Sistemas Tolerantes a Falhas

Ténicas de TF para Diversidade de Dados

Prof. Jó Ueyama

Introdução

- A diversidade de dados vem complementar as técnicas de diversidade vistas até agora
- A diversidade de dados involve
 - Obter um conjunto de pontos co-relatos
 - Executar o mesmo software neles
 - Utilizar os mecanismos de DM
- Os dados são obtidos através do DRAs
- Duas técnicas chaves
 - Retry Blocks (RtB)
 - N-copy Programming (NCP)

Retry Blocks (RtB)

- É uma das técnicas clássicas de diversidade de dados
- É uma técnica dinâmica
- Serve como um complemento da diversidade de dados para o RcB
- Ela é baseada em duas técnicas:
 - Backward recovery
 - AT
- Um WDT é também utilizado para dar o start de um algoritomo secundário
 - Caso o original não responda em tempo esperado

Retry Block

- O algoritmo de backup é executado com o dado original, inicialmente
- Se não passar no AT, então gera outro dado através do DRA
- Este novo dado é então executado com o algoritmo original
- Este procedimento acontece até que AT encontre um resultado correto
 - ou o deadline do WDT expire; neste caso o algoritmo de backup é invocado
 - e executa com o dado original (algoritmo de backup)

Funcionamento do RtB

- O RtB consiste de um controlador, AT, DRA, WDT, algoritmo primário e de backup
- O controlador orquestra a execução do RtB que possui a seguinte sintaxe

```
ensure Acceptance Test

by Primary Algorithm(Original Input)

else by Primary Algorithm(Re-expressed Input)

else by Primary Algorithm(Re-expressed Input)

...

[Deadline Expires]

else by Backup Algorithm(Original Input)

else failure exception
```

Funcionamento do RtB

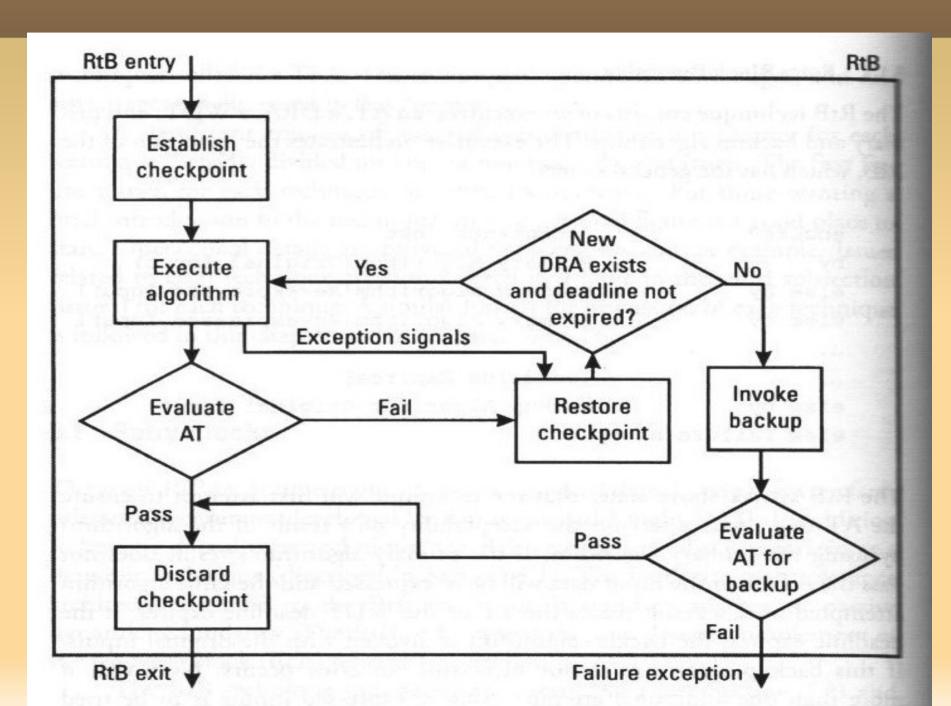
- Duas opções quanto ao DRA:
 - Múltiplos DRAs
 - Um único DRA com uma entrada randômica que gera dados a partir disso
- Passou do deadline? Então o algoritmo de backup com o dado original é executado

```
ensure Acceptance Test

by Primary Algorithm(Original Input)

else by Primary Algorithm(Re-expressed Input)

else by Primary Algorithm(Re-expressed Input)


...

[Deadline Expires]

else by Backup Algorithm(Original Input)

else failure exception
```

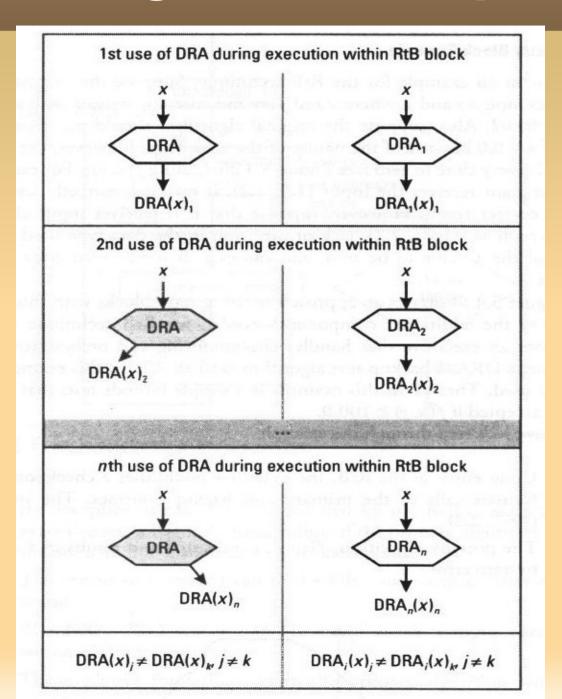
Funcionamento do RtB

Cenários do Funcionamento do RtB

- Funcionamento livre de falhas
- Exceção levantada pelo algoritmo primário
- Execução do primário em tempo, mas falha no AT; sucesso na execução do input do DRA (re-expr)
- Todas as re-expressões realizadas sem sucesso; sucesso na execução do algoritmo de backup
- Todas as re-expressões realizadas sem sucesso; backup é executado, mas o AT falha
 - Este cenário será explicado com detalhes no próximo slide

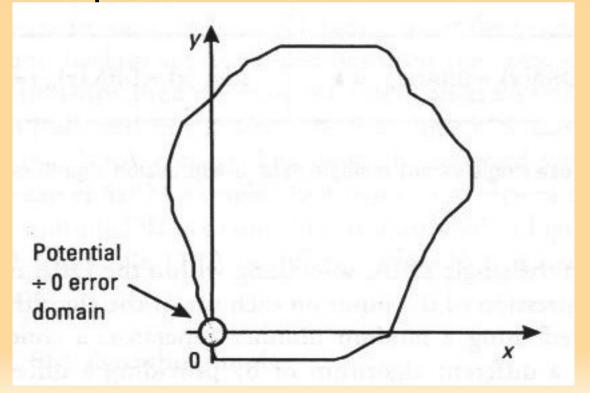
Cenário de Falhas com o RtB

- O controlador guarda todos os checkpoints, invoca o P (algoritmo primário) e estabele o WP
 - WP é o tempo máximo de espera
- O resultado de P é submetido ao AT que falha
- Os dados do checkpoint são restaurados
- Existe um DRA? Se sim, ele é executado tendo como o argumento o dado inicial
- Os dados são submetidos ao AT que falha
- E assim sucessivamente até que exista algum DRA disponível

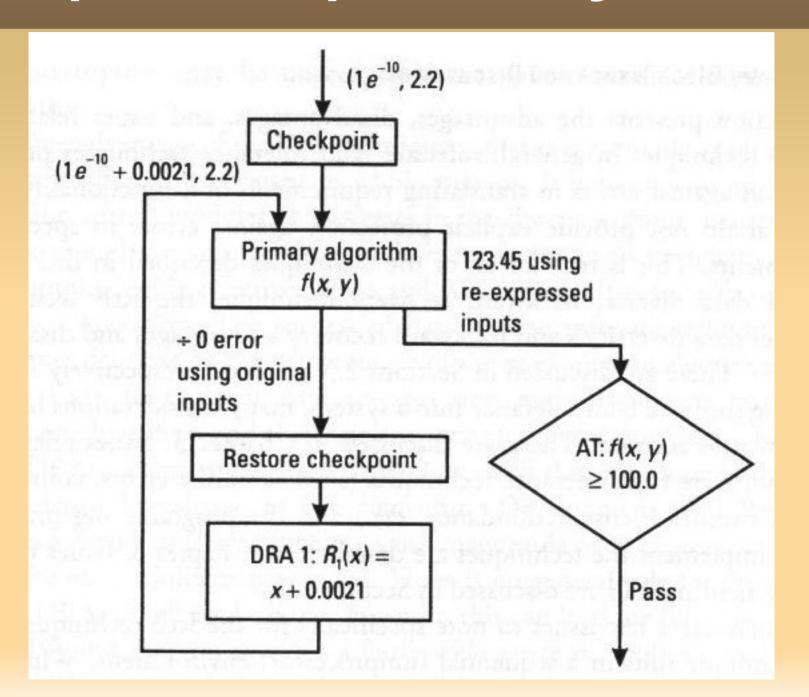

Cenário de Falhas com o RtB

- Se não existe nenhum DRA disponível, então o algoritmo de backup é invocado
- O algoritmo de backup utiliza o dado original e é executado
- O resultado do backup é avaliado pelo ATB (AT diferente) que falha
- Importante: em nenhum dos cenários acima, o processamento ultrapassou o deadline WP
- O checkpoint e o WDT (WP) são removidos
- Uma exceção é levantada

RtB Estendido


- Uma das extensões é inserir um contador do # de vezes que um primário pode executar com o DRA
- Vantagem? Ela pode substituir o WDT
- Duas opções para o DRA
 - Múltiplos DRAs
 - Um único DRA
- No caso de um único DRA, pode haver:
 - um valor randômico que é utilizado para gerar dados diferentes
 - um parâmetro diferente além do próprio input x
 - uma implementação de switch no próprio algoritmo

Multiuse Single vs. Multiple DRAs



Exemplo de Retry Block

- Um programa usa um input x e y que é coletado dos sensores com uma tolerância de +/- 0.02
- Os valores de x e y não podem ser x=0 e y=0 porque a aplicação possui uma divisão por zero
- O espaço do input é ilustrado abaixo

Exemplo da Implementação do RtB

Discussão do RtB

- É normalmente executado em ambientes monoprocessados
- Inclui overhead do backward recovery
- A execução dos DRAs leva a interromper os serviços, o que pode ser inaceitável
 - Por que pode levar a 'parada' do serviço?
- DRA são dependentes da aplicação e normalmente os mais simples são melhores
 - Por que? Porque minimizam erros de projeto e implementação

Discussão do RtB

- As aplicações com sensores podem ser bastante voltados para a diversidade de dados
 - Por que? Porque podem prover pequenas modificações sem alterar a aplicação
 - Os sensores normalmente entregam dados imprecisos e muitas vezes acompanhados de ruídos
- Tanto o RtB como o RcB podem levar ao efeito Dominó
 - efeito cascata nos rollbacks de todos os processos envolvidos 'puxando-os' para o início da execução
- A TF depende do DRA gerar dados fora da região de falhas

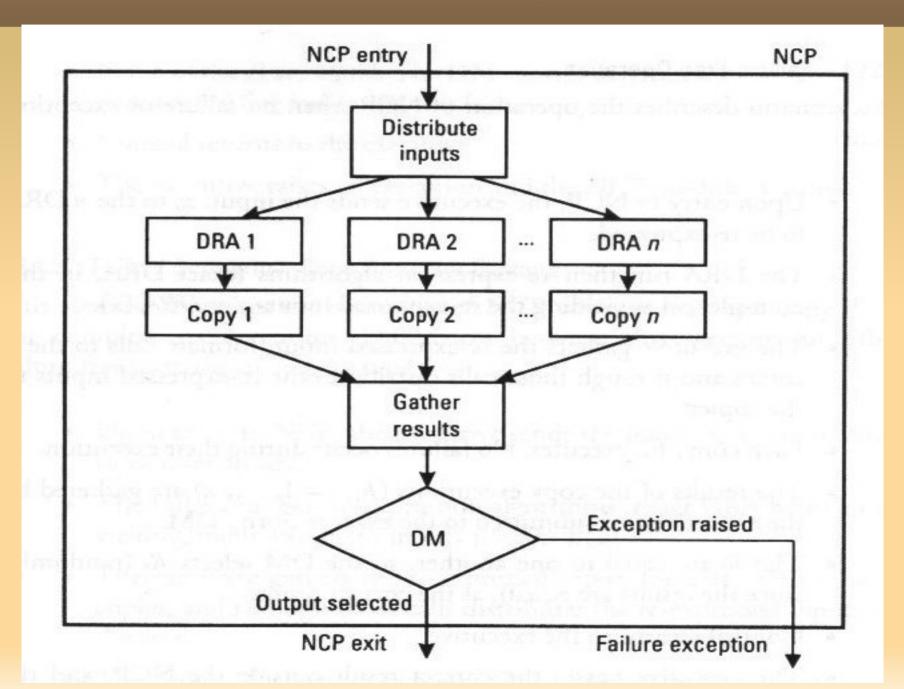
Concluindo RtB

- Concluímos o capítulo 4 que trata da diversidade de software
- Finalizamos a parte do Retry Blocks
- Próxima aula abordaremos o N-copy Programming

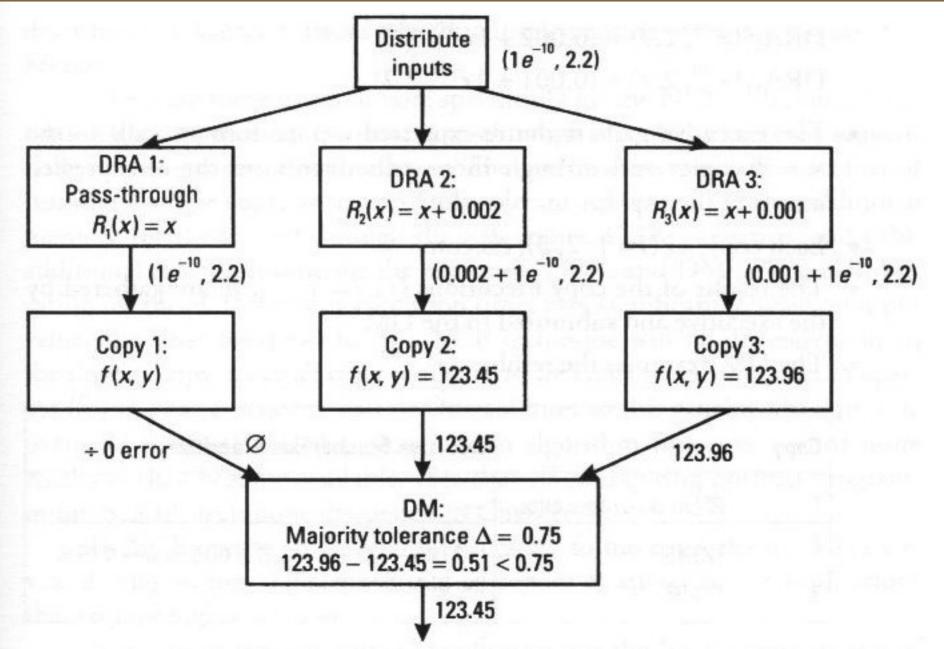
Sistemas Tolerantes a Falhas

N-copy Programming

Prof. Jó Ueyama


N-copy Programming (NCP)

- Juntamente com o RtB, ele é uma outra técnica clássica
- É uma técnica
 - Estática
 - Paralelo ou concorrente
- Serve como uma TF de diversidade de dados para o N-version (i.e. complemento do NVP)
- NCP é baseado no DM e no forward recovery
- Utiliza pelo menos duas variantes do mesmo programa
- Os DRAs alimentam as variantes antes


Sintaxe Geral do NCP

- O NCP consiste de um controlador, 1 a n DRAs, n variantes do programa e uma DM
- A DM seleciona o 'melhor' resultado caso ele exista
- Ele segue a seguinte sintaxe

Estrutura e Operação do NCP

Exemplo com o NCP

Discussão sobre o NCP

- No exemplo anterior, o DM seleciona um dos resultados pois a diferença entre eles é < 0.75
 - 0.75 é um threshold do exemplo
- A performance depende da variante mais lenta
- Por isso, o DM já pode verificar a diferença com os dois primeiros resultados.
- Os DRAs são bem dependentes de cada aplicação, por isso eles não são genéricos
- Porém, existem DRAs próprios para uma variedade de aplicações (e.g. para sensores)

Concluindo NCP

- Concluímos o NCP
- Visitamos duas técnicas clássicas de diversidade de dados
 - Retry Blocks (dinâmico)
 - N-copy Progamming (estático)
- Fim do capítulo 5

Sistemas Tolerantes a Falhas

Outras Técnicas de TF (Checksum, Paridade e RAID)

Prof. Jó Ueyama

Checksum

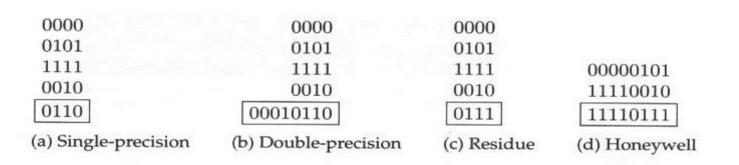


FIGURE 3.6 Variations of checksum coding (boxed quantities are the computed checksums).

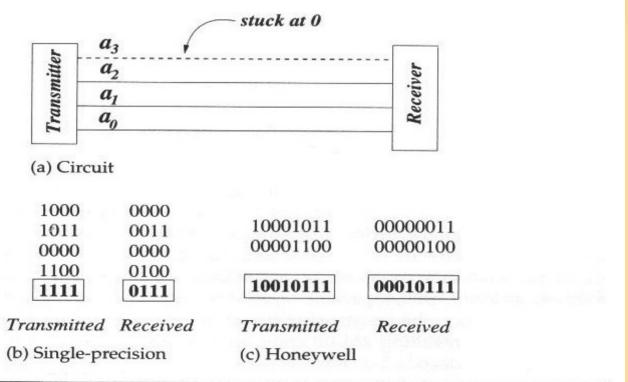
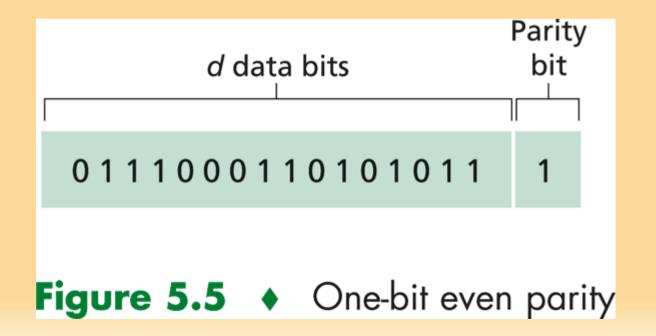
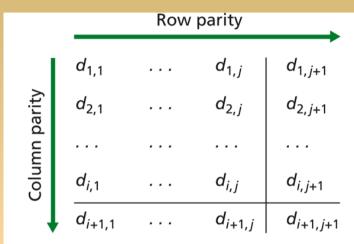
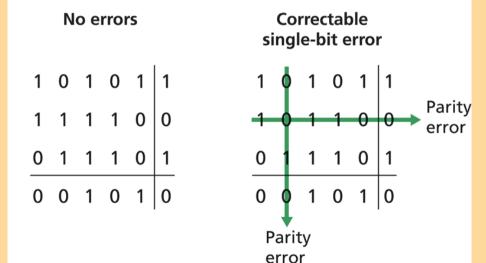



FIGURE 3.7 Honeywell versus single-precision checksum (boxed quantities indicate transmitted/received checksum).


Verificação de Paridade


- Paridade com bit único: detecta erro de um único bit.
- Esquema de paridade par: d bits de dados + 1 de paridade devem conter número par de bits 1.

Verificação de Paridade

- Paridade Bidimensional:
 - permite identificar e corrigir um bit errado!
 - também detecta
 qualquer combinação
 de dois erros.
 - conhecida como FEC
 (Forward Error
 Correction).

RAID

- RAID (Redundant Array of Independent Disks)
 - Armazena grandes quantidades de dados;
- RAID combina diversos discos rígidos em uma estrutura lógica:
 - Aumentar a confiabilidade, capacidade e o desempenho dos discos;
 - Recuperação de dados
 - Redundância dos dados;
 - Armazenamento simultâneo em vários discos permite que os dados fiquem protegidos contra falha (não simultânea) dos discos;
 - Performance de acesso, já que a leitura da informação é simultânea nos vários dispositivos;

RAID por Hardware

- Pode ser implementado por:
 - Hardware (controladora):
 - Instalação de uma placa RAID no servidor
 - O subsistema RAID é implementado totalmente em hardware;
 - Funciona como se fosse um co-processador RAID
 - Libera o processador para se dedicar exclusivamente a outras tarefas;
 - A segurança dos dados aumenta no caso de problemas devido à checagem da informação na placa RAID antes da gravação;

RAID por Software

- Pode ser implementado por:
 - Software (sistema operacional)
 - Menor desempenho no acesso ao disco;
 - Oferece um menor custo e flexibilidade;
 - Sobrecarrega o processador com leitura/escrita nos discos;
- Para o SO existe um único disco;

Níveis de RAID

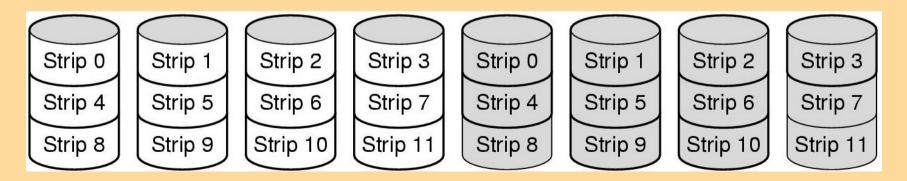
 A forma pela qual os dados são escritos e acessados define os níveis de RAID (até 9 níveis):

Strip 0

Strip 1

Strip 2

Strip 3


RAID 0:

- Melhora o desempenho
- Se o software manda ler um bloco de 4 tiras consecutivas, iniciando em um limite de tira, o controlador do RAID quebrará esse comando em 4 um para cada disco
- Paralelismo em I/O em discos separados;
- Utilizam mesma controladora (controladora RAID);
- Aplicações multimídia (alta taxa de transferência);
- Funciona bem para altas taxas de transferências de dados em virtude do paralelismo

Níveis de RAID

RAID 1:

- Conhecido como espelhamento (mirroring);
- Duplica todos os discos
 - 4 principais e 4 de reserva
 - Operações de escrita no disco primário são replicadas em um disco secundário;
 - Leitura pode ser feita de qualquer cópia → distribui a carga
- Pode ter controladoras diferentes;

Níveis de RAID

RAID 1:

- Excelente tolerância a falhas
- Se um drive falhar, a cópia é usada
- Recuperação consiste em instalar um novo disco e copiar do backup para ele
- Desvantagem: espaço físico em dobro (alto custo);
- Transações on-line (tolerância a falhas);

RAID 10:

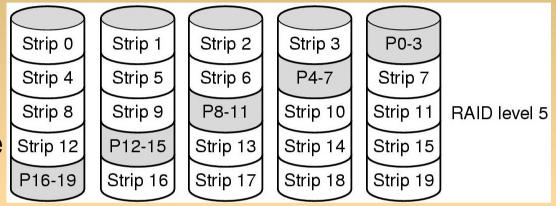
Combinação dos RAID 1 e RAID 0;


RAID 2, 3 e 4

- Trabalham com bytes, bits ou stripes
 - Se um disco 'quebra' apenas alguns bytes são perdidos
- Dados são armazenados em discos diferentes
 - Com bit de paridade (permite reconstruir dados perdidos)
 - Paridade é mantida em um disco apenas;
- Diferença básica: como a paridade é calculada (na transferência):
 - RAID 2 Hamming ECC (error-correcting codes)— nível de bit;
 - RAID 3 XOR ECC nível de byte ou bit (um disco de paridade);
 - Um bit de paridade para cada palavra
 - RAID 4 XOR ECC nível de stripe (um bit de paridade para cada stripe)

35

Niveis de RAID


- RAID 2, 3 e 4

RAID 4 e 5

RAID 5:

- Stripes;
- Paridade XOR ECC distribuída - nível de bloco;

- Paridade está distribuída nos discos;
- RAID 6:
 - Stripes;
 - RAID 5 com dois discos de paridade;

Concluindo...

- Concluímos a apresentação de outras técnicas de TF
 - Checksum
 - Bit de paridade
 - RAID e os diversos tipos
- Conteúdo retirado de diversos materiais
 - Tanembaum (SO)
 - Kurose (Redes de Computadores)