Análise de Agrupamento de Dados (Aula 3.2 – Métodos Particionais)

Prof. Eduardo Raul Hruschka

Departamento de Ciências de Computação
Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo

Agenda

3. Métodos para Agrupamento de Dados.

3.1 Métodos Hierárquicos

3.2 Métodos Particionais:

3.2.1 Partições Rígidas

- > Considere um conjunto de objetos $X=\{x_1,x_2,...,x_N\}$ a serem agrupados;
- Numa partição rígida, os objetos devem ser reunidos em k grupos não sobrepostos $\mathbf{C} = \{\mathbf{C}_1, \mathbf{C}_2, ..., \mathbf{C}_k\}$ tal que:

$$\mathbf{C}_1 \cup \mathbf{C}_2 \cup ... \cup \mathbf{C}_k = \mathbf{X}; \ \mathbf{C}_i \neq \emptyset; \ \mathbf{C}_i \cap \mathbf{C}_j = \emptyset \text{ para } i \neq j.$$

Definir um mapeamento $f: \mathbf{X} \to \{1, 2, ..., k\}$ para o qual cada \mathbf{x}_i é atribuído a um *cluster* \mathbf{C}_j , $1 \le j \le k$. Um *grupo de dados* \mathbf{C}_j contém precisamente os objetos mapeados para o mesmo, i.e.: $\mathbf{C}_i = \{ \mathbf{x}_i \mid f(\mathbf{x}_i) = j, 1 \le i \le N, 1 \le j \le k \text{ e } \mathbf{x}_i \in \mathbf{X} \}$.

- Assumindo-se que *k* seja conhecido, o número de maneiras (*NM*) de se agrupar *n* objetos em *k clusters* é dado por (Liu, 1968):

 $NM(N,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{N}$

- •Por exemplo, *NM* (100,5)≈56.6x10⁶⁷. Supondo que um computador tenha capacidade de avaliar 10⁹ partições/s, precisaríamos de aproximadamente 1.8x10⁵⁰ séculos para processar todas as avaliações.
- •Claramente, em grande parte das aplicações reais, enumerar e avaliar todas as partições possíveis é inviável sob o ponto de vista computacional.
- Otimizar uma função objetivo, usando técnicas baseadas em subida de encosta, é uma abordagem comum.

Iniciaremos por estudar um algoritmo amplamente usado na prática:

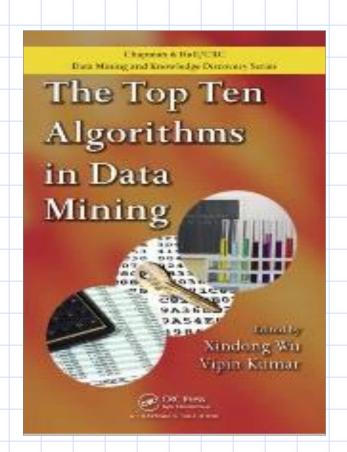
k-médias (k-means);

E uma extensão:

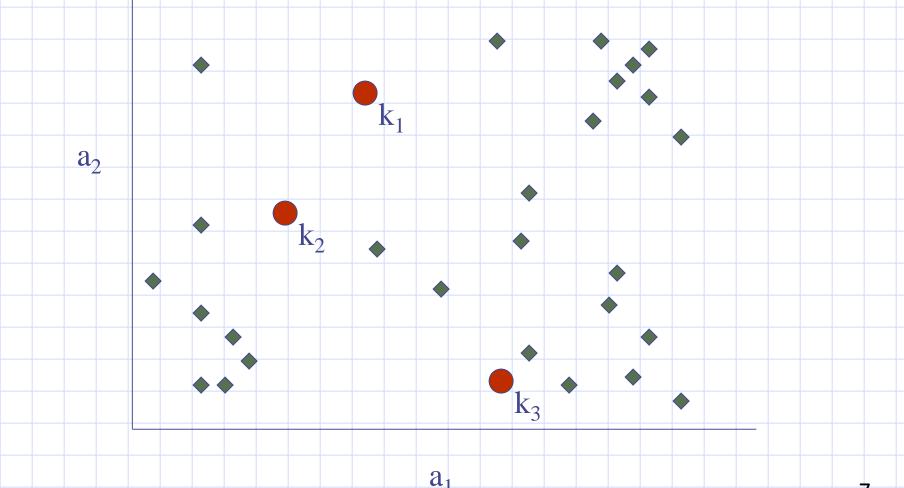
Bisecting k-means.

Algoritmo k-médias (MacQueen, 1967)

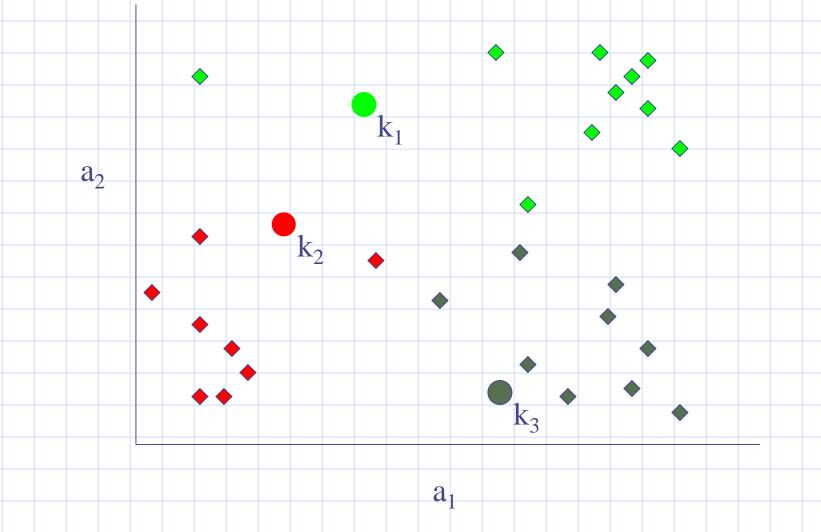
- Amplamente usado na prática:
- Simplicidade;
- > Interpretabilidade;
- > Eficiência Computacional.



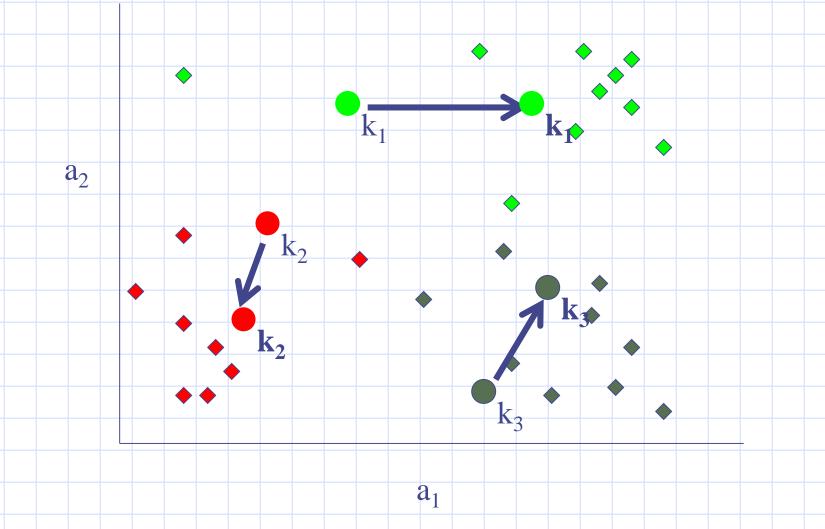
•Assumamos que queremos encontrar três *clusters* (k = 3) para uma base de dados bi-dimensional:



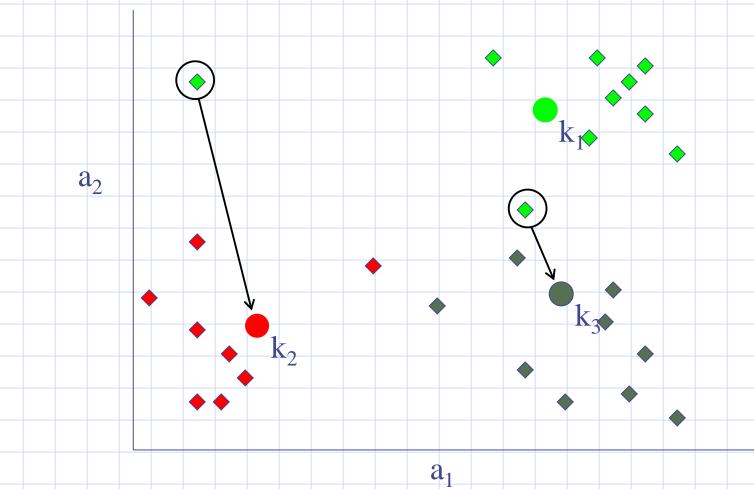
• Calcular dissimilaridades entre objetos e protótipos (k_1, k_2, k_3) , encontrando grupos iniciais pela regra do vizinho mais próximo:



Atualizar os protótipos (centróides) dos grupos:



- Calcular dissimilaridades entre objetos e centróides;
- Atualizar clusters (regra do vizinho mais próximo);



• Repetir até convergência/ número de iterações.

Algoritmo básico:

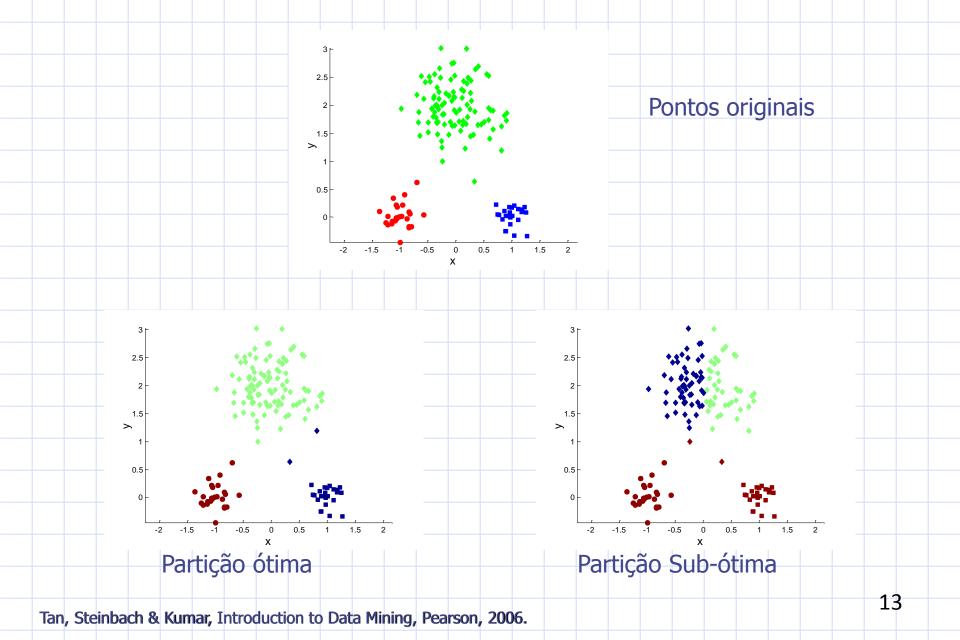
- 1. Selecionar k pontos (centróides iniciais);
- 2. Repetir até "convergir":
 - 2.1 Formar *k* grupos atribuindo cada ponto ao seu centróide mais próximo;
 - 2.2 Re-computar o centróide (média) de cada grupo;

Obs. Convergência: estrita, aproximada, número de iterações.

Detalhes sobre o k-médias:

- Centróides iniciais são frequentemente escolhidos aleatoriamente.
 - Clusters obtidos podem variar de uma rodada para outra.
- Proximidade medida por meio de Distância Euclidiana (ao quadrado).
- * k-médias converge, geralmente em poucas iterações;
- Complexidade de tempo é O(n·k·I·d).
- Vejamos alguns exemplos interessantes...

Consideremos duas partições diferentes obtidas para k = 3:

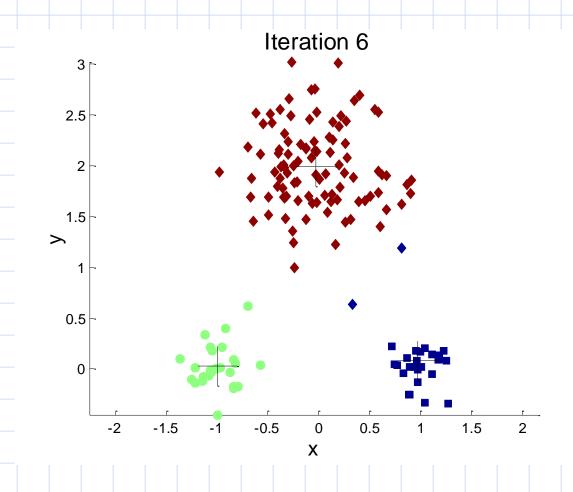


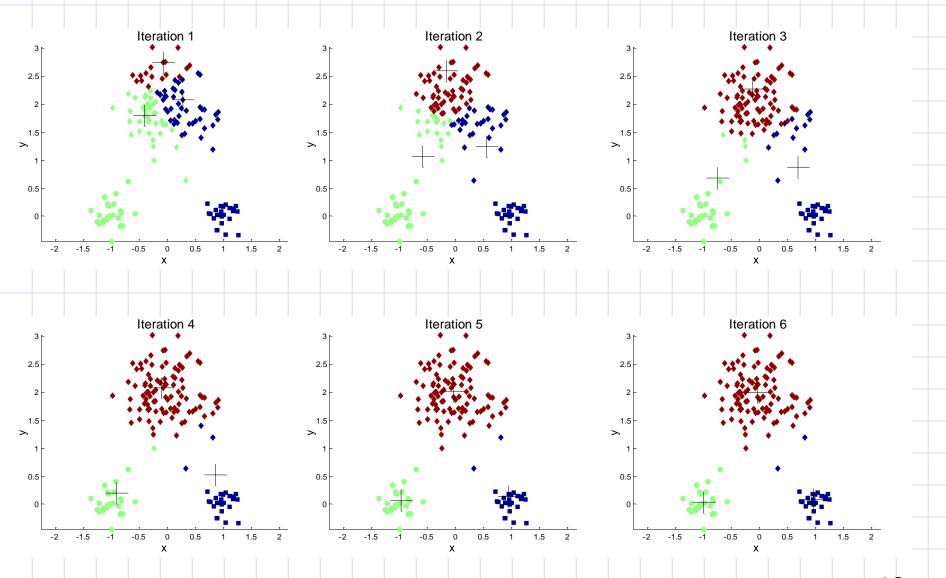
Avaliando os grupos obtidos:

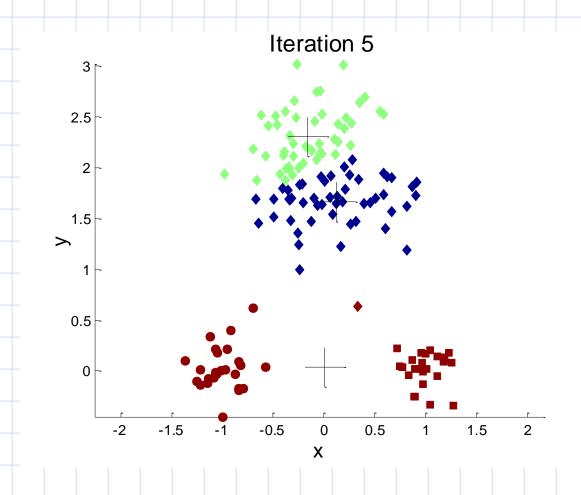
Soma dos erros quadráticos:

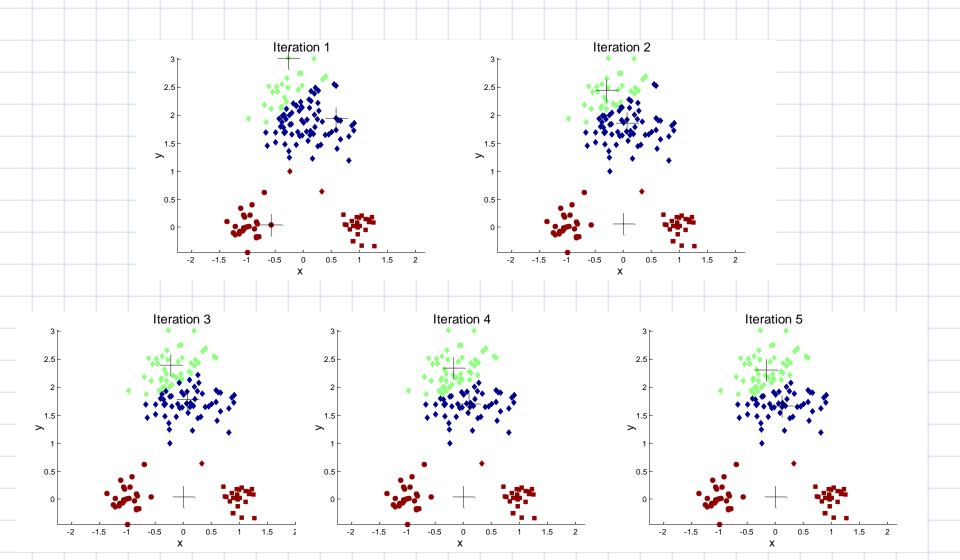
$$SEQ = \sum_{i=1}^{k} \sum_{x \in C_i} dist^2(m_i, x) \qquad m_i = \frac{\sum_{x \in C_i} x}{|C_i|}$$

- Dadas duas partições, escolher aquela que apresenta SEQ menor;
- E se o número de clusters for diferente?
 - Aumento de k: tende a diminuir, por si só, SEQ;









Soluções para inicialização?

- Múltiplas execuções:
 - Ajuda, mas pequena P_{sucesso};
- Amostragem via métodos hierárquicos;
- Seleção "informada" de centróides distantes entre si;
- Algoritmos de busca (e.g., evolutivos);

Pré/Pós-processamento

- Pré-processamento:
 - Normalização;
 - Eliminação de *outliers*.
- Pós-processamento:
 - Eliminar pequenos clusters (outliers)?
 - Dividir grupos com EQ relativamente alto?
 - •Unir grupos próximos e com EQ pequeno?
 - •Usar tais passos durante iterações do algoritmo das *k*-médias?

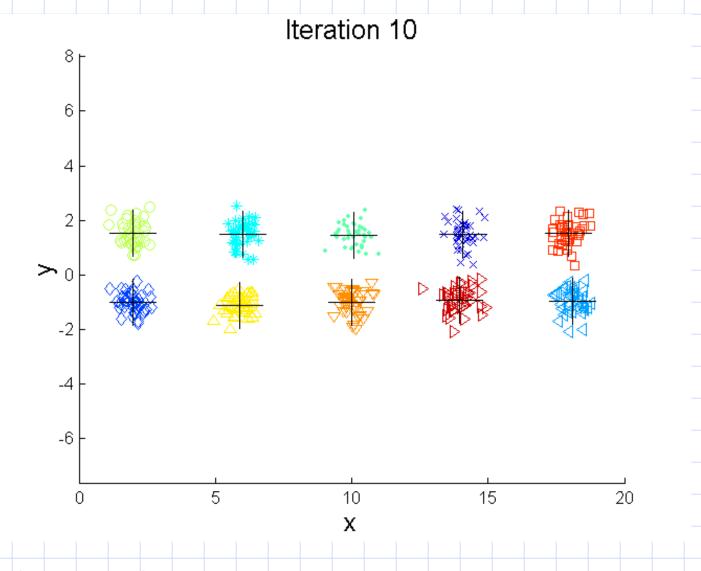
Bisecting k-means:

•Variante do *k*-médias que pode produzir uma partição ou uma hierarquia:

Algoritmo básico:

- 1. Inicializar uma lista de grupos (inicialmente um único grupo);
- 2. Repetir (até que a lista de grupos contenha k grupos):
 - 2.1. Selecionar um grupo da lista;
 - 2.2. Para i=1 até número de inicializações (N_i) fazer:
 - Dividir o grupo selecionado usando 2-médias (*k*=2);
 - 2.3 Adicionar os dois grupos de menor SEQ à lista de grupos;
- Dado que a probabilidade de se selecionar um protótipo inicial para cada um dos dois grupos (balanceados) é $k!/k^k$, qual seria um valor razoável para N_i ?

Exemplo:

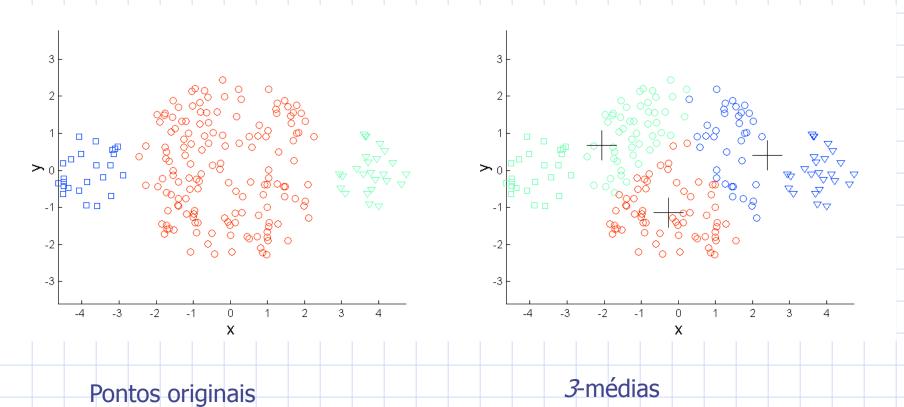


Limitações do k-médias:

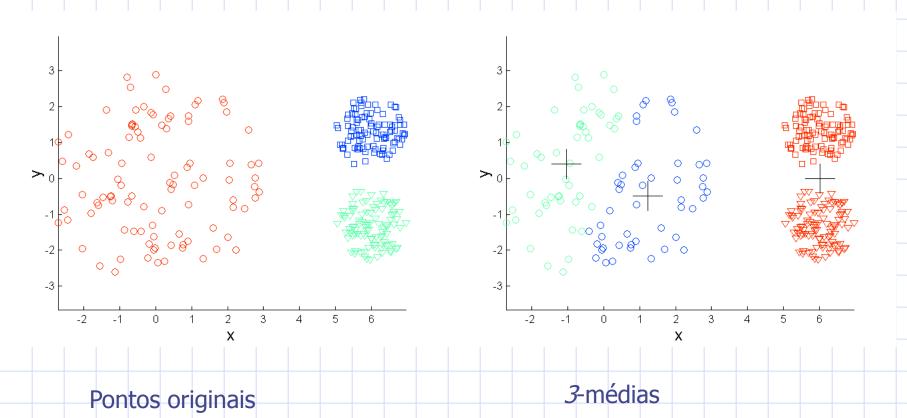
- Grupos de diferentes:
- Tamanhos;
- Densidades;
- Formas não globulares.

Outliers.

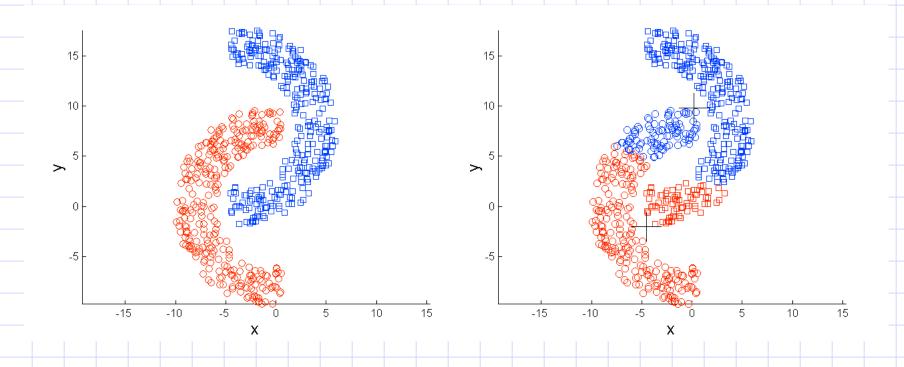
Limitações do k-médias: grupos de tamanhos diferentes



Limitações do k-médias: densidades diferentes



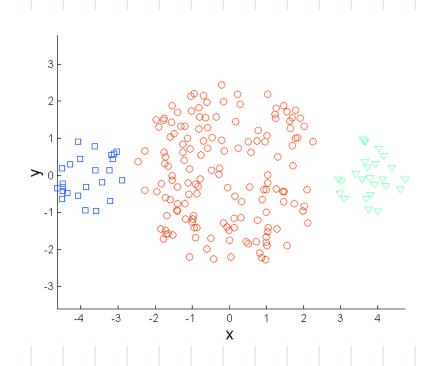
Limitações do k-médias: formas não globulares

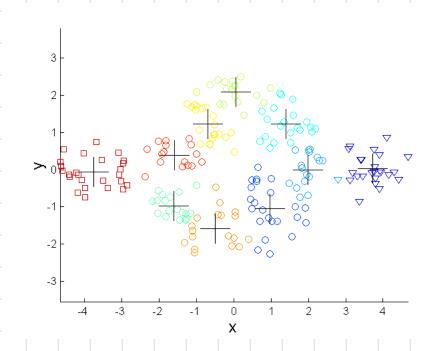


Pontos originais

2-médias

Superando algumas limitações do *k-médias*



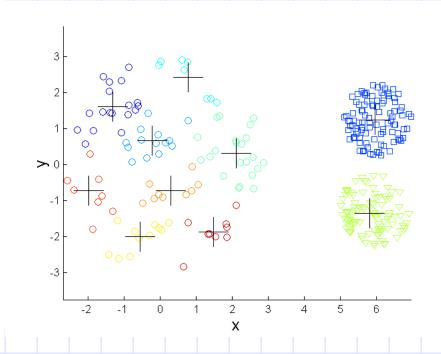


Pontos originais

"Mais Grupos"

Superando algumas limitações do k-médias...

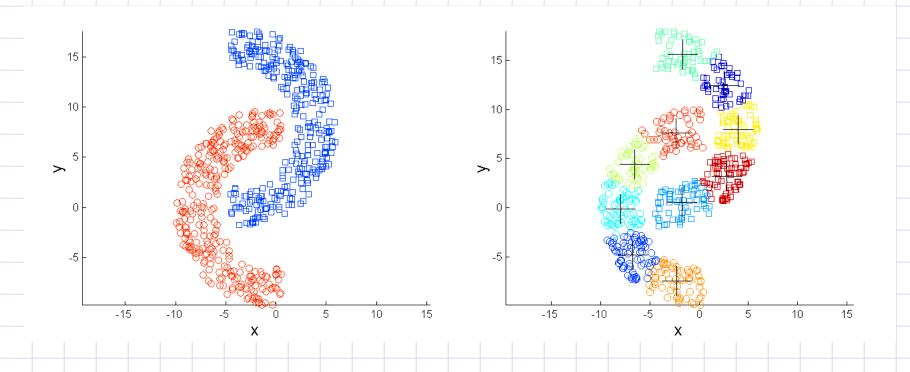




Pontos originais

"Mais grupos"

Superando algumas limitações do k-médias...



Pontos originais

"Mais grupos"

Principais referências usadas para preparar essa aula:

- Xu, R., Wunsch, D., Clustering, IEEE Press, 2009.
- Capítulo 4.
- Tan, Steinbach & Kumar, Introduction to Data Mining, Pearson, 2006.
- Capítulo 8, pp. 496-515.
- Jain, A. K., Dubes, R. C., Algorithms for Clustering Data, Prentice Hall, 1988.
- Capítulo 3, pp. 89-142.
- Bishop, C. M., Pattern Recognition and Machine Learning, 2006.
- > Capítulo 9, pp. 423-439.

Onde estamos?

- 3. Métodos para Agrupamento de Dados.
 - 3.1 Métodos Hierárquicos;
 - 3.2 Métodos Particionais.

Próxima Aula ...

- 4. Agrupamento de textos:
 - Medida de similaridade adequada:
 - Adaptação do k-médias