PIPGEs ICMC - USP/UFSCar

EST5102 – Inferência Estatística – 2024/1 $6^{\underline{a}}$ lista de exercícios

- 1. X é uma variável aleatória com distribuição uniforme($[-\theta, \theta]$), $\theta > 0$. Deve ser testada $H_0: \theta = 1$ contra $H_1: \theta > 1$. Com base em uma observação de X, rejeita-se H_0 se, e somente se, |X| > 0, 99.
 - (a) Determine o tamanho deste teste.
 - (b) Represente graficamente a função poder do teste.
- 2. Sejam $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathsf{uniforme}([0,\theta]), \ \theta > 0$. Seja $X_{(n)} = \max(X_1, \ldots, X_n)$. Devemos testar $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. Propomos o teste "rejeitar H_0 se, e somente se, $X_{(n)} \geq c$ ".
 - (a) Obtenha a função poder deste teste e prove que ela é crescente monótona em θ .
 - (b) Se $\theta_0 = 1/2$ e o tamanho do teste é 0,05, qual o valor de c?
 - (c) Qual deve ser o tamanho da amostra para que o teste das hipóteses no item acima tenha poder igual a 0,98 quando $\theta = 3/4$?
 - (d) Se em uma amostra de 20 observações tivermos $x_{(n)} = 0, 48$, quanto vale a probabilidade de significância?
- 3. X é uma variável aleatória com valores no conjunto $\{0,1,2,3\}$ com probabilidades $\theta(1-\theta), \theta^2(1-\theta), \theta(1-\theta)^2$ e $1-2\theta(1-\theta)$, respectivamente, $0<\theta<1$. Apresente o teste mais poderoso para $H_0: \theta=1/4$ versus $H_1: \theta=3/4$ com tamanho 15/64 e calcule o poder deste teste.
- 4. (a) Uma moeda é lançada n vezes com o obejtivo de verificar se a face "cara" é favorecida. Apresente um teste uniformemente mais poderoso (UMP) para esta situação.
 - (b) Se n=25 e 17 resultados "cara" foram observados, qual seria a sua decisão a um nível de significância de 10%?
- 5. Considere $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathsf{Poisson}(\theta), \ \theta > 0$. Apresente um teste para as hipóteses dos itens abaixo. Qual(is) dos testes é (são) UMP?
 - (a) $H_0: \theta = \theta_0 \text{ versus } H_1: \theta = \theta_1, \theta_0 \neq \theta_1.$
 - (b) $H_0: \theta = \theta_0 \ versus \ H_1: \theta \neq \theta_0.$

- (c) $H_0: \theta \leq \theta_0 \ versus \ H_1: \theta > \theta_0$.
- 6. X_1, \ldots, X_n é uma amostra aleatória de uma distribuição normal (μ_0, σ^2) , μ_0 conhecido. As hipóteses $H_0: \sigma \leq \sigma_0$ e $H_1: \sigma > \sigma_0$ devem ser testadas.
 - (a) Apresente o teste UMP de tamanho α , $0 < \alpha < 1$.
 - (b) Represente graficamente a função poder do teste UMP.
 - (c) Calcule o poder do teste quando n = 5, $\alpha = 0.05$ e $\sigma/\sigma_0 = 1.5$.
- 7. Sejam $X_1, \ldots, X_{n_1} \stackrel{\text{iid}}{\sim} \mathsf{normal}(\mu_1, \sigma^2)$ e $Y_1, \ldots, Y_{n_2} \stackrel{\text{iid}}{\sim} \mathsf{normal}(\mu_2, \sigma^2)$, independentes. Apresente um teste para as hipóteses $H_0: \mu_1 \leq \mu_2$ e $H_1: \mu_1 > \mu_2$ com tamanho α , $0 < \alpha < 1$.