Multi-dimensional Visualization based on Bidimensional Mapping

Rosane Minghim

Instituto de Ciências Matemáticas e de Computação
USP-São Carlos

Projection Techniques

\[X \in \mathbb{R}^m \quad f \quad Y \in \mathbb{R}^{p \in \{1,2,3\}} \]

- \(\delta: x_i, x_j \to \mathbb{R}, x_i, x_j \in X \)
- \(d: y_i, y_j \to \mathbb{R}, y_i, y_j \in Y \)
- \(f: X \to Y, |\delta(x_i, x_j) - d(f(x_i), f(x_j))| \leq 0, \forall x_i, x_j \in X \)

Ex: Mapping to plane of patents

surgery, drugs, molecular bio

Problems PCA

390 dimensions
Problems PCA

Ex: Sammon Mapping

- Let X be the points in the original space \mathbb{R}^n, we apply a distance measure d_{ij}^* between X_i and X_j, and find Y, the projected point, e.g. \mathbb{R}^2 and d_{ij} the Euclidean distance between them.

- Sammon's method applies an error function to measure the target.

Force Based Point Placement
Force Scheme [Tejada et al., 2003]

Force Based Point Placement

Force Scheme [Tejada et al., 2003]
Let $V_i = \{p_1, \ldots, p_n\}$ be a neighborhood of a point p_i and let c_i be the coordinates of p_i in \mathbb{R}^p

$$c_i - \frac{1}{ki} \sum_{p_j \in V_i} c_j = 0$$

Each p_i is the centroid of points in V_i

LSP: Laplacian Matrix

$Lx_1 = 0, Lx_2 = 0, \ldots, Lx_p = 0$
Where x_1, x_2, \ldots, x_p are vectors containing the coordinates of the points and L is the matrix given by:

$$L_{ij} = \begin{cases}
1 & i = j \\
\frac{1}{ki} & p_j \in V_i \\
0 & \text{otherwise}
\end{cases}$$
LSP: Adicionando os Pontos de Controle

\[A = \begin{pmatrix} L \\ C \end{pmatrix} \quad C_{ij} = \begin{cases} 1 & \text{if } p_j \text{ is a control point} \\ 0 & \text{otherwise} \end{cases} \]

\[b_i = \begin{cases} 0 & i \leq n \\ x_{p_i} & n < i \leq n + nc \end{cases} \]

Choosing the Control Points

• In order to select the control points
 • the space \(\mathbb{R}^m \) is split into \(nc \) clusters using k-medoids.
 • the control points are the medoids of each cluster

Choosing the Control Points

• Once the control points are chosen, these points are projected onto \(\mathbb{R}^d \) through a fast dimensionality reduction method
 • Fast Projection (Fastmap or NNP)
 • Force Placement
Content – based by Projections

(1)
(2)
(3)

Projection Example: IDH
Projection Example: voting in US Senate

Point Placement by Phylogenetic Tree Construction Algorithms (N-J Trees)

\[d_{AB} + d_{CD} \leq \max (d_{AC} + d_{BD}, d_{AD} + d_{BC}) \]

\[d_{AB} = a + b \quad d_{AC} = a + e + c \quad d_{AD} = a + e + d \]
\[d_{CD} = c + d \quad d_{BD} = b + e + d \quad d_{BC} = b + e + a \]
• Alternate view (N-J Tree)

Exploration

• Finding Relationships
• Building a Surface

RSS News Flash

Bird and Flu

Palestinian
Application 1: Visual Text Mapping

- Approach 1: Relationship Based (Metadata)

- Approach 2: Content based

Relationships: Topic Bursts and co-word

(Mane and Borner) 2004
Relationships: Citation and Co-citation

(Borner) (2003)

Content-based Text Mapping

- Approach 1: Pre-clustering & View
- Approach 2: Dimension reduction (Projections)

Content-based

(Skupin) (2002) (abstracts) SOM

Content-based

(Dimensional Reduction) News flash IN-SPHERE (PNL)
Content-based

(Surface View) IN-SPiRE

Mapeamento para o plano permitindo a exploração. Ex: Patents surgery, drugs, molecular bio

SOM based

• Self-Organization Maps (SOMs) cartográficos (ex. Skurpin 2002)

Exemplos de Mapas
Exemplos de Mapas

• Detailing topics
Time Series – Streamflow in Hidroelectrics

Text from attributes

- Cattle performance data
 - Translated to text from categorical information, e.g.,
 - Ranges of weight to words such as:
 - \{weight_below_fifty_percent;
 weight_between_fifty_seventy_five; etc..\}
 - 9135 individuals

Cattle performance data

Colored by word 'top'
Images?

Cattle performance data

Colored by female

Colored by farm

Pipeline

Image Data Set → Feature Acquisition → Feature Selection

Interaction

Classification → Visualization → Similarity Calculation
Comparison of Distance Metrics

- Euclidean
- City Block
- Cosine

512 MRI medical images
12 classes

Comparison of Feature Space (1)

- 16 Gabor Filters
- Fourier, Mean and Deviation
- 72 co-occurrence matrices
- All combined

512 MRI medical images
12 classes
Comparison of Feature Space (1)

- 16 Gabor Filters
- Fourier, Mean and Deviation
- 72 co-occurrence matrices
- All combined

512 MRI medical images
12 classes

Comparison of Feature Space (2)

- All combined
- 1024 Wavelet Features

1000 X-Ray images from ImageCLEF
116 classes

Comparison of Feature Space (2)

- All combined
- 1024 Wavelet Features

1000 X-Ray images from ImageCLEF
116 classes

Detailed Inspection
Detailed Inspection

ImageCLEF Training Data Set (1)

9000 X-Ray images
116 classes

ImageCLEF Training Data Set (2)

Class 108
Class 111

Further Examples on Text

• RSS Patent Data, recovered from the Web http://www.freepatentsonline.com/
• Case 1:
 • 170 files
 • Graphics processing, printer, database, document, ai
Patents – case 2

- http://www.freepatentsonline.com/
- 172 files
- surgery (2), drugs(2), molecular biology
Patents surgery, drugs, molecular bio
stopwords selection

Patents surgery, drugs, molecular bio
topics

Patents surgery, drugs, molecular bio

Patents surgery, drugs, molecular bio
Projection Explorer (PEx)

http://infoserver.lcad.icmc.usp.br/

Collaborators

Alneu de Andrade Lopes – Mineração de textos
alneu@

Haim Levkowitz – Visualization
haim@cs.uml.edu

João E. S. Batista Neto – Imaging
jbatista@

Visualization Group

Maria Cristina F. Oliveira
cristina@

Fernando Vieira
Paulovich

Rosane Minghim

Luis Gustavo
Nonato

Doutorandos

Danilo Medeiros Eler
Aretha Barbosa
Kátia Felizardo

Mestrandos

Jorge Poco Medina
Christian
Tácito Neves
Renato Oliveira
Gabrial Andery
Other Partnerships

Sérgio Furuie (Poli – USP), Brazil
Lars Linsen (Jacobs University Bremen), Germany
Charl Botha (TU Delft); Anton Heijs (Treparel Inc.), The Netherlands

Link

- infoserver.lcad.icmc.usp.br (Pex, Pex-WEB, Pex-Temporal, Pex-Image).

Referências