ALGORITMOS E ESTRUTURAS DE DADOS II

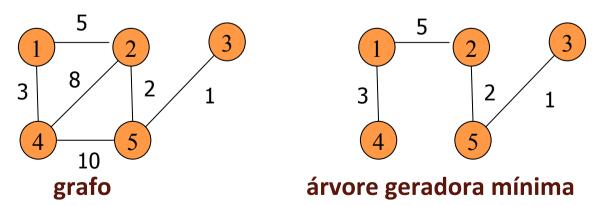
Grafos – Árvores Geradoras Mínimas

Profa. Elaine Parros Machado de Sousa *adaptações: Cristina Dutra de Aguiar Ciferri*

Material baseado em aulas dos professores: Gustavo Batista, Robson Cordeiro, Moacir Ponti Jr. e Maria Cristina Oliveira, Thiago A. S. Pardo

ÁRVORE GERADORA MÍNIMA: RELEMBRANDO DEFINIÇÕES

- Árvore (ou árvore livre):
 - um grafo conexo acíclico.
- Árvore geradora (spanning tree) de um grafo conexo:
 - um subgrafo gerador que é uma árvore => contém todos os vértices
- Árvore geradora mínima (minimum spanning tree):
 - uma árvore geradora com a menor soma de pesos de arestas

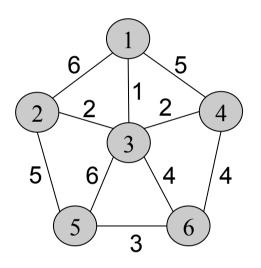


ÁRVORE GERADORA MÍNIMA: ALGORITMOS

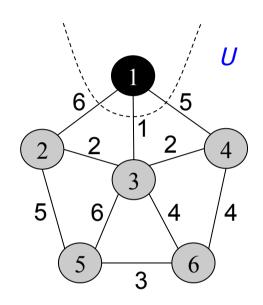
- Dois algoritmos bastante conhecidos
 - Algoritmo de Prim
 - Algoritmo de Kruskal
- Características
 - algoritmos "gulosos"
 - encontram a árvore geradora mínima de um grafo não direcionado

ÁRVORE GERADORA MÍNIMA: ALGORITMO DE PRIM

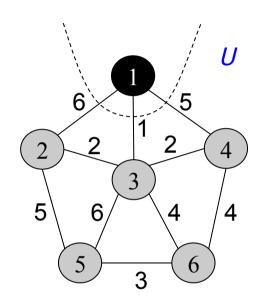
- Ideia geral
 - 1) Começar com um vértice **v** qualquer, e adicioná-lo a um conjunto **U**;
 - 2) Escolher a aresta de menor peso que conecta um vértice em **U** a um vértice em **V-U**;
 - 3) Incluir o vértice da aresta escolhida em **U**;
 - 4) Incluir a aresta escolhida em um conjunto **T**;
 - 5) Voltar ao passo 2 enquanto **U** ≠ **V**.



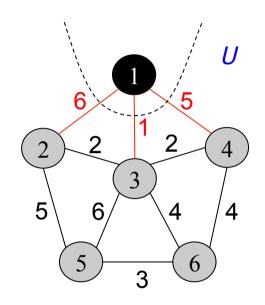
vértice de início: 1



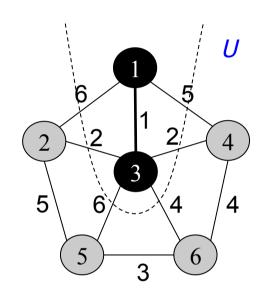
algoritmo: adicionar vértice ao conjunto U



<u>algoritmo</u>: escolher a aresta de menor peso que conecta um vértice em U a um vértice em V-U



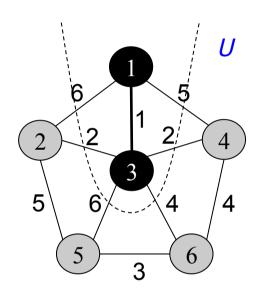
<u>algoritmo</u>: escolher a aresta de menor peso que conecta um vértice em U a um vértice em V-U



<u>algoritmo</u>: incluir o vértice da aresta escolhida em U incluir a aresta escolhida em T

$$U = \{1,3\}$$

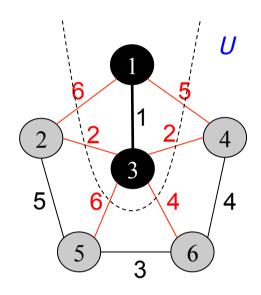
 $T = \{(1,3)\}$



algoritmo: escolher a aresta de menor peso que conecta um vértice em U a um vértice em V-U

$$U = \{1,3\}$$

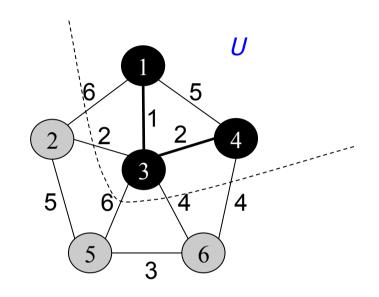
 $T = \{(1,3)\}$



algoritmo: escolher a aresta de menor peso que conecta um vértice em U a um vértice em V-U

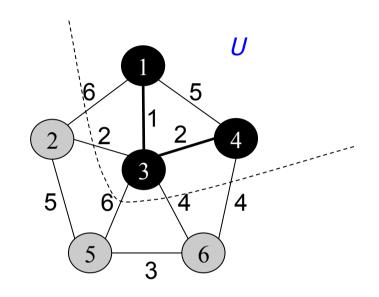
$$U = \{1,3\}$$

 $T = \{(1,3)\}$



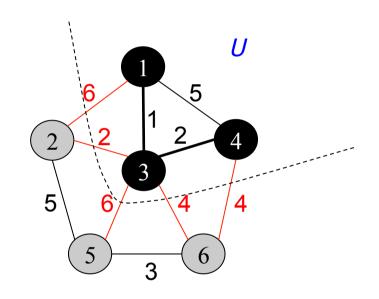
<u>algoritmo</u>: incluir o vértice da aresta escolhida em U incluir a aresta escolhida em T

$$U = \{1,3,4\}$$
$$T = \{(1,3),(3,4)\}$$



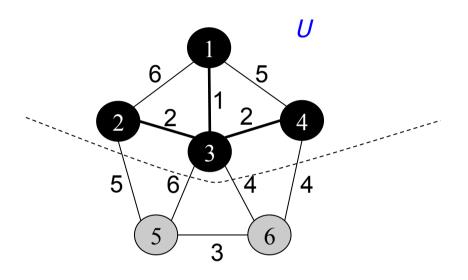
<u>algoritmo</u>: escolher a aresta de menor peso que conecta um vértice em U a um vértice em V-U

$$U = \{1,3,4\}$$
$$T = \{(1,3),(3,4)\}$$



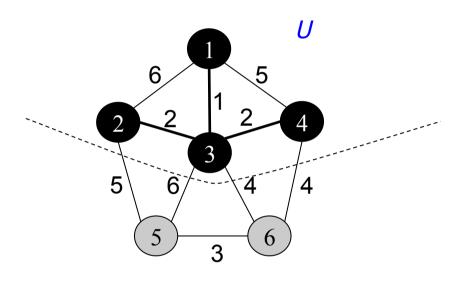
algoritmo: escolher a aresta de menor peso que conecta um vértice em U a um vértice em V-U

$$U = \{1,3,4\}$$
$$T = \{(1,3),(3,4)\}$$



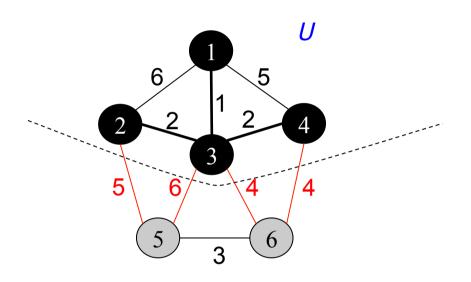
<u>algoritmo</u>: incluir o vértice da aresta escolhida em U incluir a aresta escolhida em T

$$U = \{1,3,4,2\}$$
$$T = \{(1,3),(3,4),(2,3)\}$$



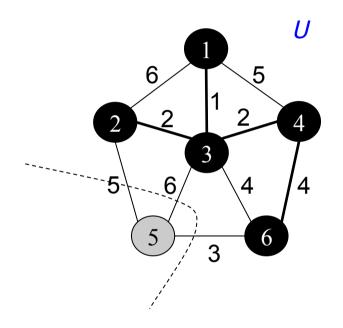
<u>algoritmo</u>: escolher a aresta de menor peso que conecta um vértice em U a um vértice em V-U

$$U = \{1,3,4,2\}$$
$$T = \{(1,3),(3,4),(2,3)\}$$



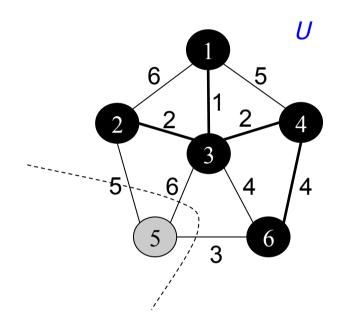
<u>algoritmo</u>: escolher a aresta de menor peso que conecta um vértice em U a um vértice em V-U

$$U = \{1,3,4,2\}$$
$$T = \{(1,3),(3,4),(2,3)\}$$



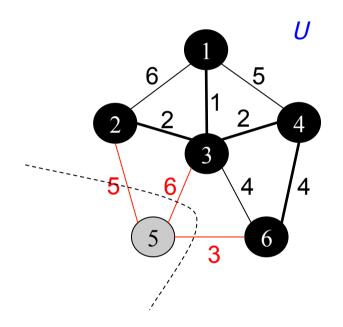
<u>algoritmo</u>: incluir o vértice da aresta escolhida em U incluir a aresta escolhida em T

$$U = \{1,3,4,2,6\}$$
$$T = \{(1,3),(3,4),(2,3),(4,6)\}$$



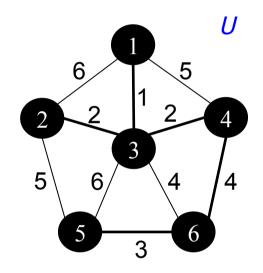
<u>algoritmo</u>: escolher a aresta de menor peso que conecta um vértice em U a um vértice em V-U

$$U = \{1,3,4,2,6\}$$
$$T = \{(1,3),(3,4),(2,3),(4,6)\}$$



<u>algoritmo</u>: escolher a aresta de menor peso que conecta um vértice em U a um vértice em V-U

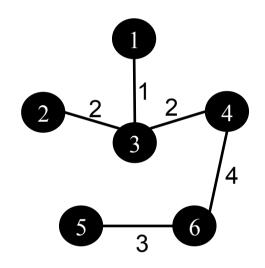
$$U = \{1,3,4,2,6\}$$
$$T = \{(1,3),(3,4),(2,3),(4,6)\}$$



<u>algoritmo</u>: incluir o vértice da aresta escolhida em U incluir a aresta escolhida em T

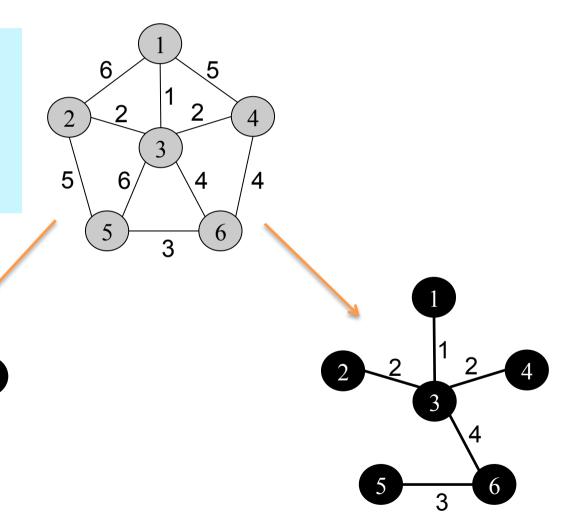
$$U = \{1,3,4,2,6,5\}$$

$$T = \{(1,3),(3,4),(2,3),(4,6),(5,6)\}$$



FIM DO ALGORITMO

Dado um grafo G, pode existir mais de uma árvore geradora mínima para G



ÁRVORE GERADORA MÍNIMA: ALGORITMO DE PRIM

```
procedimento Prim(var Grafo: TGrafo;
                    var T: conjunto de arestas)
variáveis
       u, v: TVertice;
       U: conjunto de TVertice;
início
       T := \emptyset;
       U := \{1\};
       enquanto U ≠ V faça
       início
            seja (u, v) a aresta de menor peso
                   tal que (u \in U) e (v \in V-U)
               T := T \cup \{(u, v)\};
               U := U \cup \{v\};
       fim
fim
```

ALGORITMO DE PRIM: COMPLEXIDADE

Eficiência do algoritmo de Prim depende de como será feita a seleção da aresta (u, v)

- o Implementação simples com dois vetores:
 - prox[i] fornece o vértice em U atualmente mais próximo ao vértice i em V-U.
 - mc[i] fornece o custo da aresta (i, prox[i]).
 - operação de encontrar (u, v) => percorrer o vetor mc
 => O(|V|)
 - o necessário atualizar os vetores prox e mc a cada novo vértice em U
- Complexidade dessa implementação
 - O(|V|²).

ALGORITMO DE PRIM: COMPLEXIDADE

Eficiência do algoritmo de Prim depende de como será feita a seleção da aresta (u, v)

- o Implementação mais sofisticada:
 - fila de prioridade para manter os vértices em V-U.
 - chave da fila de prioridade de um vértice v∈V-U é o peso da aresta mais leve que liga v a um vértice de U.
 - se a fila de prioridade for implementada com um heap
- Complexidade dessa implementação
 - O(|A| log |V|).

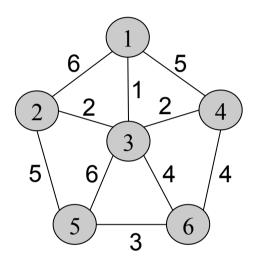
ÁRVORE GERADORA MÍNIMA: ALGORITMO DE KRUSKAL

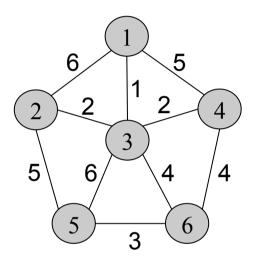
oldeia geral:

- inicia-se com um grafo $G' = (V, \emptyset)$
- cada vértice é um componente conexo de si mesmo
- a cada iteração, são construídos componentes conexos cada vez maiores

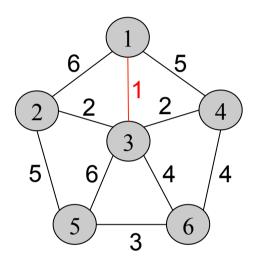
ÁRVORE GERADORA MÍNIMA: ALGORITMO DE KRUSKAL

- oldeia geral (cont.):
 - para "aumentar" os componentes conexos => arestas em A são analisadas por ordem ascendente de peso.
 - Q: contém as arestas de G ordenadas pelo peso
 - se a aresta conecta dois vértices em dois componentes separados => a aresta é adicionada a T.
 - se a aresta conecta dois vértices do mesmo componente => ela é descartada, pois criaria um ciclo.





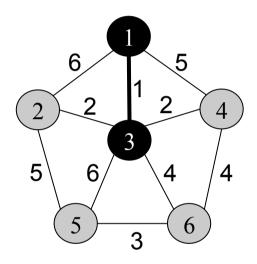
no início, cada vértice é um componente distinto



<u>algoritmo</u>: escolher a aresta de menor peso que conecta dois componentes distintos

$$Q = \{(1,3),(2,3),(3,4),(5,6),(3,6),(4,6),(1,4),(2,5),(1,2),(3,5)\}$$

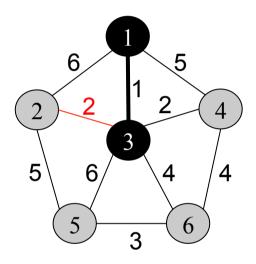
$$T = \{(1,3),(2,3),(3,4),(5,6),(3,6),(4,6),(1,4),(2,5),(1,2),(3,5)\}$$



algoritmo: adicionar aresta a T

$$Q = \{(2,3),(3,4),(5,6),(3,6),(4,6),(1,4),(2,5),(1,2),(3,5)\}$$

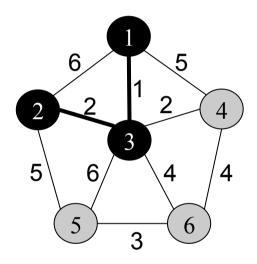
$$T = \{(1,3)\}$$



<u>algoritmo</u>: escolher a aresta de menor peso que conecta dois componentes distintos

$$Q = \{(2,3),(3,4),(5,6),(3,6),(4,6),(1,4),(2,5),(1,2),(3,5)\}$$

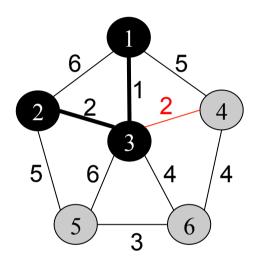
$$T = \{(1,3)\}$$



algoritmo: adicionar aresta a T

$$Q = \{(3,4),(5,6),(3,6),(4,6),(1,4),(2,5),(1,2),(3,5)\}$$

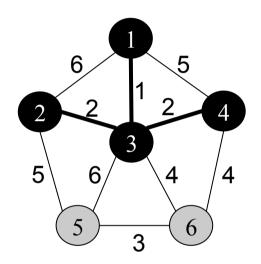
$$T = \{(1,3),(2,3)\}$$



<u>algoritmo</u>: escolher a aresta de menor peso que conecta dois componentes distintos

$$Q = \{(3,4),(5,6),(3,6),(4,6),(1,4),(2,5),(1,2),(3,5)\}$$

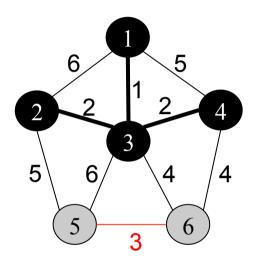
$$T = \{(1,3),(2,3)\}$$



algoritmo: adicionar aresta a T

$$Q = \{(5,6),(3,6),(4,6),(1,4),(2,5),(1,2),(3,5)\}$$

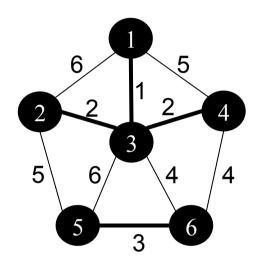
$$T = \{(1,3),(2,3),(3,4)\}$$



<u>algoritmo</u>: escolher a aresta de menor peso que conecta dois componentes distintos

$$Q = \{(5,6),(3,6),(4,6),(1,4),(2,5),(1,2),(3,5)\}$$

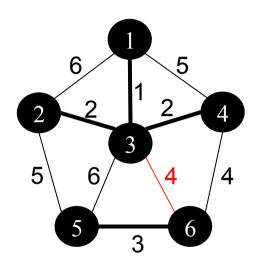
$$T = \{(1,3),(2,3),(3,4)\}$$



algoritmo: adicionar aresta a T

$$Q = \{(3,6),(4,6),(1,4),(2,5),(1,2),(3,5)\}$$

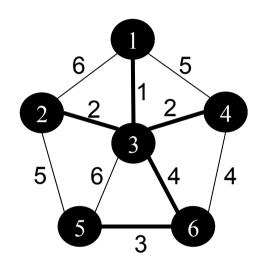
$$T = \{(1,3),(2,3),(3,4),(5,6)\}$$



<u>algoritmo</u>: escolher a aresta de menor peso que conecta dois componentes distintos

$$Q = \{(3,6),(4,6),(1,4),(2,5),(1,2),(3,5)\}$$

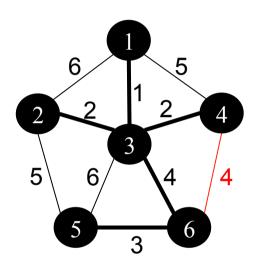
$$T = \{(1,3),(2,3),(3,4),(5,6)\}$$



algoritmo: adicionar aresta a T

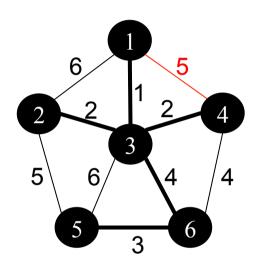
$$Q = \{(4,6),(1,4),(2,5),(1,2),(3,5)\}$$

$$T = \{(1,3),(2,3),(3,4),(5,6),(3,6)\}$$



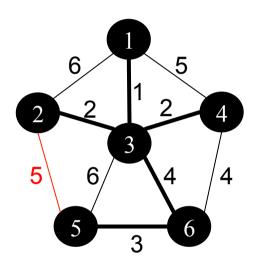
$$Q = \{(4,6),(1,4),(2,5),(1,2),(3,5)\}$$

$$T = \{(1,3),(2,3),(3,4),(5,6),(3,6)\}$$



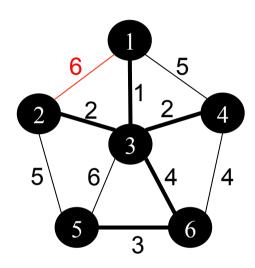
$$Q = \{(1,4),(2,5),(1,2),(3,5)\}$$

$$T = \{(1,3),(2,3),(3,4),(5,6),(3,6)\}$$



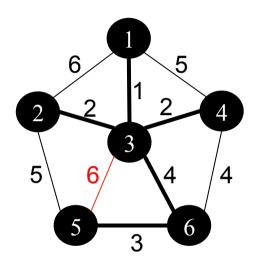
$$Q = \{(2,5),(1,2),(3,5)\}$$

$$T = \{(1,3),(2,3),(3,4),(5,6),(3,6)\}$$



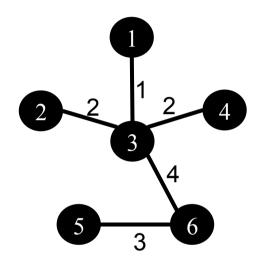
$$Q = \{(1,2),(3,5)\}$$

$$T = \{(1,3),(2,3),(3,4),(5,6),(3,6)\}$$



Q =
$$\{(3,5)\}$$

T = $\{(1,3),(2,3),(3,4),(5,6),(3,6)\}$



FIM DO ALGORITMO

ÁRVORE GERADORA MÍNIMA: ALGORITMO DE KRUSKAL

```
procedimento Kruskal(var Grafo: TGrafo;
                           var T: conjunto de arestas)
variáveis
          u, v: TVertice;
         U_1, \ldots, U_n: conjunto de TVertice;
          Q: fila de prioridade;
início
          T := \emptyset:
          Q := as arestas de G ordenadas pelo seu peso;
          para i:=1 até Grafo.NumVertices faça
                    U_{i} := \{i\};
          enquanto houver arestas em Q faça
          início
                    seja (u, v) a aresta de menor peso de Q tal que
                              (u \in U_p) e (v \in U_q) e (U_p \cap U_q) = \emptyset
                    T := T \cup \{(u, v)\};
                    U_p := U_p \cup U_q;
                    eliminar U<sub>a</sub>;
          fim
fim
```

ALGORITMO DE KRUSKAL: COMPLEXIDADE

Eficiência do algoritmo de Kruskal depende de dois fatores principais:

- encontrar a aresta de menor peso
- verificar se a aresta conecta dois componentes distintos $(U_p \cap U_q)$
- o Implementação mais sofisticada:
 - Q implementada como uma fila de prioridade com um heap
 - operação de conjuntos eficiente
- Complexidade dessa implementação

• O(|A| log |A|). mais eficiente do que o algoritmo de Prim para grafos esparsos

BIBLIOGRAFIA

N. Ziviani. Projeto de Algoritmos,
 Thomson, 2a. Edição, 2004.

 T. H. Cormen, C. E. Leiserson and R. L. Rivest. Introduction to Algorithms, MIT Press, 2nd Edition, 2001.