

Introdução a Sistemas Inteligentes

Raciocínio Aproximado e Sistemas Fuzzy — Parte II: Sistemas Baseados em Regras Fuzzy

Prof. Ricardo J. G. B. Campello

ICMC / USP

Créditos

- Parte deste material consiste de adaptações e extensões dos originais gentilmente cedidos:
 - pelo Prof. Dr. Fernando Antonio Campos Gomide da FEEC/Unicamp

2

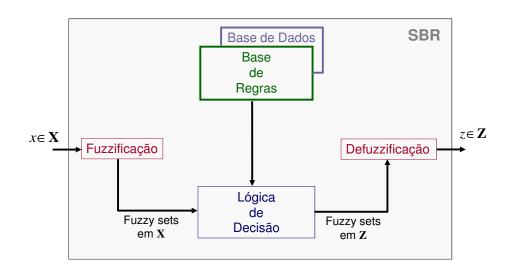
Aula de Hoje

- Sistemas Baseados em Regras Fuzzy
 - fuzzificação, defuzzificação e inferência de Mamdani
- Modelos Linguísticos
 - Método de Extração de Regras
- Modelos de Takagi-Sugeno (TS)
 - Treinamento de Modelos TS

Variáveis Lingüísticas

3

Regras Lingüísticas

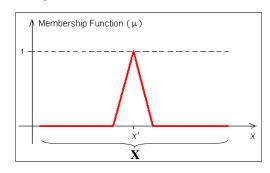

- Geralmente são proposições "Se Então"
- A forma mais usual é do tipo

Se velocidade é alta e distância é pequena Então tempo de viagem é curto

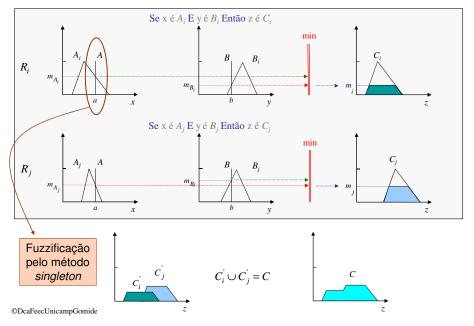
variáveis linguísticas termos linguísticos

©ICMC-USP-Campello

Sistemas Baseados em Regras Nebulosas

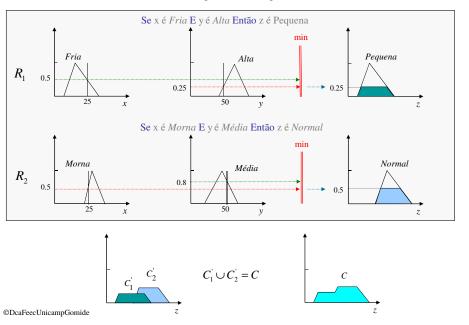


©DcaFeecUnicampGomide

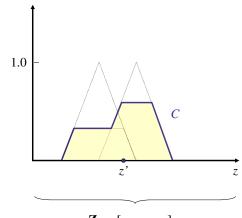

Fuzzificação

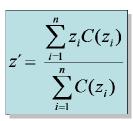
• Singleton:
$$\mu(x) = \begin{cases} 1, & \text{se } x = x' \\ 0, & \text{se } x \neq x \end{cases}$$

• Método do Triângulo:



Lógica de Decisão: Inferência Clássica de Mamdani




©ICMC-USP-Campello

Exemplo Simples

Defuzzificação: Método do Centro de Gravidade / Área

$$\mathbf{Z} = [z_1, \dots, z_n]$$

©DcaFeecUnicampGomide

Defuzzificação: Método do Centro de Gravidade / Área

• Exemplo:

 $C = \{ 0/5, 0/6, 0.25/7, 0.25/8, 0.25/9, 0.75/10, 0.75/11, 0.25/12, 0/13, 0/14, 0/15 \}$

No quadro...

Modelos Lingüísticos

Geração de Bases de Regras (Método Ingênuo)

Li-Xin Wang, Adaptive Fuzzy Systems and Control, Prentice Hall, 1994 K. M. Passino & S. Yurkovich, Fuzzy Control, Addison-Wesley, 1997

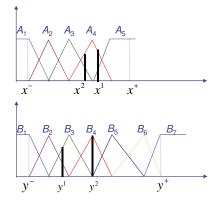
- Dado: Conjunto de pares entrada/saída (atributos / atributo meta)

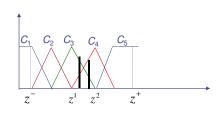
$$(x^1, y^1; z^1), (x^2, y^2; z^2), \dots, (x^i, y^i; z^i), \dots$$

x, y entradas / atributos

z saída / atributo meta

- Determinar: Base de Regras Se-Então tal que


$$F:(X,Y)\to Z$$


©DcaFeecUnicampGomide ©ICMC-USP-Campello

Modelos Lingüísticos

1 - Granularizar espaços de entrada e saída

- Determinar universos de discurso: $[x^-, x^+]$, $[y^-, y^+]$, $[z^-, z^+]$
- Particionar universos (em geral usando de 2 a 7 termos linguísticos em cada):

©DcaFeecUnicampGomide

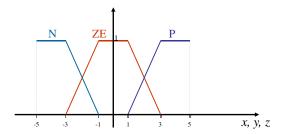
2 - Gerar regras a partir dos dados

Modelos Lingüísticos

- Determinar graus de ativação
- Criar regras correspondentes aos graus mais altos:

 R_1 : Se $x \notin A_4$ e $y \notin B_3$ então $z \notin C_3$ R_2 : Se $x \notin A_4$ e $y \notin B_4$ então $z \notin C_4$

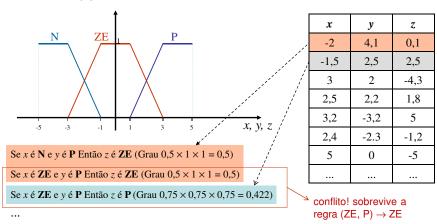
3 - Resolver conflitos


- Determinar grau de cada regra: $Grau(Regra) = A_k(x) \times B_l(y) \times C_m(z)$
- Resolva conflitos tomando a regra de maior grau
- 4 Sintonia fina opcional (modelagem quantitativa)
- Ajuste das funções de pertinência (fuzzy sets)

©DcaFeecUnicampGomide

©ICMC-USP-Campello

Exemplo


 Instâncias de 3 variáveis, sendo 2 entradas (x, y) e 1 saída (z), com valores no mesmo universo de discurso:

x	у	z
-2	4,1	0,1
-1,5	2,5	2,5
3	2	-4,3
2,5	2,2	1,8
3,2	-3,2	5
2,4	-2.3	-1,2
5	0	-5

Exemplo

• Instâncias de 3 variáveis, sendo 2 entradas (x, y) e 1 saída (z), com valores no mesmo universo de discurso:

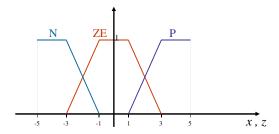
Exercício: Completar o exemplo para as demais instâncias da base de dados!

Exercícios

- 1. Fuzzificar a grandeza numérica r = 10 Mbps utilizando o método do triângulo com uma incerteza máxima de \pm 1 Mbps
- **2.** Calcular e representar graficamente (em detalhes) o conjunto fuzzy de saída inferido através do Método de Mamdani e as seguintes regras:

R1: Se x é Negativo Então z é Positivo

R2: Se x é Zero Então z é Zero


onde a entrada é dada por x = -1.5 e os conjuntos fuzzy Negativo* (N), Zero* (ZE) e Positivo* (P) são dados (tanto para a entrada como para a saída) a seguir

Referência Principal

• W. Pedrycz & F. Gomide, "An Introduction to Fuzzy Sets: Analysis and Design", MIT Press, 1998.

Exercícios

continuação...

- **3.** Calcular a saída numérica referente ao exercício anterior utilizando o método do centro de gravidade. Use uma discretização 0.5 do universo de discurso
- **4.** Repetir 2 e 3 para x = -2.5