
http://www.kiwwito.com/article/build-a-lexical-analyzer-with-javacc

15.04.10 - Build a lexical analyzer with JavaCC

How to create a lexical analyzer with JavaCC for a defined programming language

In programming, a lexical analyzer is the part of a compiler or a parser that break the

input language into tokens.

A token is the minimal meaning component. Common tokens are identifiers, integers,

floats, constants, etc.

For building it, we are going to use an incredible useful tool, JavaCC. With simple

regular expressions we can define our language tokens.

About JavaCC:

JavaCC is a tool usually used for parsers and is actually maintained by Sun

Microsystems. Is very simple, efficient and safe. You can freely download it from the

official website (https://javacc.dev.java.net/) or like a Eclipse plugin.

Practical case, build a lexical analyzer for a determined defined language:

Our language specifications are:

Tokens:

 Constants:

o Strings: Characters between quotes, example: "cadena"

o Integers: Positive numbers, example: 234 or 0

o Logicals: TRUE and FALSE

 Identifiers: All the identifiers are a sequence of letters (a-zA-Z) and numbers

that must start with a letter (and not a number). The identifiers that refers to

strings must end with a dollar ($).

 Reserved words: In the language are some reserved words that refers to

programming structures that brings to life the language. Those are "not, if, end,

let, call, then, case, else, input, print, select, and static".

 Also, the language is case insensitive, that is, an identifier named "id" refers to

the same point that another called "Id", "iD" or "ID". The same methodology for

reserved words.

JavaCC code (exparser.jj):

options {

 IGNORE_CASE = true;

}

PARSER_BEGIN(ExampleParser)

 public class ExampleParser {

https://javacc.dev.java.net/
http://eclipse-javacc.sourceforge.net/

 //Parser execution

 public static void main (String args []) {

 //Parser initialization

 ExampleParser parser;

 if(args.length == 0){

 System.out.println ("ExampleParser: Reading input ...");

 parser = new ExampleParser(System.in);

 }

 else if(args.length == 1){

 System.out.println ("ExampleParser: Reading the file " + args[0] + " ...");

 try {

 parser = new ExampleParser(new java.io.FileInputStream(args[0]));

 }

 catch(java.io.FileNotFoundException e) {

 System.out.println ("ExampleParser: The file " + args[0] + " was not found.");

 return;

 }

 }

 else {

 System.out.println ("ExampleParser: You must use one of the following:");

 System.out.println (" java ExampleParser < file");

 System.out.println ("Or");

 System.out.println (" java ExampleParser file");

 return ;

 }

 try {

 compilador.Start();

 System.out.println ("ExampleParser: The input was readed sucessfully.");

 }

 catch(ParseException e){

 System.out.println ("ExampleParser: There was an error during the parse.");

 System.out.println (e.getMessage());

 }

 catch(TokenMgrError e){

 System.out.println ("ExampleParser: There was an error.");

 System.out.println (e.getMessage());

 }

 }

 }

PARSER_END(ExampleParser)

//STRUCTURES AND CHARACTERS TO SCAPE

SKIP : {

http://www.google.com/search?hl=en&q=allinurl%3Astring+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Asystem+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Asystem+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Asystem+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Afileinputstream+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Afilenotfoundexception+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Asystem+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Asystem+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Asystem+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Asystem+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Asystem+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Asystem+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Aparseexception+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Asystem+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Asystem+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Asystem+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Asystem+java.sun.com&btnI=I%27m%20Feeling%20Lucky

 " "

| "\t"

| "\n"

| "\r"

| <"rem" (~["\n","\r"])* ("\n" | "\r" | "\r\n")>

}

//STATIC TOKENS

TOKEN : {

 <INTEGER_CONSTANT: (<DIGIT>)+>

| <LOGIC_CONSTANT: "true" | "false" | "-1">

| <STRING_CONSTANT: "\"" (~["\"","\\","\n","\r"] | "\\" (["n","t","b","r","f","\\","\'","\""] | (

["\n","\r"] | "\r\n")))* "\"">

| <#DIGIT: ["0"-"9"]>

}

//RESERVED WORDS

TOKEN : {

 <NOT: "not">

| <IF: "if">

| <END: "end">

| <SUB: "sub">

| <LET: "let">

| <CALL: "call">

| <THEN: "then">

| <CASE: "case">

| <ELSE: "else">

| <INPUT: "input">

| <PRINT: "print">

| <SELECT: "select">

| <STATIC: "static">

}

//IDENTIFIER TOKEN

TOKEN : {

 <IDENTIFIER: <LETTER>(<LETTER>|<DIGIT>)*(["$"])?>

| <#LETTER: (["a"-"z","A"-"Z"])>

}

//MAIN UNIT

void Start () : {}

{

 (

 INTEGER_CONSTANT | STRING_CONSTANT | LOGIC_CONSTANT |

 NOT | IF | END | SUB | LET | CALL | THEN | CASE | ELSE | INPUT | PRINT | SELECT | STATIC |

 IDENTIFIER

)*

 <EOF>

}

For compiling this file you have to use "javacc" and after "javac":

$ javacc exparser.jj

$ javac *.java

For executing the program:

$ java ExampleParser file

Remember that the previous code is for the lexical analyzer, it not try to check the
programming structures or compiling it to binary code, it only break the input into tokens.
However, you can follow the development and make a compiler or a parser.

JavaCC [tm]: Command Line Syntax

First, you can obtain a synopsis of the command line syntax by simply typing

"javacc". This is what you get:

% javacc

<<<< Version and copyright info>>>

Usage:

 javacc option-settings inputfile

"option-settings" is a sequence of settings separated by

spaces.

Each option setting must be of one of the following forms:

 -optionname=value (e.g., -STATIC=false)

 -optionname:value (e.g., -STATIC:false)

 -optionname (equivalent to -optionname=true.

e.g., -STATIC)

 -NOoptionname (equivalent to -optionname=false.

e.g., -NOSTATIC)

Option settings are not case-sensitive, so one can say "-

nOsTaTiC" instead

of "-NOSTATIC". Option values must be appropriate for the

corresponding option, and must be either an integer, a

boolean, or a string value.

The integer valued options are:

 LOOKAHEAD (default 1)

 CHOICE_AMBIGUITY_CHECK (default 2)

 OTHER_AMBIGUITY_CHECK (default 1)

The boolean valued options are:

 STATIC (default true)

 SUPPORT_CLASS_VISIBILITY_PUBLIC (default true)

 DEBUG_PARSER (default false)

 DEBUG_LOOKAHEAD (default false)

 DEBUG_TOKEN_MANAGER (default false)

 ERROR_REPORTING (default true)

 JAVA_UNICODE_ESCAPE (default false)

 UNICODE_INPUT (default false)

 IGNORE_CASE (default false)

 COMMON_TOKEN_ACTION (default false)

 USER_TOKEN_MANAGER (default false)

 USER_CHAR_STREAM (default false)

 BUILD_PARSER (default true)

 BUILD_TOKEN_MANAGER (default true)

 TOKEN_MANAGER_USES_PARSER (default false)

 SANITY_CHECK (default true)

 FORCE_LA_CHECK (default false)

 CACHE_TOKENS (default false)

 KEEP_LINE_COLUMN (default true)

The string valued options are:

 OUTPUT_DIRECTORY (default Current Directory)

 TOKEN_EXTENDS (java.lang.Object)

 TOKEN_FACTORY (java.lang.Object)

 JDK_VERSION (1.5)

 GRAMMAR_ENCODING (default file.encoding)

EXAMPLE:

 javacc -STATIC=false -LOOKAHEAD:2 -debug_parser

mygrammar.jj

ABOUT JavaCC:

 JavaCC is a parser generator for the Java [tm]

programming

 language originally built by

 Sriram Sankar (http://www.cs.stanford.edu/~sankar) and

 Sreeni Viswanadha (http://www.cs.albany.edu/~sreeni).

%

 LOOKAHEAD: The number of tokens to look ahead before making a

decision at a choice point during parsing. The default value is 1. The smaller

this number, the faster the parser. This number may be overridden for

specific productions within the grammar as described later. See the

description of the lookahead algorithm for complete details on how

lookahead works.

 CHOICE_AMBIGUITY_CHECK: This is an integer option whose default

value is 2. This is the number of tokens considered in checking choices of

the form "A | B | ..." for ambiguity. For example, if there is a common two

token prefix for both A and B, but no common three token prefix, (assume

this option is set to 3) then JavaCC can tell you to use a lookahead of 3 for

disambiguation purposes. And if A and B have a common three token prefix,

then JavaCC only tell you that you need to have a lookahead of 3 or more.

Increasing this can give you more comprehensive ambiguity information at

the cost of more processing time. For large grammars such as the Java

grammar, increasing this number any further causes the checking to take

too much time.

 OTHER_AMBIGUITY_CHECK: This is an integer option whose default

value is 1. This is the number of tokens considered in checking all other

kinds of choices (i.e., of the forms "(A)*", "(A)+", and "(A)?") for ambiguity.

This takes more time to do than the choice checking, and hence the default

value is set to 1 rather than 2.

 STATIC: This is a boolean option whose default value is true. If true, all

methods and class variables are specified as static in the generated parser

https://javacc.dev.java.net/doc/lookahead.html

and token manager. This allows only one parser object to be present, but it

improves the performance of the parser. To perform multiple parses during

one run of your Java program, you will have to call the ReInit() method to

reinitialize your parser if it is static. If the parser is non-static, you may use

the "new" operator to construct as many parsers as you wish. These can all

be used simultaneously from different threads.

 DEBUG_PARSER: This is a boolean option whose default value is false.

This option is used to obtain debugging information from the generated

parser. Setting this option to true causes the parser to generate a trace of its

actions. Tracing may be disabled by calling the method disable_tracing() in

the generated parser class. Tracing may be subsequently enabled by calling

the method enable_tracing() in the generated parser class.

 DEBUG_LOOKAHEAD: This is a boolean option whose default value is

false. Setting this option to true causes the parser to generate all the tracing

information it does when the option DEBUG_PARSER is true, and in

addition, also causes it to generated a trace of actions performed during

lookahead operation.

 DEBUG_TOKEN_MANAGER: This is a boolean option whose default value

is false. This option is used to obtain debugging information from the

generated token manager. Setting this option to true causes the token

manager to generate a trace of its actions. This trace is rather large and

should only be used when you have a lexical error that has been reported to

you and you cannot understand why. Typically, in this situation, you can

determine the problem by looking at the last few lines of this trace.

 ERROR_REPORTING: This is a boolean option whose default value is true.

Setting it to false causes errors due to parse errors to be reported in

somewhat less detail. The only reason to set this option to false is to

improve performance.

 JAVA_UNICODE_ESCAPE: This is a boolean option whose default value is

false. When set to true, the generated parser uses an input stream object

that processes Java Unicode escapes (\u...) before sending characters to

the token manager. By default, Java Unicode escapes are not processed.

This option is ignored if either of options USER_TOKEN_MANAGER,

USER_CHAR_STREAM is set to true.

 UNICODE_INPUT: This is a boolean option whose default value is false.

When set to true, the generated parser uses uses an input stream object

that reads Unicode files. By default, ASCII files are assumed.

This option is ignored if either of options USER_TOKEN_MANAGER,

USER_CHAR_STREAM is set to true.

https://javacc.dev.java.net/doc/apiroutines.html
https://javacc.dev.java.net/doc/apiroutines.html
https://javacc.dev.java.net/doc/apiroutines.html
https://javacc.dev.java.net/doc/lookahead.html

 IGNORE_CASE: This is a boolean option whose default value is false.

Setting this option to true causes the generated token manager to ignore

case in the token specifications and the input files. This is useful for writing

grammars for languages such as HTML. It is also possible to localize the

effect of IGNORE_CASE by using an alternate mechanism described later.

 USER_TOKEN_MANAGER: This is a boolean option whose default value

is false. The default action is to generate a token manager that works on the

specified grammar tokens. If this option is set to true, then the parser is

generated to accept tokens from any token manager of type

"TokenManager" - this interface is generated into the generated parser

directory.

 SUPPORT_CLASS_VISIBILITY_PUBLIC: This is a boolean option whose

default value is true. The default action is to generate support classes (such

as Token.java, ParseException.java etc) with Public visibility. If set to false,

the classes will be generated with package-private visibility.

 USER_CHAR_STREAM: This is a boolean option whose default value is

false. The default action is to generate a character stream reader as

specified by the options JAVA_UNICODE_ESCAPE and UNICODE_INPUT.

The generated token manager receives characters from this stream reader.

If this option is set to true, then the token manager is generated to read

characters from any character stream reader of type "CharStream.java".

This file is generated into the generated parser directory.

This option is ignored if USER_TOKEN_MANAGER is set to true.

 BUILD_PARSER: This is a boolean option whose default value is true. The

default action is to generate the parser file ("MyParser.java" in the above

example). When set to false, the parser file is not generated. Typically, this

option is set to false when you wish to generate only the token manager and

use it without the associated parser.

 BUILD_TOKEN_MANAGER: This is a boolean option whose default value

is true. The default action is to generate the token manager file

("MyParserTokenManager.java" in the above example). When set to false

the token manager file is not generated. The only reason to set this option to

false is to save some time during parser generation when you fix problems

in the parser part of the grammar file and leave the lexical specifications

untouched.

 TOKEN_MANAGER_USES_PARSER: This is a boolean option whose

default value is false. When set to true, the generated token manager will

include a field called parser that references the instantiating parser

instance (of type MyParser in the above example). The main reason for

https://javacc.dev.java.net/doc/javaccgrm.html#prod10

having a parser in a token manager is using some of its logic in lexical

actions. This option has no effect if the STATIC option is set to true.

 TOKEN_EXTENDS: This is a string option whose default value is "",

meaning that the generated Token class will extend java.lang.Object. This

option may be set to the name of a class that will be used as the base class

for the generated Token class.

 TOKEN_FACTORY: This is a string option whose default value is "",

meaning that Tokens will be created by calling Token.newToken(). If set

the option names a Token factory class containing a public static

Token newToken(int ofKind, String image) method.

 SANITY_CHECK: This is a boolean option whose default value is true.

JavaCC performs many syntactic and semantic checks on the grammar file

during parser generation. Some checks such as detection of left recursion,

detection of ambiguity, and bad usage of empty expansions may be

suppressed for faster parser generation by setting this option to false. Note

that the presence of these errors (even if they are not detected and reported

by setting this option to false) can cause unexpected behavior from the

generated parser.

 FORCE_LA_CHECK: This is a boolean option whose default value is false.

This option setting controls lookahead ambiguity checking performed by

JavaCC. By default (when this option is false), lookahead ambiguity

checking is performed for all choice points where the default lookahead of 1

is used. Lookahead ambiguity checking is not performed at choice points

where there is an explicit lookahead specification, or if the option

LOOKAHEAD is set to something other than 1. Setting this option to true

performs lookahead ambiguity checking at all choice points regardless of

the lookahead specifications in the grammar file.

 COMMON_TOKEN_ACTION: This is a boolean option whose default value

is false. When set to true, every call to the token manager's method

"getNextToken" (see the description of the Java Compiler Compiler API) will

cause a call to a used defined method "CommonTokenAction" after the

token has been scanned in by the token manager. The user must define this

method within the TOKEN_MGR_DECLS section. The signature of this

method is:

 void CommonTokenAction(Token t)

 CACHE_TOKENS: This is a boolean option whose default value is false.

Setting this option to true causes the generated parser to lookahead for

extra tokens ahead of time. This facilitates some performance

improvements. However, in this case (when the option is true), interactive

https://javacc.dev.java.net/doc/lookahead.html
https://javacc.dev.java.net/doc/apiroutines.html
https://javacc.dev.java.net/doc/javaccgrm.html#prod12

applications may not work since the parser needs to work synchronously

with the availability of tokens from the input stream. In such cases, it's best

to leave this option at its default value.

 OUTPUT_DIRECTORY: This is a string valued option whose default value

is the current directory. This controls where output files are generated.

