SMA 0333 Cálculo III - Lista 1

Prof. Dr. Nivaldo G. Grulha Jr

Estagiário PAE: Northon C. L. Penteado

- 1. Verifique se a sequência numérica $\{a_n\}$ é limitada em cada um dos casos abaixo:
 - (a) $a_n = \frac{1+(-1)^n}{2n}(n+1)$
 - (b) $a_n = \frac{n}{n+1}$
 - (c) $a_n = n + \frac{1}{n}$
- 2. Mostre, usando a definição e aplicando as propriedades, que:
 - (a) $\lim_{n \to \infty} \frac{2n-1}{n} = 2$
 - (b) $\lim_{n \to \infty} \frac{1}{n^3} = 0$
 - (c) $\lim_{n \to \infty} \frac{1}{n^2} = 0$
- 3. Verdadeiro ou Falso. Quando falso dê um contra-exemplo e se verdadeiro prove.
 - (a) Toda sequência monótona é convergente;
 - (b) Toda sequência convergente é limitada;
 - (c) Toda sequência limitada é monótona;
 - (d) Toda sequência monótona e limitada converge;
 - (e) A sequência $a_n = 1 + (-1)^n$ é não monótona e limitada:
 - (f) A sequência $a_n = 1 + \frac{1}{n}$ é monótona e convergente;
 - (g) Toda sequência convergente é necessariamente monótona;
 - (h) A soma de duas sequências divergentes pode ser convergente;
 - (i) Toda sequência decrescente e limitada converge para zero.
- 4. Mostre que a sequência $\{a_n\}$, onde $a_n = \sin(n\frac{\pi}{2}) + \cos(n\pi)$ é limitada e não convergente:
- 5. Dê exemplos de sequências $\{a_n\}$ infinitésimas e sequências $\{b_n\}$ tais que a sequência $\{a_nb_n\}$ não seja infinitésima.

Que condições a sequência $\{b_n\}$ deve satisfazer para que a sequência $\{a_nb_n\}$ seja convergente?

- 6. Em cada um dos itens abaixo diga se a sequência $\{a_n\}$ é monótona e se é limitada:
 - (a) $a_n = \frac{2}{n}$;
 - (b) $a_n = \frac{(-1)^n}{n}$;
 - (c) $a_n = \frac{n}{2^n}$;
 - (d) $a_n = \frac{n+1}{n}$;
 - (e) $a_n = \ln(\frac{n+1}{n})$
- 7. Verifique se a sequência $\{a_n\}$ converge em cada um dos casos abaixo. Nos casos afirmativos encontre seu limite.
 - (a) $a_n = \frac{(-1)^n}{n}$;
 - (b) $a_n = \sqrt{n}$;
 - (c) $a_n = \frac{n + (-1)^n}{n}$;
 - (d) $a_n = \cos(n\pi)$;
 - (e) $a_n = \sin(n\pi)$;
 - (f) $a_n = \frac{(n)^2}{n+1}$;
 - (g) $a_n = \frac{(n+1)^2}{n^2}$;
 - (h) $a_n = \frac{\ln(n)}{n}$
- 8. É possível construir duas sequências, $\{a_n\}$ convergente em \mathbb{R} e $\{b_n\}$ divergente em \mathbb{R} tal que a sequência $\{a_n + b_n\}$ seja convergente em \mathbb{R} ?
- 9. Mostre que se a sequência $\{a_n\}$ é convergente para L, então a sequência $\{|a_n|\}$ é convergente para |L|.

Vale a recíproca? Se a resposta for afirmativa prove, caso contrário de um contra-exemplo.

- 10. Considere a sequência $\{a_n\}$ onde $a_1 = \sqrt{3}$ e $a_{n+1} = \sqrt{3+2a_n}$, n = 2, 3, ...Mostre que $\{a_n\}$ é convergente e seu limite é 3.
- 11. (Método de Newton) As sequência a seguir é definida pela fórmula recursiva dada pelo método de Newton:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

(Figura 1: Ilustração das três primeiras iterações do método de Newton)

Em cada item a seguir, responda se a sequência converge. Em caso afirmativo, qual é o valor do limite? Em cada caso, comece identificando a função fenvolvida:

(a)
$$x_1 = 1$$
, $x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n}$.
(b) $x_1 = 1$, $x_{n+1} = x_n - \frac{\tan x_n - 1}{\sec^2 x_n}$.

(b)
$$x_1 = 1$$
, $x_{n+1} = x_n - \frac{\tan x_n - 1}{\sec^2 x_n}$.

(c)
$$x_1 = 1$$
, $x_{n+1} = x_n - 1$.