

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA

2014

Problemas de inferência

Inferir significa fazer afirmações sobre algo desconhecido.

A inferência estatística tem como objetivo fazer afirmações sobre uma característica de uma população a partir do conhecimento de dados de uma parte desta população (isto é, uma amostra de n observações).

A população é representada por uma distribuição de probabilidade com parâmetro(s) cujo(s) valor(es) é (são) desconhecido(s).

Fazemos inferências sobre o(s) parâmetro(s).

Problemas de inferência

Se θ é um parâmetro da distribuição de uma v. a. X e $X_1,...,X_n$ é uma amostra desta distribuição, encontramos três problemas típicos:

1. Estimação pontual

Apresentar um valor para θ , que é uma função da amostra $X_1,...,X_n$ ("cálculo" de θ), chamada de estimador de θ .

Espera-se que o estimador tenha boas propriedades: (i) em média esteja próximo de θ , (ii) o estimador se aproxima de θ quando n aumenta, ...

2. Estimação intervalar

Apresentar um intervalo de possíveis valores para θ , chamado de intervalo de confiança. Os limites do intervalo são funções da amostra $X_1,...,X_n$ (são aleatórios).

```
\theta ?
Limite inferior = Limite superior = U(X_1,...,X_n)
```

A probabilidade de que o intervalo contenha θ deve ser alta.

A amplitude do intervalo deve ser tão pequena quanto possível (intervalo mais preciso).

Problemas de inferência

3. Teste de hipóteses

Uma hipótese estatística (H) é uma afirmação sobre o valor de θ. Pode ser verdadeira ou falsa.

Se θ é a probabilidade de sucesso no modelo binomial, H: $\theta = \frac{1}{2}$, H: $\theta \neq \frac{1}{2}$ e H: $\theta > \frac{3}{4}$ são exemplos de hipóteses.

Com base na amostra X₁,...,X_n, formulamos uma regra de decisão que permita concluir pela rejeição ou não rejeição (aceitação) de H. A decisão pode ser correta ou errada.

Estimação pontual – método de substituição

- (a). Distribuição binomial. $X \sim B(n, p)$. Vimos que E(X) = np. Um estimador para $p: \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \text{proporção amostral de sucessos.}$
- (b). Distribuição de Poisson. X ~ Po(μ). Vimos que $E(X) = \mu$.

 Um estimador para $\mu : \overline{X}$.
- (c). Distribuição exponencial. X ~ Ex(λ). Vimos que E(X) = 1 / λ .

 Um estimador para λ : = $\frac{1}{X}$.
- (d). Distribuição normal. $X \sim N(\mu, \sigma^2)$. Vimos que $E(X) = \mu$ e $Var(X) = \sigma^2$.

 Um estimador para $\mu : \overline{X}$. Um estimador para $\sigma^2 : s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$.
- (e). Distribuição log-normal. $X \sim LN(\mu, \sigma^2) \Leftrightarrow Y = log(X) \sim N(\mu, \sigma^2)$.

 Um estimador para $\mu : \overline{Y}$. Um estimador para $\sigma^2 : s_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i \overline{Y})^2$.

Obs. Existem outros métodos de estimação.

Teste de hipóteses

Exemplo. Uma indústria adquire de um certo fabricante pinos cuja resistência média à ruptura é especificada em 60 unid. (valor nominal da especificação). Em um determinado dia a indústria recebeu um grande lote de pinos e a equipe técnica da indústria deseja verificar se o lote atende às especificações.

```
    H<sub>0</sub>: O lote atende às especificações (Hipótese nula).
    H<sub>1</sub>: O lote não atende às especificações (Hipótese alternativa).
```

A v. a. X (resistência à ruptura) é tal que $X \sim N$ (μ , 25). O problema pode ser resolvido testando as hipóteses

```
H_0: \mu = 60 (hipótese simples: um único valor) e H_1: \mu \neq 60 (hipótese composta: mais de um valor)
```

Teste de hipóteses

Uma hipótese estatística é uma afirmação sobre o(s) parâmetro(s) da distribuição de probabilidade de uma característica (v. a. X) da população.

Um teste de uma hipótese estatística é um procedimento ou regra de decisão que nos possibilita decidir por H_0 ou H_1 com base na amostra $X_1,...,X_n$.

Exemplo. A equipe técnica da indústria decidiu retirar uma amostra aleatória de tamanho n = 16 do lote recebido. A resistência de cada pino foi medida e foi calculada a resistência média \bar{x} (estimador de μ), que será utilizada para realizar o teste (estatística de teste). Podemos afirmar que

$$\overline{X} \sim N\left(\mu, \frac{25}{16}\right).$$

Obs. Se X_1 , X_2 , ..., X_n é uma amostra de uma distribuição $N(\mu, \sigma^2)$, então a média amostral tem distribuição $N(\mu, \sigma^2/n)$.

Para quais valores de \bar{x} a equipe técnica deve rejeitar H_0 e portanto rejeitar o lote?

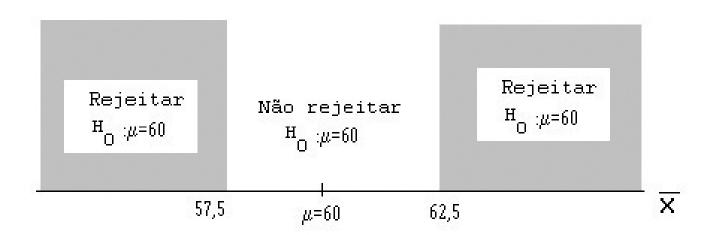
Região crítica (R_c) ou região de rejeição é o conjunto de valores assumidos pela estatística de teste para os quais a hipótese nula é rejeitada. Seu complementar é a região de aceitação (R_a) .

Exemplo. Se o lote está fora de especificação, isto é, se H_1 : $\mu \neq 60$ for verdadeira, espera-se que a média amostral seja inferior ou superior a 60 unid.

A equipe técnica decidiu adotar a seguinte regra: rejeitar H_0 se \bar{x} for maior do que 62,5 unid. ou menor do que 57,5 unid. As duas regiões são

$$R_c = \{\overline{X} > 62,5 \text{ ou } \overline{X} < 57,5\}$$
 : região de rejeição de H_0 e

$$R_a = \{57,5 \le \overline{X} \le 62,5\}$$
 : região de aceitação de H_0 .



Procedimento (teste):

Se $\bar{x} \in R_c$, rejeita - se H_0 ;

Se $\bar{x} \notin R_c$, não se rejeita (aceita - se) H_0 .

Tipos de erros

Erro tipo I: rejeitar H₀ quando H₀ é verdadeira.

Erro tipo II: não rejeitar (aceitar) H₀ quando H₀ é falsa.

Exemplo. As hipóteses são

H₀: O lote atende às especificações;

H₁: O lote não atende às especificações.

Erro tipo I: rejeitar o lote sendo que ele está de acordo com as especificações.

Erro tipo II: não rejeitar (aceitar) o lote sendo que ele não está de acordo com as especificações.

Quadro resumo:

	Situação real e desconhecida				
Decisão	Ho verdadeira	Ho falsa			
Não rejeitar Ho	Decisão correta	Erro tipo II			
Rejeitar Ho	Erro tipo I	Decisão correta			

Nível de significância e poder

```
P(Erro tipo I) = \alpha (nível de significância).

\alpha = P(Rejeitar H<sub>0</sub>; H<sub>0</sub> verdadeira).

P(Erro tipo II) = \beta = P(Não rejeitar H<sub>0</sub>; H<sub>0</sub> falsa)

= P(Não rejeitar H<sub>0</sub>; H<sub>1</sub> verdadeira).
```

 $1 - \beta = P(Rejeitar H_0; H_0 \text{ \'e falsa}) : poder do teste.$

Obs. Quanto maior o poder, melhor o teste.

Exemplo. As hipóteses são H_0 : $\mu = 60$ e H_1 : $\mu \neq 60$. Logo,

$$\alpha = P(\overline{X} > 62,5 \text{ ou } \overline{X} < 57,5; \text{ H}_0 : \mu = 60).$$

Se H₀ for verdadeira, então $\overline{X} \sim N(60, 25/16)$.

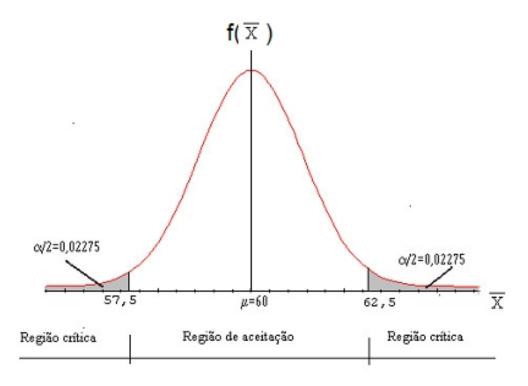
Calculamos o nível de significância:

$$\alpha = P(\overline{X} > 62,5; H_0: \mu = 60) + P(\overline{X} < 57,5; H_0: \mu = 60)$$

$$= P\left(\frac{\overline{X} - 60}{\sqrt{25/16}} > \frac{62,5 - 60}{\sqrt{25/16}}\right) + P\left(\frac{\overline{X} - 60}{\sqrt{25/16}} < \frac{57,5 - 60}{\sqrt{25/16}}\right)$$

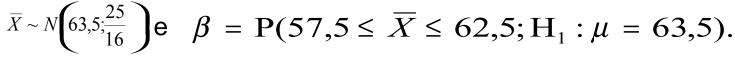
$$= P(Z > 2,00) + P(Z < -2,00) = 0,02275 + 0,02275 = 0,0455.$$

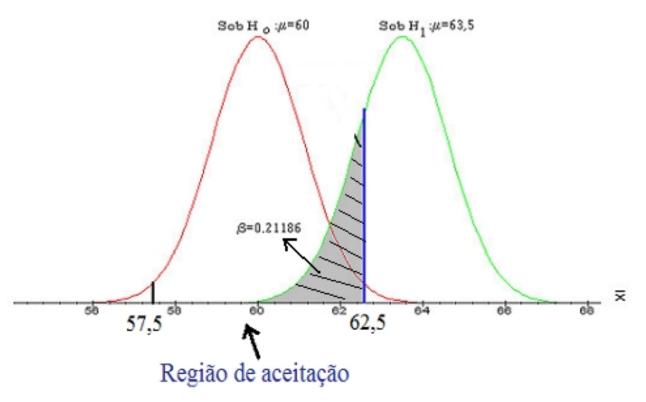
Cálculo de α :



Cálculo de β:

 β = P(Não rejeitar H₀; H₁ verdadeira) = P(57,5 \leq \overline{X} \leq 62,5; H₁: \mu \neq 60). Como exemplo de cálculo de \beta selecionamos H₁: \text{\overline} 63,5. Logo,





Cálculo de β:

Efetuando o cálculo obtemos

$$\beta = P(57,5 \le \overline{X} \le 62,5; H_1 : \mu = 63,5)$$

$$= P(\overline{X} \le 62,5; \mu = 63,5) - P(\overline{X} \le 57,5; \mu = 63,5)$$

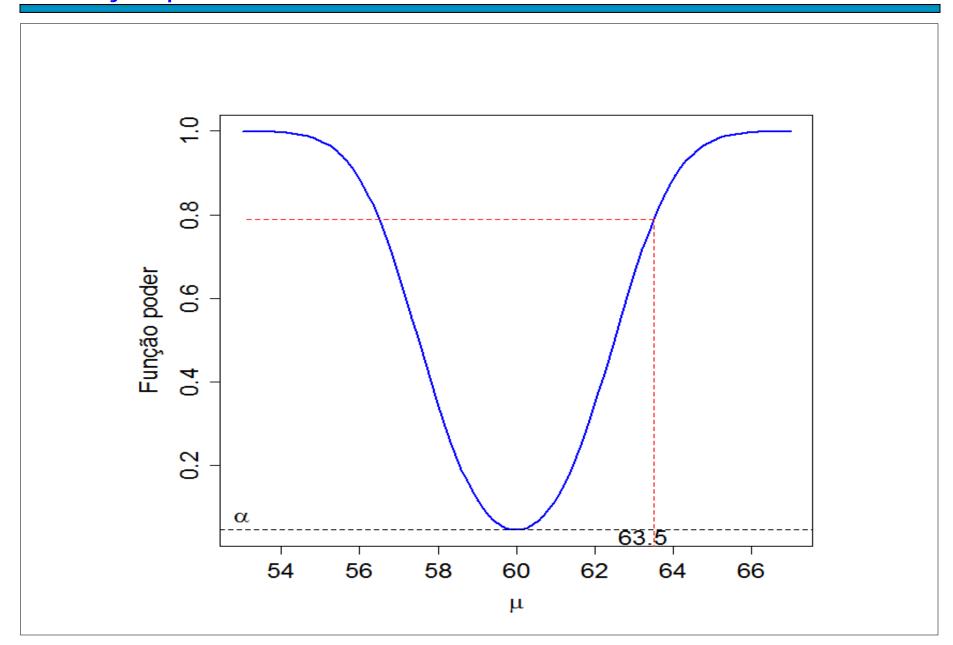
$$= P(Z \le -0,80) - P(Z \le -4,80)$$

$$= 0,2119 - 0,0000$$

$$= 0,2119.$$

Logo, se μ = 63,5, o poder do teste é igual a 1 – 0,2119 = 0,7881.

Função poder



Hipóteses bilateral e unilaterais

Se as hipóteses nula e alternativa são

$$H_0: \mu = \mu_0;$$

 $H_1: \mu \neq \mu_0,$

em que μ_0 é uma constante conhecida (valor de teste), o teste é chamado de bilateral.

Podemos ter também as hipóteses

$$\mathbf{H}_0: \mu = \mu_0;$$

 $H_1: \mu < \mu_0$, unilateral à esquerda

ou
$$H_0: \mu = \mu_0$$
;

$$H_1: \mu > \mu_0$$
. unilateral à direita

Sugestão. Expressar H₀ em forma de igualdade.

Um fabricante de um certo componente afirma que o tempo médio de vida dos componentes produzidos é de 1000 horas. Engenheiros de produto têm interesse em verificar se uma modificação do processo de fabricação aumenta a duração dos componentes.

Hipóteses:

$$H_0: \mu = 1000 \text{ horas};$$

$$H_1: \mu > 1000 \text{ horas},$$

sendo µ o tempo médio de duração dos componentes.

Procedimento básico de testes de hipóteses

O procedimento de teste de hipóteses relativo ao parâmetro θ de uma população é decomposto em quatro passos:

(i) Formulação das hipóteses:

$$H_0: \theta = \theta_0;$$

 $H_1: \theta < \theta_0 \text{ ou } \theta > \theta_0 \text{ ou } \theta \neq \theta_0.$

- (ii) Identificação da estatística de teste e caracterização da sua distribuição (por exemplo, método de substituição, lâmina 6).
- (iii) Escolha do nível de significância do teste (α = 5%, 1% e 0,5% são comuns) e obtenção da região crítica.
- (iv) Cálculo da estatística de teste e tomada de decisão (H₀ deve ser rejeitada ou não?).

Teste de hipóteses para uma média populacional

Considere uma amostra aleatória de tamanho n de uma população normal com média μ (desconhecida) e variância σ^2 (conhecida). Iniciamos pelo teste unilateral à esquerda:

(i)

$$H_0: \mu = \mu_0;$$

 $H_1: \mu < \mu_0.$

(ii) A estatística de teste é a média amostral \overline{X} (estimador pontual de μ). Se a distribuição da população é normal ou se amostra é grande (n \geq 30, mesmo que a distribuição da população não seja normal) a distribuição de \overline{X} é $N(\mu,\sigma^2/n)$, aproximadamente. Se H_0 for verdadeira, então

$$Z = \frac{\sqrt{n}(\overline{X} - \mu_0)}{\sigma} \sim N(0,1).$$

Teste de hipóteses para uma média populacional

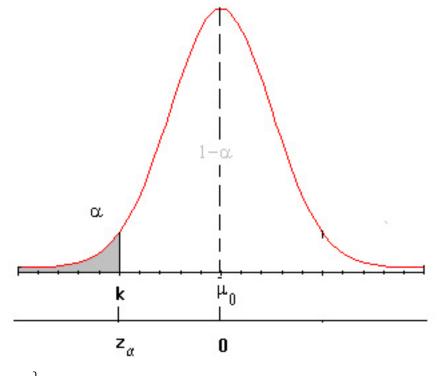
(iii) Rejeitamos H_0 em favor de H_1 se a média amostral X é "pequena" em relação μ_0 . A região crítica é obtida selecionando um k tal que $R_c = \{ \ \overline{X} < k \ \}$, sendo que $P(\overline{X} < k; H_0 : \mu = \mu_0) = \alpha$. Ou seja, sob H_0

$$P\left(\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} < \frac{k - \mu_0}{\sigma / \sqrt{n}}\right) = P\left(Z < \frac{k - \mu_0}{\sigma / \sqrt{n}}\right) = \alpha$$

$$\Rightarrow \frac{k - \mu_0}{\sigma / \sqrt{n}} = z_\alpha \Rightarrow k = \mu_0 + z_\alpha \times \frac{\sigma}{\sqrt{n}}$$

$$\Rightarrow R_c = \left\{ \overline{X} < \mu_0 + z_\alpha \times \frac{\sigma}{\sqrt{n}} \right\}.$$

Obs. $z_{\alpha} < 0$.



(iv) Conclusão: se $\bar{x} \in R_c = \left\{ \bar{X} < \mu_0 + z_\alpha \times \frac{\sigma}{\sqrt{n}} \right\}$, rejeita-se H_0 ; caso contrário não se rejeita H_0 .

Um comprador de tijolos suspeita de uma diminuição na resistência. De experiências anteriores, sabe-se que a resistência média ao desmoronamento de tais tijolos é igual a 200 kg, com um desvio padrão de 10 kg. Uma amostra de 100 tijolos, escolhidos ao acaso, forneceu uma média de 195 kg. A um nível de significância de 5%, pode-se afirmar que a resistência média ao desmoronamento diminuiu?

(i) As hipóteses de interesse são

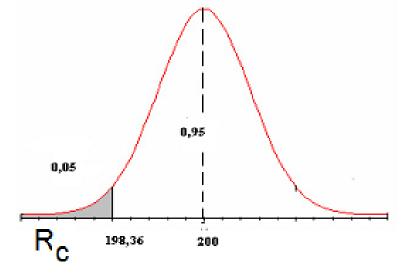
$$H_0: \mu = 200 \text{ kg};$$

$$H_1: \mu < 200 \text{ kg}.$$

- (ii) A estatística de teste é a média amostral \overline{X} . Já que n = 100 ≥ 30, tem-se que sob H₀, $\overline{X} \sim N \left(200, \frac{100}{100} \right)$, aproximadamente.
- (iii) A região crítica pode ser obtida selecionando k de maneira que R_c = { \overline{X} < k }, sendo que $P(\overline{X} \land k; H_0 : | \cdot \cdot | \cdot_0) = \emptyset$ = 0,05. Ou seja, sob H_0 ,

$$P\left(\frac{\overline{X} - 200}{10/\sqrt{100}} \le \frac{k - 200}{10/\sqrt{100}}\right) = P\left(Z < \frac{k - 200}{1}\right) = \alpha = 0.05 \Rightarrow k - 200 = -1.64 \Rightarrow k = 198.36$$

$$\Rightarrow R_c = \{\overline{X} < 198,36\}.$$



(iv) Do enunciado a média amostral vale 195. Logo, $\bar{x} = 195 \in R_c = \{\bar{X} < 198,36\}$. Rejeita-se H₀ a um nível de 5% de significância.

Conclusão. De acordo com os dados coletados e adotando um nível de significância de 5%, concluímos que resistência média ao desmoronamento diminuiu.

Método alternativo

Um método alternativo prático: trabalhar diretamente na escala Z.

(i)
$$H_0: \mu = \mu_0$$
 contra $H_1: \mu < \mu_0$.

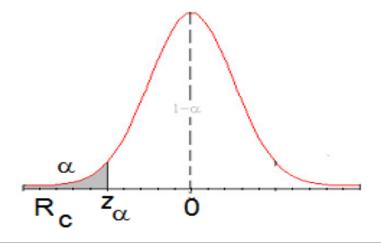
(ii) Estatística de teste:

$$Z = \frac{\sqrt{n}(\overline{X} - \mu_0)}{\sigma} \sim N(0,1), \text{ pelo menos aproximadamente.}$$

(iii) Região crítica para um nível de significância α escolhido:

$$R_c = \{Z < z_\alpha\}.$$

(iv) Se $z \in R_c : |Z \in Z_c|$, rejeitase H_0 ; caso contrário, não se rejeita H_0 .

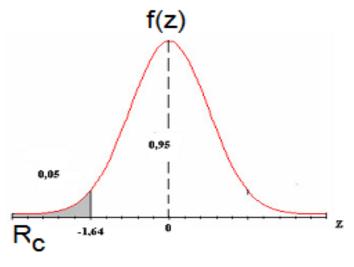


(i) $H_0: \mu = 200$ contra $H_1: \mu < 200$.

(ii) Estatística de teste: $Z = \frac{\sqrt{n}(\overline{X} - 200)}{\sigma} \sum_{sob H_0} N(0,1).$

(iii) Região crítica para um nível de significância α = 0,05:

$$R_c = \{z < -1,64\}.$$



(iv) Calculamos $z = \frac{\sqrt{100}(195 - 200)}{10} = -5\epsilon R_c$. Rejeita-se H₀ a um nível de significância de 5%.

Procedimento geral

Hipóteses: (i)

$$H_0: \mu = \mu_0 \quad H_0: \mu = \mu_0 \quad H_0: \mu = \mu_0$$
 $H_1: \mu < \mu_0 \quad H_0: \mu > \mu_0 \quad H_0: \mu \neq \mu_0$
À esquerda À direita Bilateral

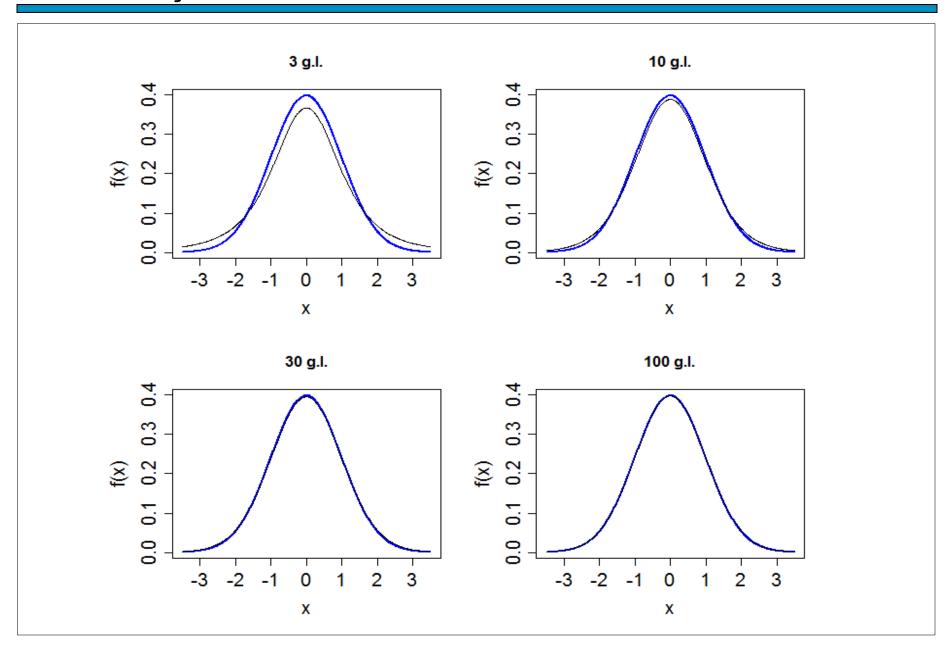
- (ii) Estatística de teste:
- (a) Variância da população é conhecida:

$$Z = \frac{\sqrt{n}(\overline{X} - \mu_0)}{\sigma} \sum_{sob H_0} N(0,1).$$

(b) Variância da população é desconhecida (s é o desvio padrão amostral):

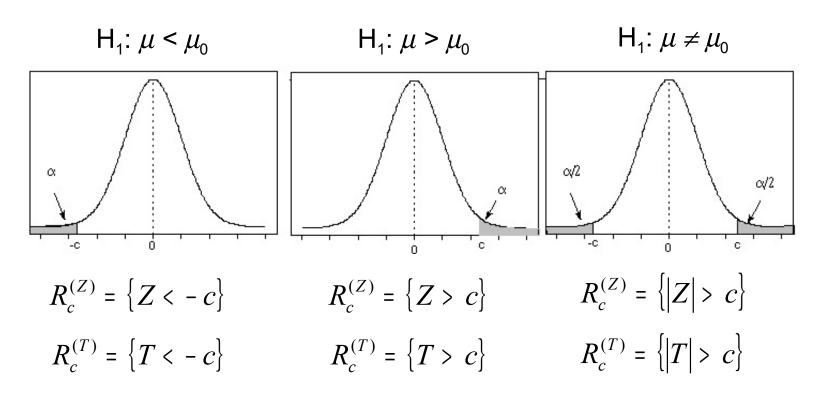
$$T = \frac{\sqrt{n}(\overline{X} - \mu_0)}{S} \sim t(n-1).$$
 Distribuição t de Student com n – 1 graus de liberdade (g.l.).

Distribuições normal e t de Student



Procedimento geral

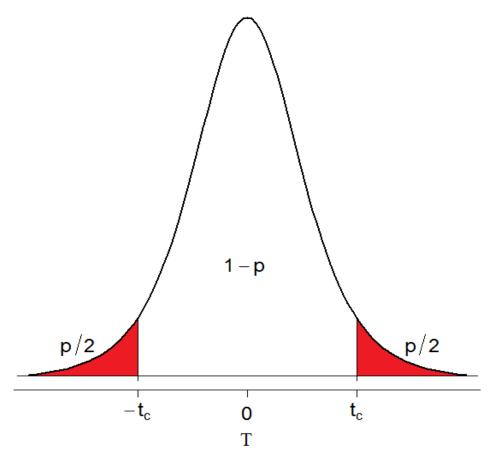
(iii) Região crítica para um nível de significância α escolhido:



(iv) Se Z ∈ R_C ou T ∈ R_C, rejeita-se H_o; caso contrário, não se rejeita H₀.

Obs. Nas regiões críticas com Z e T o valor de c não é o mesmo.

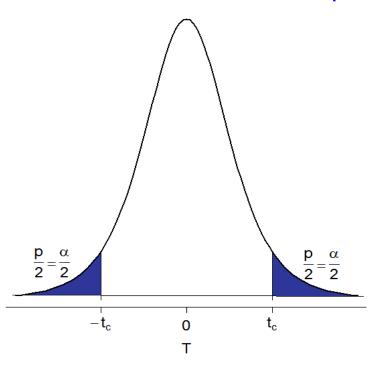
Tabela da distribuição t de Student



A tabela (Tábua III) contém os valores de t_c ($t_c > 0$) tais que $P(-t_c \le T \le t_c) = 1 - p \text{ correspondentes a alguns valores de p e para alguns graus de liberdade.}$

Tabela da distribuição t de Student

Exemplo. Se n = 12, são 11 graus de liberdade. Se tivermos H_1 : $\mu \neq \mu_0$, escolhendo α = 5%, temos p/2 = α /2, ou seja, p = 5%.



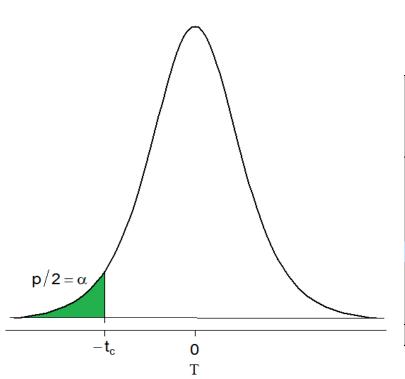
Consultando a tábua III encontramos $t_c = 2,201$ e $R_c = {|T| > 2,201}$.

Graus de	liberdade				
		p = 90%	80%	 5%	 0,10%
1					
2					
11				2,201	
120					
Infinito				1,960	
		p = 90%	80%	 5%	 0,10%

Obs. À medida que aumentam os graus de liberdade, a distribuição t se aproxima da normal (neste exemplo, $t_c \rightarrow 1,960 = z_c$).

Tabela da distribuição t de Student

Exemplo. Se n = 28, são 27 graus de liberdade. Se tivermos H_1 : $\mu < \mu_0$, escolhendo $\alpha = 1\%$, temos p/2 = α , ou seja, p = 2 α = 2%.



Consultando a tábua III encontramos $t_c = 2,473$ e $R_c = \{T < -2,473\}.$

			,	,	
Graus de	liberdade				
		p = 90%	80%	 2%	 0,10%
1					
2					
27				2,473	
120					
Infinito				2,326	
		p = 90%	80%	 2%	 0,10%

Obs. Neste exemplo, se tivéssemos H_1 : $\mu > \mu_0$, a região crítica seria $R_c = \{T > 2,473\}$.

Dados históricos coletados em uma linha de produção de um certo item indicam 115 kg como massa média. A fim de testar a hipótese de que a média de itens recentemente produzidos se manteve, retirou-se, ao acaso, uma amostra de 20 itens, obtendo-se média igual a 118 kg e desvio padrão 20 kg. Utilize α = 0,05.

(i) As hipóteses de interesse são

$$H_0: \mu = 115 \text{ kg};$$

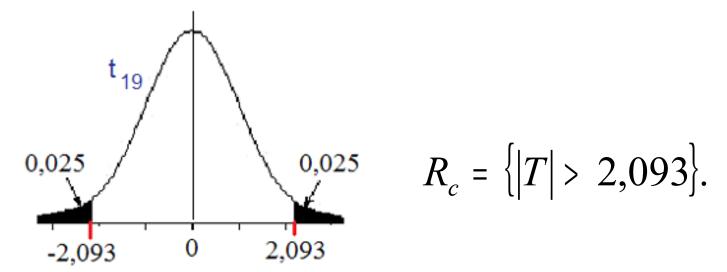
$$H_1: \mu \neq 115 \text{ kg}.$$

Aproximamos a distribuição da média dos 20 itens por uma distribuição normal com média μ e variância σ^2 / n.

(ii) Estatística de teste:

$$T = \frac{\sqrt{n}(\overline{X} - 115)}{S} \underset{sob H_0}{\sim} t(n-1).$$

(iii) Região crítica para um nível de significância α = 0,05 e com n – 1 = 19 g.l.:



(iv) Calculamos $T = \frac{\sqrt{20}(118-115)}{20} = 0,67 \in R_c$. Não se rejeita H_0 a um nível de de significância de 5%. A diferença não é significativa.

Conclusão. De acordo com os dados coletados, a um nível de significância de 5% concluímos que a massa média dos itens produzidos se manteve.

Teste de hipóteses para uma proporção populacional

O procedimento para testes de hipóteses sobre a proporção populacional (p) semelhante ao utilizado para testes sobre uma média populacional.

Problema. Testar a hipótese que a proporção de sucessos de um ensaio de Bernoulli é igual a um valor especificado p_0 . Isto é, testar um dos seguintes pares de hipóteses:

(i)
$$\begin{aligned} & \text{H}_0: p = p_0 & \text{H}_0: p = p_0 & \text{H}_0: p = p_0 \\ & \text{H}_1: p < p_0 & \text{H}_0: p > p_0 & \text{H}_0: p \neq p_0 \end{aligned}$$
 \(\hat{A}\) esquerda \(\hat{A}\) direita \(\hat{Bilateral}\)

Teste de hipóteses para uma proporção populacional

(ii) Estatística de teste:

$$Z = \frac{\sqrt{n(p-p_0)}}{\sqrt{p_0(1-p_0)}} \sum_{sob\ H_0} N(0,1), \text{ aproximadamente,}$$

sendo que

$$\frac{-}{p} = \frac{\text{Número de sucessos}}{n} = \frac{\sum_{i=1}^{n} X_i}{n} : \text{estimador pontual de p.}$$

é a proporção amostral de sucessos e X_i = 1, se o resultado for sucesso; X_i = 0, se o resultado for insucesso.

Um estudo é realizado para determinar a presença de pequenas anomalias em chapas metálicas de uma certa dimensão. Segundo o fabricante, a proporção de chapas com anomalias é inferior a 25%. Foram inspecionadas 50 chapas escolhidas ao acaso e sete delas apresentaram algum tipo de anomalia. Estes dados justificam a afirmação do fabricante? Adote um nível de significância igual a 0,05.

(i) Hipóteses:

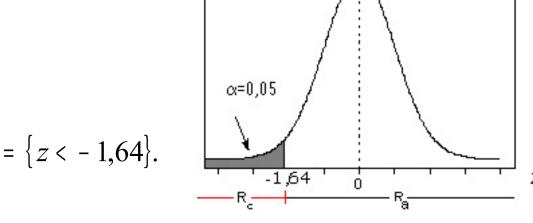
$$H_0: p = 0.25;$$

$$H_1: p < 0.25.$$

(ii) Estatística de teste:

$$Z = \frac{\sqrt{50}(\overline{p} - 0.25)}{\sqrt{0.25(1 - 0.25)}} \sum_{sob H_0} N(0.1), \text{ aproximadamente.}$$

(iii) Região crítica para um nível de significância α = 0,05:



$$R_c = \{z < -1,64\}.$$

(iv) Temos n = 50. Calculamos $p = \frac{7}{50} = 0.14$ e $z = \frac{\sqrt{50(0.14 - 0.25)}}{\sqrt{0.025}(1 - 0.25)} = -1.796$ R_c Rejeita-se H₀ ao nível de 5% de significância.

Conclusão. Adotando um nível de significância de 5% concluímos a partir dos dados que a proporção de chapas produzidas com anomalias é inferior a 25%.