
SSC0156 – Computação
Pervasiva

Chapter 3
Smart Devices and Services

Prof. Jó Ueyama

1 Ubiquitous computing: smart devices,
environments and interaction

Related Links
•  Basic Distributed Computer Interaction Models in this

chapter are the basis for more advanced systems in later
chapters, e.g., EDA Architecture can be used for:
–  Sense & Control systems (Chapter 6)
–  Context-based Systems (Chapter 7)
–  Reflexive Intelligent Systems (Chapter 8)

•  Mobile Distributed Systems (Chapter 4)
•  Management of Distributed Systems (Chapter 12)
•  Advances in Distributed Systems (Chapter 13)

2 Ubiquitous computing: smart devices, environments and interaction

Chapter 3 Slides
The slides for this chapter are also expanded and split into

several parts in the full pack
•  Part A: System Architectures
•  Part B: Middleware, SOC & P2P
•  Part C: Service Provision Life-cycle & Service

Discovery
•  Part D: Service Invocation
•  Part E: Volatile Service Invocation & Service

Composition
•  Part F: MTOS, BIOS & VM √

3 Ubiquitous computing: smart devices, environments and interaction

Overview
•  Smart Device and Service Characteristics √

•  Distributed System Viewpoints
•  System Abstraction
•  Partitioning and Distribution of System Components
•  Proxies and Middleware
•  Service Oriented Computing (SOC) & Grid Computing
•  Peer-to-Peer Systems (P2P)
•  Service Provision Lifecycle √
•  Service Discovery
•  Service Invocation
•  Service Composition
•  MTOS, BIOS & VM

4 Ubiquitous computing: smart devices, environments and interaction

Mobile Devices

Client
Server

RPC

Grid

Architectures

Discovery

Operating
Systems

Service Provision Life-cycle

VM
BIOS

Middleware

SOC

Proxy

Interaction

P2P Shared Repository

Smart Devices

iHCI with DevicesSmart Services

MTOS

Composition
Abstraction

Virtualisation

Network

Viewpoints
Partitioning &
Distribution

Processing

Multi-Tier

MOM

Data

Service

Resource

Device

Volatile

ESB

Caches

EDARead Ahead

Delayed Writes

Interoperability

Orchestration

Choreography

Types

5 Ubiquitous computing: smart devices, environments and interaction

Smart Device Characteristics
•  Multi-purpose ICT devices, operating as a single portal to multiple

remote vs. local application services
•  Usually personalised devices, specified owner.
•  Locus of control and user interface resides in the smart device.
•  Main characteristics of smart devices: mobility, open service discovery,

intermittent resource access.
•  Important type of smart device is smart mobile device
•  Here, we focus on design issues for the service model used by UbiCom

Applications

6 Ubiquitous computing: smart devices, environments and interaction

Overview
•  Smart Device and Service Characteristics
•  Distributed System Viewpoints √
•  System Abstraction
•  Partitioning and Distribution of System Components
•  Proxies and Middleware
•  Service Oriented Computing (SOC) & Grid Computing
•  Peer-to-Peer Systems (P2P)
•  Service Provision Lifecycle √
•  Service Discovery
•  Service Invocation
•  Service Composition
•  MTOS, BIOS & VM

7 Ubiquitous computing: smart devices, environments and interaction

Distributed System Viewpoints
•  Distributed ICT Systems can be modelled from multiple complementary

viewpoints with respect to:
•  Viewpoints can be regarded as architectural patterns, conceptual

models that capture the essential elements of an ICT system
architecture and its interrelationships. Multiple viewpoints:

–  Individual user view
–  Enterprise user view:
–  Information system, service or computation platform view:
–  Network view: network elements and computer nodes

•  Viewpoint model standards: RM-ODP (ISO), IEEE 1471 model

8 Ubiquitous computing: smart devices, environments and interaction

Distributed System Viewpoints

A = Access/presentation, I = Info./data, P = Processing/computation, C=Comms/
networking

C
om
m
s &
 o
th
er

m
id
dl
ew
ar
e s
er
vi
ce
s

Resource (R)
Management

Service Processes (P)

User Interface (A)

Service / Platform View

Network View

Network (C) Computer (P,I)

User View

Users (A)
Information (I)

Tasks (P)

Enterprise View

Users (A)
Policies (I)

Roles (I) Services
(I,P)

Information Sensors Controls

9 Ubiquitous computing: smart devices, environments and interaction

Overview
•  Smart Device and Service Characteristics
•  Distributed System Viewpoints
•  System Abstraction √
•  Partitioning and Distribution of System Components
•  Proxies & Middleware
•  Service Oriented Computing (SOC) & Grid Computing
•  Peer-to-Peer Systems
•  Service Provision Lifecycle √
•  Service Discovery
•  Service Invocation
•  Service Composition
•  MTOS, BIOS & VM

10 Ubiquitous computing: smart devices, environments and interaction

Reducing System Complexity using
Abstraction (Modularisation)

•  System architectures focus on the idea of reducing complexity through
both a separation of concerns using modularisation & transparency

•  Two common criteria for modules:
–  high cohesion
–  loose-coupling

•  Meyer (1998) uses five criteria for modularisation:
–  Decomposability:
–  Composability:
–  Understandability:
–  Continuity:
–  Protection:.

11 Ubiquitous computing: smart devices, environments and interaction

Reducing System Complexity using
Abstraction (interoperability)

•  Abstractions define those things that are important in a system
•  Abstractions are employed to facilitate the interaction to a system

•  Abstraction that simplifies the view or access to internal functionality to
the outside, is also called an interface.

12 Ubiquitous computing: smart devices, environments and interaction

System View: Example of Abstraction

Data	 as	 parts	 of	 	 magnetic	
disk	 tracks	 and	 sectors

Disk	 Manager

DBMS

File	 Manager
Data	 as	 pages	 (minimum	
chunk	 of	 data	 on	 disk)

Data	 as	 records	 in	 files

SQL	 Commands

Database	
Applications	

File	 Applications	 e.g.,	 Text	
Processing,	 Email,	 etc

Resource	
Management

Processing

Web	 Browser
Access

Information	 System	 Resources

13 Ubiquitous computing: smart devices, environments and interaction

Reducing System Complexity using
Abstraction (Transparency)

•  Abstractions make transparent properties not needed by interactions
•  Important types of transparency for distributed services include:

–  Access transparency:
–  Concurrency transparency
–  Failure transparency (Fault Tolerance)
–  Migration transparency
–  Scaling transparency

•  In practice, ideal transparency of a single image for all resources, all
the time, under all conditions is hard to achieve

–  Usually only when the distributed system is operating normally.

14 Ubiquitous computing: smart devices, environments and interaction

Reducing System Complexity using
Abstraction (virtualisation)

•  Abstractions alone do not necessarily support interoperability
–  System interfaces designed for a particular platform do not support interoperability

•  Virtualisation provides a way to solve this limitation of abstraction

15 Ubiquitous computing: smart devices, environments and interaction

Overview
•  Smart Device and Service Characteristics
•  Distributed System Viewpoints
•  System Abstraction
•  Partitioning and Distribution of System Components √
•  Proxies and Middleware
•  Service Oriented Computing (SOC) & Grid Computing
•  Peer-to-Peer Systems (P2P)
•  Service Provision Lifecycle √
•  Service Discovery
•  Service Invocation
•  Service Composition
•  MTOS, BIOS & VM

16 Ubiquitous computing: smart devices, environments and interaction

Partitioning & Distribution of System
Components: None

Copy of data or
applications
downloaded onto
device, then it is used
off-line

17 Ubiquitous computing: smart devices, environments and interaction

Partitioning & Distribution of System
Components: None

•  Advantages?

•  Disadvantages?

18 Ubiquitous computing: smart devices, environments and interaction

Partitioning & Distribution of System
Components

• Ex: how can we distribute these components?

19 Ubiquitous computing: smart devices, environments and interaction

Partitioning & Distributing System
Components

•  Range of designs for partitioning and distributing services:

•  Consider type of access device, resources, communication: several
ways to distribute these, e.g.,

•  High resource access devices can act self-sufficiently,
•  Low / poor resource access devices

20 Ubiquitous computing: smart devices, environments and interaction

Network Usage Low High

CPU Usage Low High

System Architectures: Partitioning
Example

Discuss How to partition a 2 player Person versus Machine Chess Application in terms of
a client-server design / for use on a mobile device

Low High
Data Memory Usage

21 Ubiquitous computing: smart devices, environments and interaction

Architectures: Client Server model
•  Asymmetric distributed computing model with respect to

where resources reside and the direction of the interaction.

Client-server interaction is also asymmetric:

•  Asymmetry benefits?

–  Synchronization between clients which starts requesting while
servers start waiting for client requests

22 Ubiquitous computing: smart devices, environments and interaction

Partitioning and Distribution: Client-
Server Model

Fat Client Servers

C
A
C 12

Thin Client Servers

12

PI

C C
A P P

Monolithic
C

PIA

23 Ubiquitous computing: smart devices, environments and interaction

Client Server Model
•  System configuration (partitioning and distribution) depends

upon:
–  network links;
–  local resources,
–  remote service availability;
–  type of application,
–  service maintenance model.

•  Different degrees of resources on access devices (clients)
•  Resource poor (thin-client server model):

–  reliance on external servers, network supports remote service access on
demand

24 Ubiquitous computing: smart devices, environments and interaction

Client Server Model
•  Processing needed to adapt content to different types of

terminals
– 

•  Thin-client server model is often considered to be easier to
maintain
– 

•  Thin-clients offer very limited application platform

25 Ubiquitous computing: smart devices, environments and interaction

Client Server Model
•  How to cope with unreliable and low-performance networks using

client-server model?
•  Argues for a degree of self-reliance & use of local processing and data

resources

•  Fat client model is suitable when?

•  Type of processing in access device depends on type of application.
–  E.g., chess game application

–  E.g., scientific calculation

26 Ubiquitous computing: smart devices, environments and interaction

Partitioning & Distributing System
Components: Summary of Models

Client Data

1 234

Application

Fat Client Servers
C

A
C 12

Thin Client Servers

Thin Client Application

16

Bank

3

4

12

Monolithic

Content
5

2

PI
C CC

C

A PP

P

P

A A
C

P
C

P
CC

I
C

I

I I
C

A

27 Ubiquitous computing: smart devices, environments and interaction

Partitioning & Distributing System
Components: Summary of Models

•  Different designs for Information-based UbiCom systems:
–  based upon how their A, P and I components are distributed.

•  Functions can be distributed over multiple different
computer nodes or tiers:
–  1-tier, monolithic system, appliance model:
–  2-tier, thin-client server:
–  2-tier, fat-client server model:
–  Multi-tier (3,4 ... N-Tier) systems:

28 Ubiquitous computing: smart devices, environments and interaction

Purchase Sales

1. Query

4. AckPO

5. SubmitADN

6. SubmitInvoice

Inventory Delivery Bank

7. TransferFundsReq

8. AckTransferFunds

DeliveryReq

Delivery Arranged

Check/
update

Confirm In stock

Catalogue

3. SubmitPO

2. Select

Customer Interaction Merchant Interaction

Accounts

29 Ubiquitous computing: smart devices, environments and interaction

Partitioning and Distributed Data (D)
Storage

•  I, P, A and D can themselves be partitioned & distributed
•  Examples of Partitioned & Distributed D

–  Transaction Monitors (TM): distributed data transactions;
–  Data Warehouses, centralised analysis of distributed data
–  Distributed Databases: distributed queries

30 Ubiquitous computing: smart devices, environments and interaction

Distributed Data (D) Storage:
Transaction Processing

Jobs

Access1	 (A)	
Transactions

Database	 1

Monitor:	 Route,	
schedule,	 monitor	

Transaction	 Manager:	
record	 lock,	 check-‐

point,	 log
Lock	
Logs

Access2	 (A)	
Transactions

R

P

Rules

31 Ubiquitous computing: smart devices, environments and interaction

Distributed Data (D) Storage: Data
Warehouse

Aggregated	
Data	

Data	 mining	 (P)

Export

Refresh,	 Load	 ,	 Clean,	 Transform

Metadata
repository

OLAP	 (P)

Database	 1

R

R

Access1	 (A)	 Access	 n	 (A)	

Export

Database	 1

R

32 Ubiquitous computing: smart devices, environments and interaction

•  OLAP Online Analytical
processing

Distributed Data (D) Storage:
Distributed Database

ExportExport

Database	 1 Database	

R R

Distributed	 Query	 (P)

Wrapper	 (P)

Access1	 (A)	 Access	 n	 (A)	

33 Ubiquitous computing: smart devices, environments and interaction

Distributed Processing
•  Partitioning & distributing processing onto multiple CPUs
•  Use for computation intensive tasks, e.g., ??
•  Time gained in ↓ processing time must be > time to partition &

distribute tasks, collect individual results & combine them.
Many different architectures
•  Super-computers - specialised multiple CPU systems
•  Clusters of networked MTOS computers, e.g., Grids.
•  Multiple CPUs in MTOS computers. e.g., multi-core processor
•  P2P computing
•  Cellular computing
What about
•  distributed UIs?
•  Distributed communication?

34 Ubiquitous computing: smart devices, environments and interaction

Distributed Processing Architectures
•  Examples can be added here

35 Ubiquitous computing: smart devices, environments and interaction

Overview
•  Smart Device and Service Characteristics
•  Distributed System Viewpoints
•  System Abstraction
•  Partitioning and Distribution of System Components
•  Proxies and Middleware √
•  Service Oriented Computing (SOC) & Grid Computing
•  Peer-to-Peer Systems
•  Service Provision Lifecycle √
•  Service Discovery
•  Service Invocation
•  Service Composition
•  MTOS, BIOS & VM

36 Ubiquitous computing: smart devices, environments and interaction

Proxy based Service Access
Advantages of using client proxies
•  Some applications use a client proxy to simplify access

processes in client, How?
•  Off-load presentation processing and network processing
•  Hide heterogeneity of terminal types & networks from

applications
•  Simplify and compose access to multiple service providers.
•  Reduce complexity of communication used in access

devices, e.g., ??
•  Enable devices to operate intermittently in a disconnected

state.
•  Shield network-based applications from mobility of access

devices (DTN style?)
37 Ubiquitous computing: smart devices, environments and interaction

Proxy based Service Access

Use of proxies to simplify network access by transparently
encoding and decoding the transmitted data on behalf of clients
and / or servers

Encode / decode data for
transmission

Client

User Query

Result

Server

Optional confirmation
of result received

Object1 Object2 Object3

Object4

Object5 Object6

Object1 Object2 Object3

Object4

Object5 Object6

Proxy

38 Ubiquitous computing: smart devices, environments and interaction

Proxy based Service Access
What are the disadvantages of Proxy-based access?

Where does the proxy reside?

39 Ubiquitous computing: smart devices, environments and interaction

Middleware
•  ↑ Variety & heterogeneity & complexity of services access
•  Middleware introduced in between applications & OS to

simplify access to services
•  Middleware factors out set of generic services, e.g.,

database access, file system access etc. to make them:

•  Advantages for Application?
– 

•  Advantages for OS?

40 Ubiquitous computing: smart devices, environments and interaction

Middleware: Design Issues
•  May be useful for applications to have an awareness of

lower level interaction, for resource access not to be
completely hidden by middleware.

•  Why?

41 Ubiquitous computing: smart devices, environments and interaction

Application awareness of ICT Context

Middleware hides
complexity of ICT system
from application

Application sees full
ICT system interface,
no Middleware used

Middleware handles some of the
complexity in interfacing to ICT
system

Full None Partial

Middleware

42 Ubiquitous computing: smart devices, environments and interaction

Overview
•  Smart Device and Service Characteristics
•  Distributed System Viewpoints
•  System Abstraction
•  Partitioning and Distribution of System Components
•  Proxies and Middleware
•  Service Oriented Computing (SOC) & Grid Computing √
•  Peer-to-Peer Systems
•  Service Provision Lifecycle √
•  Service Discovery
•  Service Invocation
•  Service Composition
•  MTOS, BIOS & VM

43 Ubiquitous computing: smart devices, environments and interaction

Service Oriented Computing (SOC)
•  SOA (Architectures) , also referred to as SOC (Computing)
•  Services as computational or information processing

components
–  That are autonomous and heterogeneous
–  Can run on different platforms
–  Are possibly owned by different organizations.

44 Ubiquitous computing: smart devices, environments and interaction

SOC Standards
Several different standards for SOC
•  (XML based) Web Services
•  Computer Grids OGSI
•  OASIS SOA RM
•  Open Group SOA Working Group
•  Semantic Web Services?

45 Ubiquitous computing: smart devices, environments and interaction

Service Oriented Computing (SOC)
Notion of service characterised by:
•  Descriptions: specification of tasks; discoverable
•  Outcomes: service is the means to achieve a defined

outcome for a task
•  Offers: if an offer is made then the provider is available
•  Competency: to undertake the task; regulatory authority
•  Execution: performing the service on behalf of someone
•  Composition: Multiple services may need to be composed

before they can be executed with respect to an outcome
and time constraints

•  Constraints or policies: for a service, which may be
specified either by the user, e.g., for a taxi service ‘don’t
drive too fast’, or by the provider ‘not exceeding the speed
limit

46 Ubiquitous computing: smart devices, environments and interaction

Service Oriented Computing (SOC)

Enterprise Service Bus (B)

Service Discovery (B)

Service Invocation (B)

Service Composition (M)

Service Management (H)

47
Ubiquitous computing: smart devices, environments and interaction

•  Services in a SOA can be separated into three layers of
functions: basic (lower), composition (middle) and
management (higher layer) Service Management

•  Service management: Services are managed by third
parties, between the user and provider, based upon
policies , e.g. SLAs

•  Enterprise service bus(Basic
function): this supports
service, message, and event
based interactions with
appropriate service levels and
manageability;

SOC: Grids
•  Grid computing: distributed systems that enable:

–  e large scale coordinated use and sharing of geographically distributed
resources

•  (Early) Grid computing system design tends to focus on
high performance computing rather than fault-tolerance &
dynamic ad hoc interaction,

48 Ubiquitous computing: smart devices, environments and interaction

SOC: Grids
Three main types of Grid system occur in practice:
•  Computational Grids: they have higher aggregate

computational capacity available for single applications

•  Data Grids, provide an infrastructure for synthesising new

information from data repositories such as digital libraries
or data warehouses

•  Service Grids: they provide services that are not provided

by any single machine

49 Ubiquitous computing: smart devices, environments and interaction

Overview
•  Smart Device and Service Characteristics
•  Distributed System Viewpoints
•  System Abstraction
•  Partitioning and Distribution of System Components
•  Middleware
•  Service Oriented Computing (SOC)
•  Peer-to-Peer Systems √
•  Service Provision Lifecycle √
•  Service Discovery
•  Service Invocation
•  Service Composition
•  MTOS, BIOS & VM

50 Ubiquitous computing: smart devices, environments and interaction

Peer-to-Peer Systems (P2P)
P2P can be defined as:
•  distributed systems consisting of interconnected nodes
•  able to self-organize into network topologies
•  with the purpose of sharing resources such as content,

CPU cycles, storage and bandwidth,
•  capable of adapting to failures and accommodating

transient populations of nodes
•  while maintaining acceptable connectivity and performance
•  without requiring the intermediation or support of a global

centralized servers or authorities.

51 Ubiquitous computing: smart devices, environments and interaction

P2P Benefits?
•  lower cost of ownership for content sharing
•  performance enhancements: the resources of all the nodes

can be used for storage, computation and data exchange
rather than focusing resources mostly in the server type
nodes (equality)

•  ad hoc resource utilisation and sharing: as demand for
particular services peaks

•  autonomous control and ownership
•  anonymity and privacy
•  fault tolerance: there are no central servers that can be

attacked or can cause complete system failure

52 Ubiquitous computing: smart devices, environments and interaction

P2P System Design Challenges?
•  More complex coordination is often needed. In contrast,

with client server interaction
•  Nodes can act as freeloaders: nodes may be happy to play

a role of service requesters but are always configured to
refuse the requests

•  More complex security may be needed as identification can
be masked so access control is harder.

•  Ad hoc network routes: need to create and discover ad hoc
routes between nodes

•  Service discovery: how to discover the selective nodes
where services can be invoked from

53 Ubiquitous computing: smart devices, environments and interaction

P2P System: Types
•  3 main types of P2P system depending on the types of

computer nodes:
•  Pure P2P uses no notion of fixed clients or servers, only of

equal peer nodes that simultaneously function as both
dynamic servers and clients (called servents)

•  Partial P2P: all nodes are not equal, a few superpeers or
supernodes are elected to operate as middleware servers,
acting as network relays for other nodes

•  Hybrid P2P networks, a client server organisation is used

for specific tasks and interactions, such as searching for
services and a P2P organisation is used for others such as
service invocation 54 Ubiquitous computing: smart devices, environments and interaction

In Hybrid P2Ps
•  Three basic steps for accessing content:

–  identify nodes,
–  register content provision nodes,
–  Finally, search & retrieve content

55 Ubiquitous computing: smart devices, environments and interaction

P2P System Types: Pure, Hybrid

A B

D

H
G

F

I

EC

J

L
K

N

Servent	
Node

New	 	
Node

Centralised
Directory	
Node	 (used	 in	
Hybrid	 P2P	 	
for	 searches)

Pure	
P2P Hybrid	 	

P2P

Node	
with	
content

search

search
Link	 not	
accessed

56 Ubiquitous computing: smart devices, environments and interaction

P2P System Types : Partial P2P

D

H
G

F

I

EC

N J

L
K

Super	
Node

Partial	 	
P2P

Node	
with	
content

57 Ubiquitous computing: smart devices, environments and interaction

P2P System Types
•  Can also be grouped into two main types of topologies for

P2P systems that overlay the underlying physical network:

•  Unstructured overlay networks: they are like ad hoc

networks and they are independent of any physical network
topology and use decentralised and partially decentralised
nodes

•  Structured overlay networks: they are dependent on the
physical network topology of nodes and use hybrid
decentralised nodes

58 Ubiquitous computing: smart devices, environments and interaction

Overview
•  Smart Device and Service Characteristics
•  Distributed System Viewpoints
•  System Abstraction
•  Partitioning and Distribution of System Components
•  Proxies & Middleware
•  Service Oriented Computing (SOC)
•  Peer-to-Peer Systems
•  Service Provision Lifecycle √

•  Service Discovery
•  Service Invocation
•  Service Composition
•  MTOS, BIOS & VM

59 Ubiquitous computing: smart devices, environments and interaction

Service Provision Life-cycle for Smart
Devices

•  Service creation: service processes register themselves in
service directories

•  Service operation: services are invoked and multiple
interlinked services may need to be coordinated

•  Service maintenance phase: service processes, access
configurations and service compositions can be updated

•  Service dissolution: services may be put off line or
terminated temporarily by the processes themselves or by
requesters

60 Ubiquitous computing: smart devices, environments and interaction

Service Provision Life-cycle

Invoke	 (A)	
Coordinate	 (A,P)	

Terminate	 (A,P)
Remove	 registrations	 (P)

Re-‐invoke	 (A),	 Update	 descriptions	 (P)	
Reconfiguration	 (A),	 Update	 composition	 (A)

Announcement	 (P),	 Discovery	 (A)
Selection	 (A),	 Configuration	 (A|P)
Composition	 (A)

Creation Execution Dissolution

Maintenance

61 Ubiquitous computing: smart devices, environments and interaction

•  A – Access services or clients
•  P – Process services or services provision

Service Provision Life-cycle
•  Exercise: Consider creation, operation, maintenance,

dissolution for the following types of devices & services:
•  Laptop / Internet

•  Set-top box audio-video receiver

•  Mobile phone

•  Email Service

62 Ubiquitous computing: smart devices, environments and interaction

WS SOA Support for Service Life-
cycle

•  Web Services (WS) support machine-to-machine
interaction

•  Service Interfaces are machine-processable, syntactical
•  WS SOAs consist of many possible WS protocols

depending on the application and service requirements.
•  Core WS SOA protocols are:

–  SOAP: is a protocol for exchanging structured information in the
implementation of Web Services in computer networks. It relies on
XML for message format

–  WSDL: is an XML-based interface description language that is used
for describing the functionality offered by a web service; provides a
machine readable descriptions (e.g. parameters required)

–  UDDI : (XML)-based registry by which businesses worldwide can
list themselves on the Internet, and a mechanism to register and
locate web service applications

63 Ubiquitous computing: smart devices, environments and interaction

Overview
•  Smart Device and Service Characteristics
•  Distributed System Viewpoints
•  System Abstraction
•  Partitioning and Distribution of System Components
•  Proxies & Middleware
•  Service Oriented Computing (SOC)
•  Peer-to-Peer Systems
•  Service Provision Lifecycle
•  Service Discovery √
•  Service Invocation
•  Service Composition
•  MTOS, BIOS & VM

64 Ubiquitous computing: smart devices, environments and interaction

Service Announcement, Discovery,
Selection and Configuration

•  Service discovery scope & functions depends on design.
•  What’s involved in service discovery?

–  It could just involve asking for the list of available service providers
that match a request.

–  It may or may not include service selection, service configuration,
service name to address resolution and even service invocation.

•  Which happens first in service discovery?
•  Network discovery

65 Ubiquitous computing: smart devices, environments and interaction

Network Discovery
What Is it? Why do we need it?
•  Precedes service registration and service discovery
•  Dynamic network discovery, used by mobile nodes and when new

nodes are introduced into a network.
Which Network Protocols support Network Discovery?
•  Domain Name Service, DNS, maps IP addresses ↔ Names
•  Some nodes offer long term services

–  static assigned IP addresses may be assigned
–  e.g., printers, etc

•  Common approach to dynamically discover network: DHCP
–  Ask a DHCP server for an IP address
–  addresses leased for a given time.
–  Why is leasing useful?
–  Complexity in using DHCP is in setting up & managing DHCP servers. Why?
– 

66 Ubiquitous computing: smart devices, environments and interaction

Network Discovery
•  Why is leasing useful?

–  enables a limited set of resources, in this case, network addresses,
to be periodically renewed by active nodes and;

–  to be reused and freed from inactive computer nodes

•  Complexity in using DHCP is in setting up & managing
DHCP servers. Why?
–  because multiple DHCP servers may issues overlapping addresses;
–  permanent IP addresses can conflict with dynamically assigned

ones;
–  inactive clients may attempt to use an address that has been

reassigned

67 Ubiquitous computing: smart devices, environments and interaction

Network Discovery: Zeroconf

68 Ubiquitous computing: smart devices, environments and interaction

•  Zero Configuration Networking (Zeroconf)
–  techniques that automatically creates a usable IP network without

configuration or special servers

•  Allows inexpert users to connect computers, networked
printers etc together & expect them to work automatically.

•  Without Zeroconf or something similar, need to?
– 

•  Zeroconf currently solves automating three tasks
–  choosing network addresses,
–  giving oneself an address,
–  discovering names and discovering service addresses

Network Discovery: dynamically
assigning IP addresses

•  Both IPv4 and IPv6 have standard ways of automatically
choosing / assigning IP addresses.

•  IPv4 uses the 169.254.any, link-local set of addresses, see
RFC 3927.

•  IPv6, zeroconf, see RFC 2462 can be used.
•  2 similar ways of figuring out which network node has a

certain name.
–  Apple's Multicast DNS (mDNS)
–  Microsoft's Link-local Multicast Name Resolution (LLMNR)

69 Ubiquitous computing: smart devices, environments and interaction

Dynamic Service Discovery
•  Dynamic versus Static service discovery

–  If service providers and requesters are static, then there is little
need for dynamic service discovery

–  Dynamic service discovery is needed to
•  allow service requesters to change providers when requesters or

providers are mobile,
•  when network access is intermittent
•  when requesters or providers fail

•  Allow requesters to change providers , Why? Vice-versa?
•  What is involved in Dynamic Service discovery?

–  involves decoupling service provision from service requests and
supporting dynamic announcements

–  dynamic discovery of service providers and service requesters

70 Ubiquitous computing: smart devices, environments and interaction

Dynamic Service Discovery: Pull
versus Push

 •  2 main approaches : push or pull.
Pull: How does it work?

71 Ubiquitous computing: smart devices, environments and interaction

Discovery Services: Push
Push: How does it work?
•  Push uses broadcasts or multicasts to announce the

available service requests or service capabilities to a
number of unknown parties, e.g., Bluetooth

•  Broadcasting service requests or service descriptions are a
sub type of message broadcasts to unknown message
receivers

72 Ubiquitous computing: smart devices, environments and interaction

Discovery services Push: Design
Broadcast / Announcements can be designed to occur:
•  Periodically irrespective of whether any audience exists or

not;
•  Only when any kind of audience is available;
•  Only when a specific type of audience is detected

–  multicast versus broadcast.

73 Ubiquitous computing: smart devices, environments and interaction

Discovery Services: Push
Pull: How does it work?
•  Pull uses lookups to search or browse lists of requests or

capabilities previously announced to a directory held by
some known third party, e.g., Jini, UPnP, UDDI, etc.

•  The third party does the matching

74 Ubiquitous computing: smart devices, environments and interaction

Discovery Services: Pull vs. Push
•  Advantage of Pull?

–  Pull minimises network traffic concerning service discovery (i.e. no
broadcast messages)

•  Disadvantage of Pull?
–  this requires third party administration of the directory,
–  the directory to be available and
–  The directory to have a well known location for clients and servers

to find it

75 Ubiquitous computing: smart devices, environments and interaction

Service Discovery Interaction Patterns

 Directory Service

Blackboard

 Broker

DirectoryClient
3

Services
4

2 C
A
C

I P
C

I1

Register	
Services	

Lookup	
Services

Message BoardClient Services

4 1
C

A
C

I P
C

I32

Register	 	 	
requests

Lookup	
Requests

Client Services

1 342

Broker

A I
CC

P
C

I

76 Ubiquitous computing: smart devices, environments and interaction

External versus Internal service
selection

•  External → services to satisfy request exist in virtual
environment to the ICT system, rather than internally within
the system itself.

•  How does a requester of a service know if it needs
someone else to perform the service?
–  The process of establishing whether or not a service exists

internally involves self descriptions, self awareness and reflection

•  How does a service requester choose between external
service versus internal service invocation when both are
available?
–  Exact matches or inexact wild card or even conditional matches

77 Ubiquitous computing: smart devices, environments and interaction

External versus Internal service
selection

•  Process of establishing whether or not a service exists
internally can involve
–  Self-descriptions
–  Self-awareness
–  Reflection

•  See chapter 10

78 Ubiquitous computing: smart devices, environments and interaction

Semantic Web (SW) and Semantic
Resource Discovery

•  Why is Syntactic level matching and discovery challenging
in pervasive environments?
–  Due to the autonomy of service providers and the resulting heterogeneity of

their implementations and interfaces devices

•  What are benefits of Semantic matching rather than
syntactic service matching?
–  leads to a service discovery performance that can give better

response time and reduces network load compared to syntactic
service discovery

79 Ubiquitous computing: smart devices, environments and interaction

Semantic Web (SW) and Semantic
Resource Discovery

•  SW represents resources using RDFS (Resource
Description Framework Schema) and OWL
–  Used for semantic service descriptions

•  SW defines much richer XML based data structures and
relationships
–  heavier computation resources are needed to process these

•  Design choices:
–  Semantic matching of service requests can enable services to be

classified and grouped

80 Ubiquitous computing: smart devices, environments and interaction

Overview
•  Smart Device and Service Characteristics
•  Distributed System Viewpoints
•  System Abstraction
•  Partitioning and Distribution of System Components
•  Proxies & Middleware
•  Service Oriented Computing (SOC)
•  Peer-to-Peer Systems
•  Service Provision Lifecycle
•  Service Discovery
•  Service Invocation √
•  Service Composition
•  MTOS, BIOS & VM

81 Ubiquitous computing: smart devices, environments and interaction

Distributed Service Invocation
•  Specifying an application protocol in terms of a set of

service descriptions of service actions is often insufficient to
invoke a service. Why?
–  Requesters need to have the know how to invoke the service (e.g.

invoking hardware resource services such as printers may involve
downloading hardware drivers into the access device)

–  Requesters may not know in which order to invoke service actions
or how to handle out of order message sequences in a process
without terminating service processes.

–  The interaction in the process needs to be coordinated or
orchestrated?

82 Ubiquitous computing: smart devices, environments and interaction

Distributed Service Invocation
•  Design of remote interaction across different computer

nodes differs from design of local process interaction within
the same computer node

•  Why?
•  Because it occurs across the network rather than across

local shared memory and because different computer
nodes are autonomous and heterogeneous

83 Ubiquitous computing: smart devices, environments and interaction

Distributed Service Invocation
•  Multiple heterogeneous processes often need to be

interleaved: e.g., when u-commerce (ubiquitous commerce)
system purchasing an item
–  select item,
–  order item,
–  receive acknowledgement and receive item,
–  need to be interleaved with a separate pay for item process.

•  How to carry this out in a naturally, explicitly supported way?

•  Need to synchronize multiple processes

•  What are the available techniques?
84 Ubiquitous computing: smart devices, environments and interaction

Distributed Service Invocation:
Ordered Service Actions

•  Service requesters may not know:
–  in what order to invoke service actions
–  how to handle out of order message sequences in a process without

terminating service processes.

•  Interaction in the process coordinated needs to be
conducted.

•  Often coordination may be hard-coded into each service
API and under the control of the provider.
–  Makes the coordination of multiple services inflexible.

85 Ubiquitous computing: smart devices, environments and interaction

Distributed Service Invocation:
Ordered Service Actions

•  Clients often need to invoke not just individual service
actions in isolation but to invoke a whole series of service
interactions as part of a business process

•  Multiple heterogeneous processes often need to be
interleaved:

•  Network Transmission may or may not maintain order of
action messages when these are sent

•  Complex to design in order to make remote communication
(remote procedure calls (RPC) or remote method
invocation (RMI) look like local calls, e.g., need parameter
marshalling

86 Ubiquitous computing: smart devices, environments and interaction

Distributed Service Invocation: Fully
Ordered Service Actions

•  Two types of design based upon service action ordering
–  Full versus Partial

1) Fully ordered system processes of actions
•  Specify actions executed as fixed sequences of actions.
•  Earlier actions in sequence output data used by later ones
•  Control of flow may contain some flexibility in terms of

branches, conditions and loops.
•  Example uses method invocation such as RPC and RMI
•  Suitable for synchronous executions
•  Less suitable for loosely coupled infrastrcture

87 Ubiquitous computing: smart devices, environments and interaction

Distributed Service Invocation:
Partially Ordered Actions

•  Two types of design based upon action ordering
2) Partially or non ordered system processes of actions Non-

ordered System
•  Specify action triggers (events) and action (responses,

handling)
•  Don’t fully order, but may partially order
•  Example Uses

–  LooCI component model

•  Suitable for open dynamic environments

88 Ubiquitous computing: smart devices, environments and interaction

Distributed Service Invocation: fully
versus partially ordering

•  Advantages and disadvantages of full action ordering?

•  Advantages and disadvantages of partial action ordering?

89 Ubiquitous computing: smart devices, environments and interaction

Service Invocation: Separating
Coordination & Computation

•  Should coordination mechanisms be separated from
computation mechanisms.

This supports several key benefits:
•  Portability
•  Heterogeneity
•  Flexibility

90 Ubiquitous computing: smart devices, environments and interaction

Distributed Service Invocation
Coordination Models

Designs for distributed interaction include:
•  (Remote) Procedure Calls / object-oriented Remote Method

interaction:
•  Layered model:
•  Pipe-filter model
•  Event-driven Action or EDA Model:
•  Shared data repositories:

91 Ubiquitous computing: smart devices, environments and interaction

Distributed Service Invocation Data
Model: RPC model

Uses?

Client

Client	 stub

Server

Server	 	 stub

Pipe

E1

E2 E3

E5E4

E6E7

E8

92 Ubiquitous computing: smart devices, environments and interaction

•  For	 each	 type	 of	 	 service	 invoca1on	 data	 model	 we	 can	 give	
more	 detail	 about	 how	 the	 interac1on	 model	 works	

•  (Remote)	 Procedure	 Call	 Model	 –	 makes	 remote	 calls	 look	 like	
local	 calls	

•  Remote	 Method	 Invoca1on	 –	 object	 oriented	 remote	 calls	 in	
Java	

Distributed Service Invocation Data
Model: RPC model

93 Ubiquitous computing: smart devices, environments and interaction

Distributed Service Invocation Data
Model: Layered Model

Layered	
Model	

Employed to to hide the details of lower level interaction which is often
used as a design to mask and combine the use of multiple network
protocols

Element	 1-‐1

Element	 3-‐1

Eo

E1

E2

E5

E4

E3

Layer1 Element	 1-‐2

Layer2

Layer3

Element	 2-‐2

E10

E12

E13

E17

E15

E14
Element	 2-‐1

94 Ubiquitous computing: smart devices, environments and interaction

Distributed Service Invocation Data
Model: Pipe-Filter Model

Pipe	 Filter	 E1 E1 E2 Pipe	 E2

Pipe-‐Filter	
Model	 Pipe	 Filter	 E2 E3

often used for streaming and combining multiple media to
different applications that use different kinds of content
filtering

95 Ubiquitous computing: smart devices, environments and interaction

Distributed Service Invocation Data
Model: Shared Data Repository

•  Shared repository system consists of two types of
components:
–  central data structure represents the current state (blackboard)
–  collection of independent components operate on central data store.

(interacting components – consumers and providers)

•  2 major sub-types of coordination depending on:
–  if transactions in an input stream trigger the selection of executing

processes, e.g., a database repository
–  if the current state of the central data structure is the main trigger of

selecting processes to execute, e.g., a blackboard repository.

96 Ubiquitous computing: smart devices, environments and interaction

Shared Data Repository: Blackboard
•  Represents & stores data created & used by other

components.
•  Data is input a repository from data producers.
•  Data is output from a repository to data consumers.

97 Ubiquitous computing: smart devices, environments and interaction

Shared Data Repository: Blackboard

Source

E2

E4

E3

E1

Black-‐
board

Source

Source

Source

Consumer

Consumer

Consumer

Out

In /
Read

E2 E1

E4

E3

98 Ubiquitous computing: smart devices, environments and interaction

Service Invocation Data Model: EDA

Consumer

Producer

E2

Event	 Dispatcher

E2 E1E3E4

E1 E4

E2

E3

Event	
Loop

Registration
Buffer

Matching

E4

Filter

Action

Filter Filter

Action

Producer E4

Producer E3

Producer E1

Consumer

99 Ubiquitous computing: smart devices, environments and interaction

Distributed Service Invocation Data
Model: EDA

•  Event-Driven Architectures or EDA
•  EDA model is an important design for SOC and MOM

(Message Oriented Middleware) Architectures
•  Event is some input such as a message or procedure call

of interest (e.g. if time equals 1pm)
•  EDA is also known as Publish-and-Subscribe interaction.
•  Some nodes publish events while others subscribe to being

notified when specified events occur

100 Ubiquitous computing: smart devices, environments and interaction

Distributed Service Invocation Data
Model: EDA

•  A Few events may be significant because it may cause a
significant change in state
–  e.g., a flat tyre triggers a vehicle driver to slow down

•  Event may cause some predefined threshold to be crossed
–  e.g., after travelling a certain number of miles, a vehicle must be

serviced to maintain it in a roadworthy state

•  Event may be time-based
–  e.g., at a certain time record a certain audio video program

•  External events can trigger services. Services may in turn
trigger additional internal events,
–  e.g., the wheel brake pads are too worn and need to be replaced.

•  Many events may not be significant

101 Ubiquitous computing: smart devices, environments and interaction

Distributed Service Invocation Data
Model: EDA Challenges

•  Design challenges complexity of EDA?
–  Event floods: solved by prioritising and using event expiration?
–  EDA generally have no persistence
–  Can be difficult to keep things running through a failure

•  Solutions
–  Prioritising events
–  Event persistence
–  Event coordination (event coordination may be needed by

applications when events can arrive in any order)
–  Highly selective event generation and transmission

102 Ubiquitous computing: smart devices, environments and interaction

Overview
•  Service Provision Lifecycle
•  Service Discovery
•  Service Invocation √

•  Coordination Models
•  On-demand Service Invocation √
–  Volatile Service Invocation
–  ESB versus MOM

•  Service Composition

103 Ubiquitous computing: smart devices, environments and interaction

Blackboard versus Event Driven
Key difference?

 The main difference between the EDA and shared data
repository is the persistent storage of the input data and data

management, e.g., consistency management

104 Ubiquitous computing: smart devices, environments and interaction

On-Demand Distributed Service
Invocation

•  On-demand: remote service access whenever needed
•  Some data created locally & stored or processed remotely

–  E.g. e-commerce

•  Some data is stored remotely & accessed locally
–  E.g., catalogue-based purchase

•  Remote service invocation may involve single read or write
data operations

•  Remote service invocation may involve multiple read or
write data operations,
–  E.g., clients issues several requests to discover suitable sevices

•  Multiple service actions may be integrated into a whole
–  E.g., purchasing travel (tickets, hotels, car rent, etc.)

105 Ubiquitous computing: smart devices, environments and interaction

On-Demand Distributed Service
Invocation

Service invocation e.g., what is the best flight given these constraints?

Wireless
Network

Decode data
Encode data for
transmission

Mobile
Application

Capture
User Query

Result

Server

Optional
confirmation
result
received

106 Ubiquitous computing: smart devices, environments and interaction

On-Demand Distributed Service
Invocation can be Complex

107 Ubiquitous computing: smart devices, environments and interaction

Ordering & paying for it

Purchasing Sales

SubmitPO

AckPO

SubmitASN

SubmitInvoice

SubmitPayment

(ASN = Advanced Shipping
Notice)

(PO = Purchase
Order)

AckPayment

On-Demand Distributed Service
Invocation can be Complex

Inventory Shipping Bank

TransferFundsRequest
AckTransferFunds

ReqShipping

ShippingArranged
For Next day

Check/update

Confirm / instock

108 Ubiquitous computing: smart devices, environments and interaction

On-demand Service access

•  On-demand service interaction suited to thin client
interaction. Why?
–  It ensures server based processing in the network
–  Look up in the catalogue

•  Suitable for small foot-print / low resource / devices or
terminals

•  Back-end server required continually throughout the
transaction

•  Server-side processing used to
–  Process transaction
–  Dynamic Server-side device profiling of clients

109 Ubiquitous computing: smart devices, environments and interaction

On-Demand Services: Request-
reply, Pull Design

•  Request/response is “pull-based” approach
•  Client, requires instantaneous updates of information
•  Need highly available network connection
•  Clients continuously poll service providers
•  In many mobile applications energy is a scarce resource
•  Pure pull-based solution may not support the high

dynamicity of information resources, that change and move
•  Pull works if directory service is up to date
•  Publish/subscribe or EDA can be used so that timely

notification of events are sent to interested subscribers.

110 Ubiquitous computing: smart devices, environments and interaction

Overview
•  Service Provision Lifecycle
•  Service Discovery
•  Service Invocation √

–  Coordination Models
–  On demand Service invocation
–  Volatile Service Invocation √
–  ESB versus MOM

•  Service Composition

111 Ubiquitous computing: smart devices, environments and interaction

Volatile Service Invocation: Networks
Sometimes service access may be quite intermittent because

of intermitted network, Causes?
–  Limited network area converage
–  Intermittent low bandwidth access via some networks
–  Hand offs
–  Interference
–  Variable signal reception

112 Ubiquitous computing: smart devices, environments and interaction

Volatile Service Invocation: services
•  Intermittent service access causes?

•  Designs of the application and middleware must take
volatile into account Why?
–  Because requests will block or terminate and may need to be

repeated and restarted

•  Basic designs to handle volatile service access?
–  use of asynchronous communication
–  handling unreliable communication (ACK/NACK?)and
–  message caching

113 Ubiquitous computing: smart devices, environments and interaction

Volatile Service Invocation: Designs
Designs to support volatile service invocation? By

Satyanarayanan (1996)
–  They provide concurrent access to shared data occurs. This

concurrency may occur at two different
–  levels: remote versus local and write versus read

114 Ubiquitous computing: smart devices, environments and interaction

Volatile Service invocation: Over
Unreliable Networks

•  Networks may offer a QoS to deliver messages without loss
or delay and in order

•  Service access over wireless networks often more
unreliable than wired networks.

•  Applications can assume no network guarantee about
delivery - need to detect & handle message corruption &
message loss. How?
–  Check message integrity
–  ACK/NACK
–  Caches

115 Ubiquitous computing: smart devices, environments and interaction

Volatile Service invocation Design:
Stateful Senders & Receivers

•  Senders and receivers can be aware of states (stateful)
–  They buffer sent messages or retain some intermediate states

about the messages

•  Stateful senders don’t need to create message
replacements from scratch

•  Stateful communication may be more complex to
synchronise than stateless communication because the
equivalence of intermediate states may need to be
compared.

116 Ubiquitous computing: smart devices, environments and interaction

Volatile Service Invocation: Repeating
Service Requests

•  Before repeating message transmission is to consider the
consequences of doing this.

•  Messages that can be repeated, at least once, without side-
effects are called idempotent messages,
–  e.g. pressing an elevator call button again because the response has not

yet been completed

•  Other messages may be non-idempotent,
–  e.g. a message request that withdraws funds from one bank account

117 Ubiquitous computing: smart devices, environments and interaction

Volatile Service Invocation: Repeating
Service Requests

•  Partial observability at sender / requester ↑ complexity.
Why?
–  the sender may not be able to distinguish between a sender crash before

the message is sent,
–  a sent message being lost,
–  a remote server crash and the received message being lost

118 Ubiquitous computing: smart devices, environments and interaction

Volatile Service Invocation:
Asynchronous (MOM) I/O

 •  Problems when senders issues requests to receivers
–  receivers (e.g. servers) need to be ready before clients start to

make requests to them

•  Asynchronous messaging can solve this issue.
Asynchronous messaging applications such as email over
the Internet, SMS over mobile voice networks are often
regarded as the first important data applications over these
networks respectively.

•  Two basic variants of asynchronous messaging exist:
–  Sender side asynchronous requests
–  Receiver side asynchronous requests

119 Ubiquitous computing: smart devices, environments and interaction

Volatile Service Invocation: Synchronous I/O

•  Advantages?
–  Normally, no buffer required

•  Disadvantages
–  It Blocks processes

Receiver
Execution
Thread or
Process

Sender
Execution
Thread or
Process

120 Ubiquitous computing: smart devices, environments and interaction

Request

Blocks

Asynchronous I/O: design based upon
buffering

121 Ubiquitous computing: smart devices, environments and interaction

Receiver
Execution

Thread

Buffer

Buffer
Continues with
other interaction

Request

Sender
Execution

Thread

Volatile Service invocation: read
ahead caches

•  Read ahead is one design option to deal with volatile
service invocation

•  Information is pre-cached in devices when the network is
available.

•  Cache-hit
•  Cache-miss
•  Design decisions?

•  Support frequent caching?
–  .

•  Support less frequent caching?

122 Ubiquitous computing: smart devices, environments and interaction

Volatile Service Invocation: Read
Ahead

123 Ubiquitous computing: smart devices, environments and interaction

Client (query,
update)

3. Query

1. Query

2. Results

Client
Cache

Read
ahead

Database Server
(Sales)

4. Results

Volatile Service Invocation: Delayed
Writes

•  With delayed writes, updates are made to the local cache
whilst services are unreachable which must be later
reintegrated upon reconnection.

•  Concurrent local and remote updates may need to be
synchronised.

•  Write conflicts need to be detected when the same data
has been modified locally and remotely.

•  Techniques to handle cache misses & cache
resynchronisation?

124 Ubiquitous computing: smart devices, environments and interaction

Volatile Service Invocation: Delayed
Writes

125 Ubiquitous computing: smart devices, environments and interaction

1. Update

2. Update

Client (query,
update)

Client
Cache

Database Server
(Sales)

