Lista 2

Da lista 2 os itens 1 e 2 não são subespaços o resto todos são subespaços vetoriais. Segue abaixo a resolução de alguns dos itens.

1.)
$$V = \mathbb{R}^2 \in W = \{(x, y) \in \mathbb{R}^2; x \ge y \ge 0\}.$$

Demonstração:

- Seja $(0,0) \in \mathbb{R}^2$ então como $0 \ge 0$, segue que $(0,0) \in W$.
- Sejam $u=(x_1,y_1), w=(x_2,y_2)\in W$ então como $x_1,y_1,x_2,y_2\geq 0$, tem-se que $x_1+x_2\geq 0$ e $y_1+y_2\geq 0$. Portanto $(x_1,y_1)+(x_2,y_2)=(x_1+x_2,y_1+y_2)\in W$.
- Sejam $w=(x,y)\in W$ e $\alpha\in\mathbb{R}$. Então se tomarmos $\alpha<0$ temos $\alpha x<0$. Portanto $\alpha(x,y)=(\alpha x,\alpha y)\notin W$.

Portanto pelo W não é subespaço de \mathbb{R}^2 .

5.)
$$V = M_{n \times n}(\mathbb{R}), W = \{A \in V; A^t = A\}.$$

Demonstração:

- Seja a matriz nula $0 \in V$. Então $0^t = 0$. Portanto $0 \in W$.
- Sejam duas matrizes $A, B \in W$, isto é, $A^t = A$ e $B^t = B$. Então $(A+B)^t = A^t + B^t = A + B$. Logo $A+B \in W$.
- Sejam $A \in W$ e $\alpha \in \mathbb{R}$. Assim $(\alpha A)^t = \alpha(A^t) = \alpha A$ (esta última igualdade vale do fato de $A \in W$).

Assim W é subespaço de V.

8.)
$$V = F(\mathbb{R}, \mathbb{R}) \in W = \{ f \in V; f(x_0) = 0 \}$$
 para algum x_0 fixo.

Demonstração:

- Seja a função nula $f_0 \in V$, isto é, $f_0(x) = 0, \forall x \in \mathbb{R}$. Então $f(x_0) = 0$. Portanto $f_0 \in W$.
- Sejam duas funções $f, g \in W$, isto é, $f(x_0) = 0$ e $g(x_0) = 0$. Então $(f+g)(x_0) = f(x_0) + g(x_0) = 0 + 0 = 0$. Logo $f+g \in W$.
- Sejam $f \in W$ e $\alpha \in \mathbb{R}$. Assim $(\alpha f)(x_0) = \alpha(f(x_0)) = \alpha 0 = 0$ (esta última igualdade vale do fato de $f \in W$).

Assim W é subespaço de V.