May 1996.

[Ratnaparkhi et al. 94] A. Ratnaparkhi, J. Reynar and S. Roukos. A Maximum Entropy
Model for Prepositional Phrase Attachment. In Proceedings of the ARPA Work-
shop on Human Language Technology, Plainsboro, NJ, March 1994.

[Resnik 92] P. Resnik. 1992. Probabilistic Tree-Adjoining Grammar as a Framework for
Statistical Natural Language Processing. In Proceedings of COLING 92, Volume
11, pages 418-424.

[Russell and Norvig 95] S. J. Russell and P. Norvig. 1995. Artificial intelligence: a modern
approach. Englewood Cliffs, N.J. : Prentice Hall.

[Sarkar 98] A. Sarkar. 1998. Conditions on Consistency of Probabilistic Tree Adjoining
Grammars. In Proceedings of COLING-ACL 1998, Montreal.

[Schabes 92] Y. Schabes. 1992. Stochastic Lexicalized Tree-Adjoining Grammars. In Pro-
ceedings of COLING 92, Volume 11, pages 426-432.

[Schabes et al 93] Y. Schabes, M. Roth and R. Osborne. 1993. Parsing the Wall Street
Journal with the Inside-Outside Algorithm. In Proceedings of the Sizth Confer-
ence of the Furopean Chapter of the ACL, pages 341-347.

[Schabes and Waters 93] Y. Schabes and R. Waters. 1993. Stochastic Lexicalized Context-

Free Grammar. In Proceedings of the Third International Workshop on Parsing

275

Technologies.

[Sekine et al 92] S. Sekine, J. Carroll, S. Ananiadou, and J. Tsujii. 1992. Automatic Learn-
ing for Semantic Collocation. In Proceedings of the Third Conference on Applied
Natural Language Processing.

[Sekine and Grishman 95] S. Sekine and R. Grishman. 1995. A Corpus-based Probabilistic
Grammar with Only Two Noun-terminals. In Proceedings of the Fourth Interna-
tional Workshop on Parsing Technology.

[Seneff 92] S. Seneff. 1992. TINA: A Natural Language System for Spoken Language Ap-
plications. Computational Linguistics, 18(1):61-86.

[Sleator and Temperley 91] D. Sleator and D. Temperley. 1991. Parsing English with a
Link Grammar. Carnegie Mellon University Computer Science technical report
CMU-CS-91-196, October 1991.

[Srinivas 97] B. Srinivas. 1997. Complexity of Lexical Descriptions and its Relevance to
Partial Parsing. PhD Dissertation, University of Pennsylvania.

[Steedman 96] M. Steedman. 1996. Surface Structure and Interpretation. (Linguistic In-
quiry Monograph No.30), MIT Press.

[Thomason 86] M. G. Thomason. 1986. Syntactic Pattern Recognition: Stochastic Lan-
guages. In T.Y. Young and K-S Fu, editors, Handbook of Pattern Recognition
and Image Processing. Academic Press.

[Weischedel et al. 93] R. Weischedel, M. Meteer, R. Schwartz, L. Ramshaw, and J. Pal-
mucci. 1993. Coping with Ambiguity and Unknown Words through Probabilistic
Models. Computational Linguistics 19(2): pages 359-382.

[Witten and Bell 91] I. T. Witten and T. C. Bell. 1991. The Zero-Frequency Problem:
Estimating the Probabilities of Novel Events in Adaptive Text Compression.
IEEE Transactions on Information Theory, 37(4):1085-1094, July 1991.

[Wood 93] M. M. Wood. 1993. Categorial Grammars, Routledge.

[Woods 70] W. A. Woods. 1970. Transition network grammars for natural language anal-
ysis. In Grosz, Jones, and Webber, editors, Readings in Natural Language Pro-

cessing.

276

