
Início

- Grace Murray Hopper (10/12/1906 1/1/1992)
 - ▶ Cientista da Computação
 - ▶ Contra-Almirante da Marinha Americana
 - ► Entre as décadas de 40 e 60
- ▶ E...?
 - ▶ Criou o primeiro compilador
 - ▶ A-0, A-1, A-2 e A-3 (MATH-MATIC)
 - ▶ Criou o conceito de bibliotecas de rotinas
 - Linguagem baseada em inglês
 - ▶ B-0 (FLOW-MATIC)
 - ▶ COBOL (COmmon Business Oriented Language).

3

Início

▶ Harvard Mark I

Início

Diário de Bordo

"O primeiro caso real de inseto (Bug) a ser encontrado"

5

Testar por quê?

- ▶ l° Errar é humano!
 - ▶ Ou seja, erros acontecem
- ▶ 2° Situações imprevisíveis
 - ▶ Usários são enorme fonte de comportamentos inesperados
- ▶ 3° Software simples?
 - ▶ Esqueça!
 - ▶ Novos domínios e alta complexidade
- 4° Falta de métodos durante o desenvolvimento
 - ▶ Códigos "write-only"
- **...**

Houston, we have a problem!

- ▶ Softwares espaciais são campeões de bugs
 - Software complexo e crítico
 - Falhas levam a perdas gigantescas!
- Exemplos:
 - ▶ Phobos II (Marte) 1989 (Russo)
 - ► Ariane 5 1996 (Europeu)
 - ▶ Pathfinder (Marte) 1997 (Americano)

7

Phobos II

- Lançado 12 de julho.
- Sumiu 2 de setembro.
 - ▶ Foi emitido um comando de terra que desabilitou o sistema referencial na nave.
 - ▶ Com isso ela perdeu o sol e não pôde recarregar as baterias solares.
- ▶ Por que alguém iria emitir tal comando?
 - Falha humana.
- Por que uma nave deveria ter uma funcionalidade para desabilitar o sistema de orientação?
 - Não deveria.
 - Útil para algumas rotinas de teste.
 - ▶ Software em ROM.

Lições

- ▶ l° Teste é teste, produção é produção.
- ▶ 2° Mantenha o software simples, remova o desnecessário.
- > 3° Se alguma coisa pode dar errado, vai dar.

9

Ariane 5

- Após 40 segundos do lançamento, o foguete perdeu completamente sua orientação, tombou e se autodestruiu.
- ▶ Foi determinado que o sistema de orientação deixou de funcionar por causa de um conversão de tipos.
- Ao tentar converter um valor real em inteiro, houve uma exceção que resetou o computador que cuidava da orientação.
- Ou seja, quando consultado para verificar a posição do foguete estava em processo de inicialização e devolveu valor expúrio.

Ariane 5

- ▶ 1° Software foi reaproveitado do Ariane 4.
 - ▶ Existia um sistema de ajuste do foguete na plataforma, antes de ser lançado.
 - Sistema continuava operante por 40 segundos depois era desligado.
- ▶ 2° Esse sistema não era usado no Ariane 5, mas estava presente.
 - ► Com a trajetória do Ariane 5, ocorria um erro de conversão que era tratado (ou não) resetando-se o computador.
- Portanto, sistema não foi testado com a nova trajetória

11

Lições

- 4° Reúso de software é ótimo
 - Mas a necessidade de teste é a mesma
- ▶ 5° Testar situações de exceção
 - Difícil de prever
- ▶ 6° Não manter coisas desnecessárias ou perigosas.
- > 7° Tamanho do defeito não reflete tamanho da falha

Pathfinder

- Sonda de exploração do solo marciano.
- Inaugurou diversos conceitos
 - ▶ Uso de airbags para permitir o pouso.
- ▶ Colhia dados por um longo tempo e depois os transmitia
- para a Terra.
 - Ou melhor: colhia dados por um longo tempo, resetava sozinho e perdia todos os dados

13

Pathfinder

- ▶ Software do robô é concorrente
 - ▶ Com escalonamento preemptivo.
 - ▶ Cada thread possui uma prioridade.
- "Information bus" é uma memória compartilhada que serve para trocar informação entre diversas partes do sistema.
 - ▶ Acesso controlado por mutex.
 - Gerenciador do I.B.: roda freqüentemente, com alta prioridade.
- ▶ Thread meteorológica
 - Roda de vez em quando, com baixa prioridade e publica dados no I.B.
- ▶ Thread de comunicação
 - Longa, e com média prioridade

Pathfinder

- Essa combinação geralmente funciona bem.
 - ▶ Situação de erro: Gerenciador do I.B. bloqueado no mutex.
- ► Comunicação é escalonada e ganha processador pois tem prioridade maior que a meteorologia.
 - ▶ Comunicação demora quanto tempo quiser.
- ► Timer expira indicando que gerenciador do I.B. não foi executado por um longo período de tempo.
 - ▶ Ação corretiva: reset.

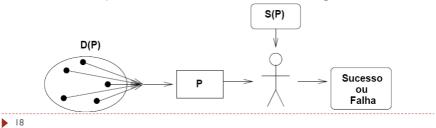
15

Pathfinder

- Horas de execução em "debug mode" salvaram o projeto
 - Além de sorte
- Alterando valor de uma constante no programa, o problema foi resolvido.
 - ▶ Herança de prioridade: quando o gerenciado do I.B. ficou bloqueado no mutex, a meteorologia iria herdar sua prioridade.
 - ▶ Isso evitaria que a thread de comunicação executasse por muito tempo e que o gerenciador ficasse sem executar.

Lições

- ▶ 8° Mecanismos de depuração em alguns casos são essenciais.
- 9° Meio para corrigir o problema de maneira fácil é benvindo (flexibilidade)
- ▶ 10° Aplicar técnicas de teste adequadas ao domínio.
 - O que diferencia o laboratório de teste do ambiente real?
 - ▶ Não desprezar indício de defeitos "it was probably caused by a hardware glitch".
- Portanto:


Software vai falhar!

Objetivo do Teste: Minimizar as chances de falha

17

Então...

- ▶ Como testar?
 - Executar todas as entradas possíveis!
- ▶ Teste exaustivo
 - Programa P: x^y
 - ▶ Entradas: todos os possíveis pares de inteiros (x, y)
 - > Saídas: conjunto de números inteiros e mensagens de erros

Algumas definições

Dado de teste

▶ Um elemento do domínio de entrada do programa P

Caso de teste

- ▶ Par formado por um dado de teste mais o resultado esperado pela execução do programa com aquele dado de teste
- ▶ Programa: x^y
 - <(2, 3), 8>, <(4, 3), 64>, <(3, -1), "Erro">

▶ Conjunto de Teste

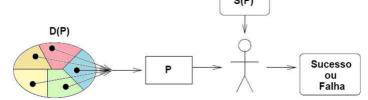
- ou Conjunto de Casos de Teste
- Conjunto de todos os casos de teste usados durante uma determinada atividade de teste

19

Critérios e Técnicas de Seleção

▶ Teste Exaustivo

- Inviável
- ▶ Programa P:
 - ≥ 2ⁿ * 2ⁿ (n é o número de bits usado para representar um inteiro)
 - Arquitetura de 32 bits: 2⁶⁴ = 18.446.744.073.709.551.616
- ▶ Cada teste executado em Ims
 - ▶ 5.849.424 séculos para executar todos


▶ Teste Randômico

- Não garante quais trechos serão executados
 - ▶ Trechos críticos

Critérios e Técnicas de Seleção

▶ Teste de Subdomínios

- ▶ Como particionar?
 - Definir regras
 - ▶ Requisitos de Teste
 - ▶ Como executar uma determinada estrutura do programa
 - Os dados que satisfazem esse requisito pertencem ao mesmo subdomínio

21

Teste de Subdomínios

- Regras
 - ▶ Critérios de Teste
 - ▶ Geram Requisitos de Teste

- Funcionais
- ▶ Estruturais
- ▶ Baseados em defeitos (ou erros)
- Um conjunto de teste que satisfaz todos os requisitos de um critério de teste C
 - C-adequado

Objetivo

- Mostrar que um programa está correto?
 - ▶ Não!
- ▶ Revelar a presença de defeitos
 - ▶ Caso existam

- ▶ Teste criterioso e embasado tecnicamente
 - ▶ "Confiança"
 - Comportamento correto para grande parte do domínio de entrada

23

Técnicas

- Funcional
 - ▶ Teste baseado na especificação
 - ▶ Confronta: saída obtida x saída esperada
 - ▶ Teste Caixa Preta
- ▶ Estrutural
 - ▶ Teste baseado na estrutura interna do programa
 - ▶ Execução de partes ou módulos elementares do código
 - ▶ Teste Caixa Branca
- Baseado em defeitos
 - ▶ Teste baseado nos erros típicos cometidos durante o processo de desenvolvimento

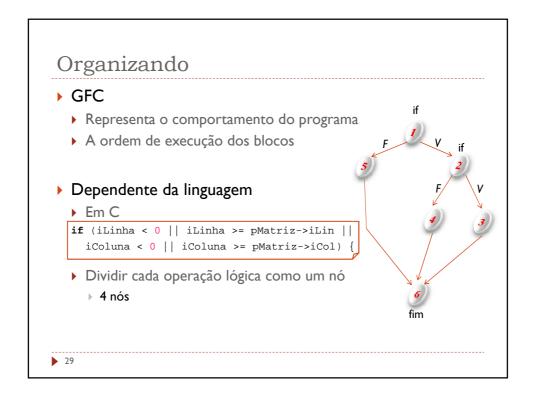
Teste Estrutural

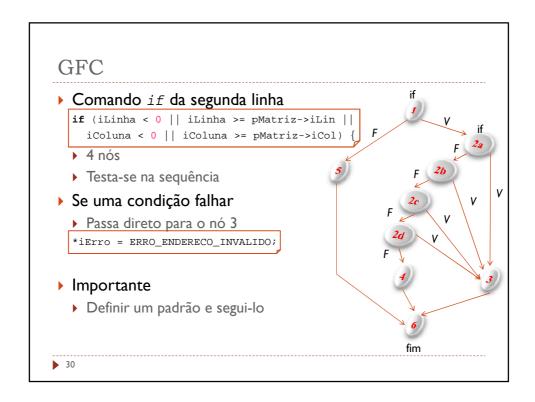
25

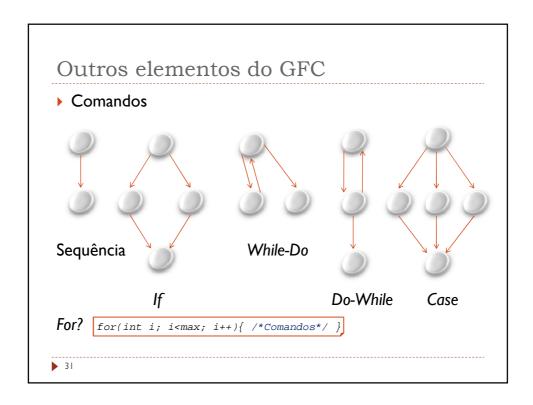
Conceitos

- Grafo de Fluxo de Controle (GFC)
 - ▶ Ou Grafo de Programa
 - ▶ Representação gráfica de um programa
- Nós
 - ▶ Um nó no grafo representa um bloco indivisível de comandos
- Arcos
 - Cada aresta representa um possível desvio de um bloco para outro

Definição


"Blocos de comandos são trechos de código em que uma vez executado seu primeiro comando, todos os demais comandos pertencentes a este bloco são executados sequencialmente"


(Delamaro, et. al., 2007)


 Ou seja, não existe nenhum comando interno com desvio de execução para outro bloco, e nenhum comando externo possui um desvio de execução para um comando interno deste

27

Grafo de Fluxo de Controle

Grafo pronto! E agora?

- ▶ Técnica Estrutural
 - ▶ Quais requisitos cobrir?
- Critérios Baseados
 - ▶ Fluxo de Controle
 - Fluxo de Dados
- Fluxo de Controle
 - ▶ Todos-nós
 - ▶ Todos-arcos
 - ▶ Todos-caminhos

Critérios de Rapps-Weyuker

- Proposto na década de 1980
- ▶ Estabelece precisamente os requisitos de teste
 - Inclui também critérios de fluxo de dados
- ▶ Todos-nós
 - ▶ Requer que todos os vértices sejam executados pelo menos uma vez
 - ▶ Equivale a executar cada comando (cada linha de código) um vez
- ▶ Todas-arcos
 - ▶ Requer que todas as arestas sejam executadas pelo menos uma vez
 - Equivale a dizer que todos os desvios devem ser executados pelo menos uma vez
- Todos-caminhos
 - Requer que todos os possíveis caminhos do grafo sejam executados pelo menos uma vez

33

Observações

- Apesar de muito simples, critérios são efetivos, em particular o todas-arestas
- Maioria dos projetos de software não alcança esse nível mínimo de cobertura
- Diversas ferramentas de teste de apoio a esses critérios
 - ▶ JaBUTi Java Bytecode Understanding and Testing
 - ▶ ICMC/USF
 - ▶ Poke-Tool Potencial Uses Criteria Tool for Program Testing
 - FEEC/UNICAMP em colaboração com o ICMC/USP
 - ATAC
 - ▶ Telcordia Technologies

Ferramenta Gcov

- ▶ Programa de Teste de Cobertura
- ▶ GNU Compiler Collection (GCC)
 - ▶ Gcov é uma ferramenta disponibilizada em conjunto ao gcc
 - ▶ Linux e Windows
- Dentre outros teste
 - ▶ Análise de cobertura
 - ▶ Critério Todos-nós

35

Como utilizar

- Adicionar as flags -fprofile-arcs -ftest-coverage à linha de compilação do projeto
 - ▶ gcc -fprofile-arcs -ftest-coverage -o matriz Cliente.c Matriz.c

```
C:\Users\T0SHIBA\Documents\Arineiza\USP\PAE\Sources\MatrizAula\dir
\circ\Users\T0SHIBA\Documents\Arineiza\USP\PAE\Sources\MatrizAula\dir
\volume in drive C is $Q004680\03
\volume Serial Number is 30CD-F497

Directory of C:\Users\T0SHIBA\Documents\Arineiza\USP\PAE\Sources\MatrizAula

23.\08.\72010 09:41 \(\text{OIR}\) \\
\tag{23.\08.\72010 09:41 \(\text{OIR}\)} \\
\tag{23.\08.\72010 09:41 \(\text{OIR}\)} \\
\tag{23.\08.\72010 15:45} \\
\tag{300.\text{Liberror.h}} \\
\tag{300.\text{Liberror.h}
```

Como utilizar Arquivos do tipo .gcno são gerados Rodar o arquivo executável gerado ./matriz (Linux) ou matriz.exe (Windows) GOMANICA (CINICAN COMPANICA COMPANICA

Arquivos do tipo .gcda serão gerados Executar a ferramenta com o arquivo .gcda que deseja-se analisar a cobertura do Critério Todos-nós gcov -a Matriz.gcda SECUMindowskystem32\cmd.ese Directory of C:\Users\TOSHIBA\Documents\Arineiza\USP\PAE\Sources\MatrizAula 23/08/2010 09:46 (DIR) 23/08/201

Como utilizar

- Será gerado um arquivo texto com extensão .gcov
 - ▶ gedit Matriz.c.gcov (Linux)
 - notepad Matriz.c.gcov (Windows)

```
::\Users\TOSHIBA\Documents\Arineiza\USP\PAE\Sources\MatrizAula>notepad Matriz.c.
```

39

40

Matriz.c.gcov

```
function Matriz_AcessaElemento called 4 returned 100% blocks executed 80%
      4: 76:float Matriz_AcessaElemento (Matriz* pMatriz, int iLinha, int iColuna, int *iErro) {
       -: 77:
      4: 78:
               int iIndice; /* índice do elemento no vetor */
      4: 79:
               if(pMatriz != NULL){
      4: 80:
               if (iLinha < 0 || iLinha >= pMatriz->iLin || iColuna < 0 || iColuna >= pMatriz->iCol) {
      4: 80-block 0
      4: 80-block 1
      4: 80-block 2
      4: 80-block 3
      4: 80-block 4
  #####: 81:
                    *iErro = ERRO_ENDERECO_INVALIDO;
  #####: 82:
                    return 0;
  $$$$: 82-block 0
       -: 83:
#####: Linhas não executadas
```

Matriz.c.gcov

▶ Continua...

```
4: 84: iIndice = (iLinha - 1) * pMatriz->iCol + iColuna;
4: 85: *iErro = ERRO_SUCESSO;
4: 86: return pMatriz->fVet[iIndice];
4: 86-block 0
-: 87: }
-: 88: else{
#####: 89: *iErro = ERRO_PONTEIRO_NULO;
4: 90: return 0;
$$$$$: 90-block 0
4: 90-block 1
-: 91: }
-: 92:}
```

41

Matriz.c.gcov

Algumas linhas não podem ser executadas

▶ Por exemplo: linha 47

```
function Matriz_Cria called 1 returned 100% blocks executed 67%

1: 43:Matriz* Matriz_Cria (int iLinha, int iColuna, int *iErro) {

-: 44:

1: 45: Matriz* pMatriz = (Matriz*) malloc(sizeof(Matriz));

1: 45-block 0

1: 46: if (pMatriz == NULL) {

#####: 47: *iErro = ERRO_MEMORIA_INSUFICIENTE;

#####: 48: return NULL;

$$$$$: 48-block 0

-: 49: }
```

Objetivo

- Executar o máximo possível do código
 - ▶ Criar um conjunto de testes Todos-nós-adequado
 - ► Considerando os nós "não-executáveis"

43

Executabilidade

- Um dos problemas no teste estrutural, em geral, é a executabilidade
 - Um caminho é dito não executável quando não existe um dado de entrada que faça com que esse caminho seja executado
- Ao se determinarem os requisitos de teste é impossível determinar se são executáveis ou não
 - ▶ Esse é um problema provado indecidível
- É um problema para a automatização da atividade de teste

Dúvidas?

Arineiza Cristina Pinheiro LabES – CISC – 2-208

arineiza@icmc.usp.br

45

Referências

- MALDONADO, J. C.; JINO M.; DELAMARO, M. E. Conceitos Básicos. In: MALDONADO, J. C.; JINO M.; DELAMARO, M. E. (eds). Introdução ao Teste de Software. I ed. São Paulo: Elsevier Editora Ltda., 2007, v. 1, p. 1-7.
- ▶ BARBOSA, E. F.; CHAIM, M. L.; VINCENZI, A.M.R; DELAMARO, M. E.; JINO M.; MALDONADO, J.C. Teste Estrutural. In: MALDONADO, J. C.; JINO M.; DELAMARO, M. E. (eds). Introdução ao Teste de Software. I ed. São Paulo: Elsevier

Referências

- Editora Ltda., 2007, v. I, p. 48-76.VINCENZI, A. M. R.; WONG, W. E.; DELAMARO, M. E.; MALDONADO J. C. JaBUTi Java Bytecode Understanding and Testing. Vesion 1.0 Java. Manual do Usuário. São Carlos, Brasil, Março, 2003. Disponível em: http://incubadora.fapesp.br/projects/jabuti/. Acesso em: 23 de agosto de 2010
- VILELA, P. R. S.; VERGILIO, S. R.; MALDONADO, J. C.; JINO, M. Introdução aos Critérios Potenciais Usos e à POKE-TOOL. Disponível em: http://www.inf.ufpr.br/silvia/topicos/pokemanual.ps. Acesso em: 23 de agosto de 2010
- Grace Murray Hopper
 - http://www.inf.ufg.br/~eduardo/lp/alunos/cobol/LPCobol.htm
- Gcov
 - http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

