Hierarchical Clustering

e Produces a set of nested clusters organized as a
hierarchical tree
e Can be visualized as a dendrogram

— Atree like diagram that records the sequences of
merges or splits
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Strengths of Hierarchical Clustering

e Do not have to assume any particular number of
clusters

— Any desired number of clusters can be obtained by
‘cutting’ the dendogram at the proper level

e They may correspond to meaningful taxonomies

— Example in biological sciences (e.g., animal kingdom,
phylogeny reconstruction, ...)
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Hierarchical Clustering

e Two main types of hierarchical clustering
— Agglomerative:
+ Start with the points as individual clusters

+ At each step, merge the closest pair of clusters until only one cluster
(or k clusters) left

— Divisive:
+ Start with one, all-inclusive cluster

+ At each step, split a cluster until each cluster contains a point (or
there are k clusters)

e Traditional hierarchical algorithms use a similarity or
distance matrix
— Merge or split one cluster at a time
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Agglomerative Clustering Algorithm

e More popular hierarchical clustering technique

e Basic algorithm is straightforward
1. Compute the proximity matrix
2. Leteach data point be a cluster
3. Repeat
4. Merge the two closest clusters
5 Update the proximity matrix
6. Until only a single cluster remains

e Key operation is the computation of the proximity of
two clusters

—  Different approaches to defining the distance between
clusters distinguish the different algorithms
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Starting Situation

e Start with clusters of individual points and a
proximity matrix
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Intermediate Situation

e After some merging steps, we have some clusters
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Intermediate Situation

e We want to merge the two closest clusters (C2 and C5) and
update the proximity matrix.
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After Merging

e The question is “How do we update the proximity matrix?”
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How to Define Inter-Cluster Similarity
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e Other methods driven by an objective
function
— Ward's Method uses squared error
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How to Define Inter-Cluster Similarity

MIN =
MAX ’
Group Average

Distance Between Centroids

Other methods driven by an objective
function
— Ward's Method uses squared error

Proximity Matrix
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How to Define Inter-Cluster Similarity

MIN o
MAX '
Group Average

Distance Between Centroids

Other methods driven by an objective
function
— Ward's Method uses squared error

Proximity Matrix

I@Tan,Stelnhach‘ Kumar Introduction to Data Mining 4/18/2004 @

How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity
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Other methods driven by an objective
function
— Ward's Method uses squared error
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Cluster Similarity: MIN or Single Link

e Similarity of two clusters is based on the two
most similar (closest) points in the different
clusters

— Determined by one pair of points, i.e., by one link in
the proximity graph.
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Strength of MIN

Original Points Two Clusters

+ Can handle non-elliptical shapes
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Nested Clusters Dendrogram
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Limitations of MIN

Original Points Two Clusters

« Sensitive to noise and outliers
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Cluster Similarity: MAX or Complete Linkage

e Similarity of two clusters is based on the two least
similar (most distant) points in the different
clusters

— Determined by all pairs of points in the two clusters
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Hierarchical Clustering: MAX
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Strength of MAX

Original Points Two Clusters

« Less susceptible to noise and outliers
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Limitations of MAX

Original Points Two Clusters

«Tends to break large clusters

*Biased towards globular clusters

I@Tan,s‘embaph, Kumar Introduction to Data Mining 4/18/2004 %

Cluster Similarity: Group Average

e Proximity of two clusters is the average of pairwise proximity
between points in the two clusters.
> proximity(p;, p;)
pi_Cluster;
Py Cluster;

roximity(Cluster,, Cluster;) = >— ——
P ty( b 3) | Cluster, | O] Cluster; |

e Need to use average connectivity for scalability since total
proximity favors large clusters
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Hierarchical Clustering: Group Average

Nested Clusters Dendrogram
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Hierarchical Clustering: Group Average

e Compromise between Single and Complete
Link

e Strengths
— Less susceptible to noise and outliers

e Limitations
— Biased towards globular clusters
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Cluster Similarity: Ward’s Method

e Similarity of two clusters is based on the increase
in squared error when two clusters are merged

— Similar to group average if distance between points is
distance squared

e Less susceptible to noise and outliers
e Biased towards globular clusters

e Hierarchical analogue of K-means
— Can be used to initialize K-means
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Hierarchical Clustering: Comparison

Ward's Method

Group Average
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Hierarchical Clustering: Time and Space requirements

e O(N?) space since it uses the proximity matrix.
— N is the number of points.

e O(N3) time in many cases
— There are N steps and at each step the size, N2,
proximity matrix must be updated and searched

— Complexity can be reduced to O(N2 log(N) ) time for
some approaches
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Hierarchical Clustering: Problems and Limitations

e Once a decision is made to combine two clusters,
it cannot be undone

e No objective function is directly minimized

e Different schemes have problems with one or
more of the following:
— Sensitivity to noise and outliers

— Difficulty handling different sized clusters and convex
shapes

— Breaking large clusters
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