

Visualização de Informação Parte IV

Multi-dimensional Visualization: Detalhamento Ávores de Similaridade e Desenvolvimento Atual/Futuro

Rosane Minghim + The team

Instituto de Ciências Matemáticas e de Computação USP-São Carlos

Baseado em: Visual Analysis of Metric and Multidimensional Data

M. Cristina F. Oliveira Rosane Minghim Agma Traina

Instituto de Ciências Matemáticas e de Computação
University of São Paulo, São Carlos

Julho 2010 IME – USP São Paulo São Paulo Advanced School of Computing Image Processing and Visualization

Part 1

Visual analysis of high-dimensional data

M. Cristina F. Oliveira Rosane Minghim

LCAD - High Performance Computing Laboratory VICG - Visualization, Imaging and Computer Graphics Group

TSMC - University of São Paulo, São Carlos

Nomenclature and concepts review

- ► A data point, data item or sample:
 - An individual in a data set
- A data point is (usually) defined by m attributes (or dimensions)
- The goal is to build a mapping on 2D (or 3D) that reflects similarity amongst items
- Distance (or similarity) between data points is at the core of the visual mapping strategy

- From a distance relationship:
 - Imposes a hierarchy creating a t structure
 - Generates a tree layout

Interpretation is subject to branch organization

Offers multi-level views of data

Example

Mapping data sets for NJ and projection techniques

2004 IEEE Infovis Contest, 515 files, Scientific papers on InfoVis

1 - Hierarchy by Neighbor-Joining (NJ)

[10] Cuadros, Paulovich, Minghim, Telles, IEEE VAST 2007

- Neighbor-Joining (NJ) technique [7]:
 - Heuristic algorithm for tree construction
 - Define the tree topology and branches length
 - Builds an un-rooted tree
 - Selects the closest pair of documents and joins them into a hypothetical ancestor
 - Overall running time O(n³)
 - With text:
 - Leaves: data point.
 - Internal nodes: ancestor hypothetical doc.
 - Edges' lengths: distance between docs.

Neighbor-Joining (NJ) [10]

 Starts with a start-like tree, with n leaves connected to a single internal node

 Starts with a start-like tree, with n leaves connected to a single internal node

Selects the smallest sum of branch lengths S_{ii}

$$S_{ij} = \frac{1}{2(n-2)} \sum_{k \neq i,j} (D_{ik} + D_{jk}) + \frac{D_{ij}}{2} + \frac{1}{n-2} \sum_{k,l \neq i,j}^{k < l} D_{kl}$$

Adds a node x to the tree, with i and j as children and connected to the common ancestor of i and j

1 – Neighbor–Joining (NJ)

Fivaluates the branch lengths L_{ix} and L_{ix}

$$L_{ix} = \frac{D_{ij} + \frac{\sum_{k \neq j} D_{ik}}{n - 2} - \frac{\sum_{k \neq i} D_{jk}}{n - 2}}{2}$$

$$L_{jx} = \frac{D_{ij} + \frac{\sum_{k \neq i} D_{jk}}{n - 2} - \frac{\sum_{k \neq j} D_{ik}}{n - 2}}{2}$$

1 - Neighbor-Joining (NJ) [10]

Replaces i and j by x in the distance matrix evaluating the D_{xy} for every y in the matrix

$$D_{xy} = \frac{D_{iy} + D_{jy}}{2}$$

 Repeats this steps until there is only two nodes remaining in the matrix

2 - Display Radial layout [2]

 $T(w_1)$

Preserves edge lengths

Computed in linear time

- Mapping Scientific data sets
 - CBR+ILP+IR+SON, 680 files, Scientific papers

·Case-based Reasoning

- Inductive Logic Programming
- ·Information Retrieval
- Sonification

Mapping data sets

KDVis, 1,624 files,

MESSAGES, 300 files,
 Discussion groups

Mapping data sets for NJ and projection techniques

2004 IEEE Infovis Contest, 515 files, Scientific papers

▶ All scientific data set together using NCD similarity [8]

- Exploring RSS feeds of flash news (Associated Press, BBC, CNN, and Reuters)
 - NEWS, 2,684 files

 Exploring RSS feeds of flash news (Associated Press, BBC, CNN, and Reuters)

Corpus NEWS,

- Exploring RSS feeds of flash news (Associated Press, BBC, CNN, and Reuters)
 - Corpus NEWS, 2,684 files

- Exploring RSS feeds of flash news (Associated Press, BBC, CNN, and Reuters)
 - Corpus NEWS, 2,684 files

Grouping by topic (LSP)

Grouping by topic (NJ)

- Stream-flow in hydroelectric plants of Paraná River (Brazil)
 - Color is sub-basin of the river

Quadrupeds mammals data set

10,000 data instances

▶ Time in seconds to create maps in a 3.2 GHz Pentium 4

Data Set	NJ	Layout	Total
CBR+ILP+IR+SON	4,55	0,52	5,17
KDVis	66,20	1,26	67,46
INFOVIS04	1,83	0,45	2,28
ALL	454,66	2,17	456,83
MESSAGES	0,35	0,31	0,66
NEWS	359,63	1,70	361,33

- NJ
 - Reflects content relationship visually
 - Constructs a hierarchy
- Interpretation of display
 - Makes good use of the visual space
 - Complementary of the projections
- Same distance matrix always generates the same tree
 - Helps evaluating the similarity measurement

- Continuing work
 - Other trees, of course
 - Tools for proper exploration of similarity trees
 - Reduce processing time
 - Hybrid and hierarchical approaches
 - Improvement of some of NJ drawbacks

Minimun Spanning Tree

Problems?

NJ Trees

An open problem: Space Occupation

NJ Trees

Slim NJ - 6 medical classes

Slim NJ

- Exploratory tasks
 - Some queries are known, others are not
 - Questions arise
 - Model development is inspired by observations

- Test Cases
 - Image Collections
 - Volumetric (Scientific) Data Sets

