Exercício 1: Algoritmo para encontrar k-ésimo numero natural par.

Exercício 1: Algoritmo para encontar k-ésimo numero natural par.

Algoritmo 1: Even(positive integer k)

Input: k, a positive integer

Output: k-th even natural number (the first even being θ)

Algorithm:

if k = 1, then return θ ; else return Even(k-1) + 2. Exercício 2: Algoritmo para calcular 2^k

Exercício 2: Algoritmo para calcular 2^k

Algorithm 2 Power_of_2(natural number k)

Input: k, a natural number

Output: *k*-th power of 2

Algorithm:

if k = 0, then return 1; else return $2*Power_of_2(k - 1)$. Exercício 3: Algoritmo recursivo para busca sequencial.

Exercício 3: Algoritmo recursivo para busca seqüencial.

Algorithm 3 SeqSearch(L, i, j, x)

Input: L is an array, i and j are positive integers, $i \le j$, and x is the key to be searched for in L.

Output: If x is in L between indexes i and j, then output its index, else output 0.

```
Algorithm:

if i \le j, then

{

if L(i) = x, then return i;

else return SeqSearch(L, i+1, j, x)

}

else return 0.
```

Exercício 4: Palindrome Checker

Exercício 4: Palindrome Checker

```
Pal(str: String of length n)
     if (n==0 \text{ or } n==1)
            return true;
     }
else
            if (Pal(substring of str excluding first and last character)
                           and (character₁==character₁))
                 return true;
            élse
                 return false;
```

Exercício 5: Algoritmo recursivo para multiplicação de números naturais

Exercício 5: Algoritmo recursivo para multiplicação de números naturais

$$a*b = a se b = 1$$

 $a*b = a*(b-1)+a se b > 1$

- Exercício 6: Imagine *v* como um vetor de inteiros. Apresente algoritmos recursivos para calcular:
- 1) O elemento máximo do vetor;
- 2) A soma dos elementos do vetor;
- 3) A media dos elementos do vetor.

Exercício 7: Conta numero de primo entre *a* e *b*.

Exercício 7: Conta numero de primo entre *a* e *b*.

$$count_prime(a,b) = \begin{cases} 0, & se \ a > b \\ count_prime(a,b-1)+1, & se \ prime(b) \\ count_prime(a,b-1), & sen\~ao \end{cases}$$

Exercício 8: A função de Ackerman é definida recursivamente sobre os inteiros não-negativos como segue:

$$a(m, n) = n+1,$$
 se $m = 0$
 $a(m, n) = a(m-1, 1),$ se $m != 0$ e $n = 0$
 $a(m, n) = a(m-1, a(m, n-1))$ se $m != 0, n != 0$

- 1) Demonstre que a(2, 2) = 7
- 2) Você consegue descobrir um método iterativo para calcular a(m, n)?