Introduction Leview of Linear Models Leview Structure

The General Linear Model

In a general linear model

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_p x_{pi} + \epsilon_i$$

the **response** $y_i, i = 1, ..., n$ is modelled by a linear function of **explanatory** variables $x_j, j = 1, ..., p$ plus an error term.

Introduction Leview of Linear Models Leview Structure

General and Linear

Here **general** refers to the dependence on potentially more than one explanatory variable, v.s. the **simple linear model**:

 $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

The model is *linear in the parameters*, e.g.

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \epsilon_i$$

$$y_i = \beta_0 + \gamma_1 \delta_1 x_1 + \exp(\beta_2) x_2 + \epsilon_i$$

but not e.g.

$$y_i = \beta_0 + \beta_1 x_1^{\beta_2} + \epsilon_i$$
$$y_i = \beta_0 \exp(\beta_1 x_1) + \epsilon_i$$

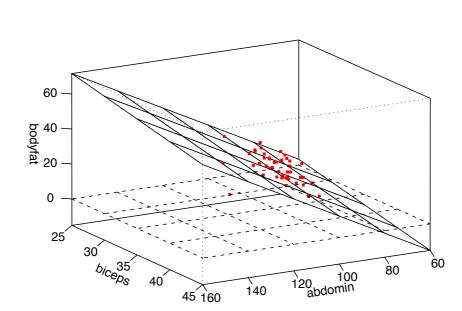
Introduction Leview of Linear Models Leview Structure

Error structure

We assume that the errors ϵ_i are independent and identically distributed such that

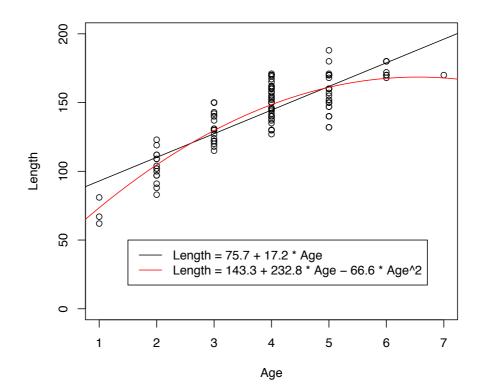
$$E[\epsilon_i] = 0$$

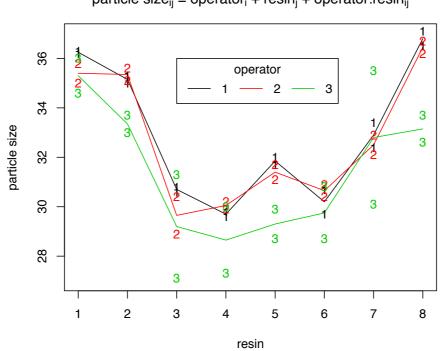
and $var[\epsilon_i] = \sigma^2$


Typically we assume

 $\epsilon_i \sim N(0, \sigma^2)$

as a basis for inference, e.g. t-tests on parameters.


Introduction Leview of Linear Models Lexamples


Some Examples

bodyfat = -14.59 + 0.7 * biceps - 0.9 * abdomin

Introduction Leview of Linear Models Lexamples

 $particle size_{ij} = operator_i + resin_j + operator:resin_{ij}$