Elementos de Logica Digital Il

Aula 2 — Introduction to VHDL

Prof. Vanderlei Bonato - vbonato@icmc.usp.br

10/08/2010

Sumario

e History

 VHDL Structure

« Seguencial and Parallel Execution
e Signal and Variable

 Data Types

e Operations

e State Machine Example

e EXxercises

10/08/2010

Cconcepts

« VHDL is the VHSIC (Very High Speed
Integrated Circuit) Hardware Description
Language

« VHDL is an international standard
specification language for describing digital
hardware used by industry worldwide

« VHDL enables hardware modeling from the
gate to system level

« VHDL provides a mechanism for digital
design and reusable design documentation

10/08/2010

History of VHDL

« Launched in 1980
 Aggressive effort to advance state of the art

 Object was to achieve significant gains in
VLSI technology

 Need for common descriptive language

* In July 1983, a team of Intermetrics, IBM and
Texas Instruments were awarded a contract
to develop VHDL

10/08/2010

History of VHDL

* In August 1985, the final version of the
language under government contract was
released: VHDL Version 7.2

e |In December 1987, VHDL became IEEE
Standard 1076-1987 and in 1988 an ANSI
approved standard

* In September 1993, VHDL was
restandardized to clarify and enhance the
language (IEEE Standard 1076-1993)

e Since then there has been many other VHDL
standard revision

10/08/2010

How about Quartus |1 9.1

« The Quartus Il software supports a subset of
the constructs defined by the IEEE Std 1076-
1987 and IEEE Std 1076-1993

— It supports only those constructs that are relevant
to logic synthesis

 The Quartus Il software also supports
packages defined in IEEE Std 1076.3-1997

« The Quartus Il software contains support for
VHDL 2008, IEEE Std 1076-2008

10/08/2010 6

Why Use VHDL?

 Provides technology independence
 Describes a wide variety of digital hardware

« Eases communication through standard
language

 Allows for better design management

 Provides a flexible design language

10/08/2010

Package

Architecture Architecture Architecture
(structural)

Concurrent Process

Concurrent Statements :
Statements

Sequential Statements

Sample VHDL Design Process

 Problem: design a single bit half adder with
carry and enable
e Specifications
— Passes results only on enable high
— Passes zero on enable low
— Result gets x plus y
— Carry gets any carry of x plus 'y

10/08/2010

Entity Declaration

 An entity declaration describes the interface
of the component

« PORT clause indicates input and output
ports

 An entity can be thought of as a symbol for a
component

 Generics may be added for readability,
maintenance and configuration

10/08/2010 10

Entity Declaration

ENTITY half adder IS
PORT (x, y, enable: IN bit;

carry, result: OUT bit);

END half adder;

X—> ___ecarry

y — Halt/Adder

10/08/2010

11

Architecture Declaration

e Architecture declarations describe the
operation of the component

« Many architectures may exist for one entity,
but only one may be active at a time

e An architecture is similar to a schematic of
the component

10/08/2010 12

ARCHITECTURE behaviorl OF

halﬁ_adder IS BEGIN

PROCESS (enable, x, V)

BEGIN
IF (enable = 'l') THEN

result <= x XOR y;

carry <= X AND vy;

ELSE

carry <= '0'

result <= '0';

END PROCESS;

END behaviorl:;

Packages and Libraries

« User defined constructs declared inside
architectures and entities are not visible to
other entities
— Subprograms, user defined data types, and

constants can not be shared

 Packages and libraries provide the ability to
reuse constructs in multiple entities and
architectures

10/08/2010 14

Sequential and Concurrent Statements

« VHDL provides two different types of
execution: sequential and concurrent

« Different types of execution are useful for
modeling of real hardware
— Supports various levels of abstraction

e Seguential statements view hardware from a
"programmer"” approach

 Concurrent statements are order-
Independent and asynchronous

10/08/2010 15

Seqguential Statements

e Sequential statements run in top to bottom
order

e Sequential execution most often found In
behavioral descriptions

e Statements inside PROCESS execute
sequentially

10/08/2010

16

Concurrent Statements

e All concurrent statements occur
simultaneously

e How are concurrent statements processed?

e Simulator time does not advance until all
concurrent statements are processed

e Some concurrent statements

— Block, process, assert, signhal assignment,
procedure call, component instantiation

10/08/2010 17

VHDL Processes

« Assignments executed sequentially

e Seguential statements
— {Signal, variable} assignments

— Flow control
 |f <condition> then <statements> else <statements> end |if;

 for <range> loop <statements> end loop;
while <condition> loop <statements> end loop;

e case <condition> is when <value> => <statements>;
when <value> => <statements>;
when others => <statements>;

end case;
— Wait on <signal> until <expression> for <time>;

— Assert <condition> report <string> severity <level>;

10/08/2010

18

VHDL Processes

A VHDL process statement is used for all
behavioral descriptions

[prncess_label :] PROCESS

[(sensitivity list)]

process declarations

process statements

END PROCESS [process label];

10/08/2010

19

Process Example - Carry Bit

Carry: PROCESS{A, B, Cin)

BEGIN

Cout

ELSIF (A

Cout

ELSIF (B

Cout

ELSE

Cout

END IF;

and B = '1")

Ill;

and Cin =

Ill;

and Cin =

Ill;

END PROCESS Carry;

Ill:l

Ill:l

10/08/2010

20

A Design Example - 2-bit Counter

ENTITY count2 IS

PORT (clock : IN BIT;
gql, gqO: OUT BIT);
END count2;

ARCHITECTURE behavior OF count2 IS

BEGIN
count _up: PROCESS (clock)
VARITABLE count_value: NATURAL := O;

BEGIN
IF clock="1" THEN
count _value := (count_value+1l) MOD 4;
g0 <= bit"val(count_value MOD 2);
gl <= bit"val(count value/2);
END IF;
END PROCESS count_up;
END behavior;

10/08/2010 21

Signals vs Variables

Variables

Used for local storage of data

Generally not available to multiple components and
processes

All variable assignments take place immediately

Variables are more convenient than signals for the storage
of data

Variables may be made global

e Signals
— Used for communication between components
— Signals can be seen as real, physical signals
— Some delay must be incurred in a sighal assignment

10/08/2010

22

Assignments

ARCHITECTURE testl

ARCHITECTURE testZ2 OF test mux IS BEGIN

test mux IS
. PROCESS (result)
SIGNAL a : BIT -
. VARTABLE a :- BIT
SIGNATL b : BIT -
_ VARIABLE b : BIT
BEGIN
BEGIN

. .more
a
b

. .more
. More
END PROCESS:;

END testZ;
END testl;

10/08/2010

Signal x Variable Behaviour

ENTITY aulavhd! IS
PORT (clock, data_in : IN BIT;
r v,r_s,r_s par: OUT BIT);
END aulavhdl;

ARCHITECTURE behavior OF aulavhd! IS
signala_s, a_s_par: BIT :='0’;
BEGIN
PROCESS (clock)
variable a_v: BIT :='0;
BEGIN
IF clock="1' THEN
a_v:=data_in;
rv<=a.y,

a_s <=data_in;
rs<=a_s;
END IF;
END PROCESS;
a_s_par <=data_in;
r s _par<=a_s_par;
END behavior;

10/08/2010

24

Signal x Variable Behaviour

e Percebam a diferenca de comportamento do
“signal” dentro e fora do processo!

e Quanto a “variable” ndo ha surpresa, pois é
utilizada somente dentro do processo

B0] dock LT L LT L L
ﬂ data_in | |

ﬂ rwv | L
ﬂ rs L
ﬂ r_&_par | |

10/08/2010 25

Data Types

Data types

Synthesizable values

BIT, BIT_VECTOR
STD_LOGIC, STD_LOGIC_VECTOR

STD_ULOGIC, STD_ULOGIC_VECTOR

BOOLEAN

NATURAL

INTEGER

SIGNED

UNSIGNED

User-defined integer type
User-defined enumerated type
SUBTYPE

ARRAY

RECORD

‘1’
07, 1, 2 (resolved)
07, l , '/’ (unresolved)
Txue, Fdlhﬂ
From 0 to +2, 147, 483, 647
From —2,147,483,647 to +2,147,483,647
From —2,147,483.,647 to +2,147,483,647
From 0 to +2,147,483.647
Subset of INTEGER
Collection enumerated by user
Subset of any type (pre- or user-defined)
Single-type collection of any type above

><><:E

Multiple-type collection of any types above

10/08/2010

26

Dealing with Data Types

TYPE byte IS5 ARRAY (7 DOWNTO 0) OF STD LOGIC; -- 1D

—-— array
TYPE meml IS ARRAY (0 TO 3, 7 DOWNTO 0) OF STD LOGIC; -= 2D

-- array
TYPE mem2 IS ARRAY (0 TO 3) OF byte; -— 1Dx1D

-- array
TYPE mem3 IS ARRAY (0 TO 3) OF STD_LDGIC_?ECTGR[D TO [{); -- 1Dx1D

-- array
SIGNAL a: STD LOGIC; -- scalar signal
SIGHNAL b: BIT; -- scalar signal
SIGNAL x: byte; -= 1D signal
SIGNAL y: STD LOGIC VECTOR (/ DOWNTO 0);: -- 1D signal
SIGNAL v: BIT VECTOR (3 DOWNTO 0); -- 1D signal
SIGNAL z: STD LOGIC VECTOR (x'HIGH DOWNTO 0); -- 1D signal
SIGNAL wl: meml:; -- 2D signal
SIGNAL w2: mem2; —--— 1Dx1D signal
SIGHNAL w3: mems; -- 1Dx1D signal

10/08/2010 27

Scalar Assignments

x(2) <= a;
v(0) <= x
Z(7) <= x
b <= v(3);
wl(0,0) <= x(3);
1(2,5) <F v(7);
2(0)(0) <= x(2);

(2)(3) <= y(7);
(

2,5) <= w2(3)(7);

5 ame
5 ame
5 ame
5 ame

5 dme

salmne

same

same

sdame

types
types
types
tyvpes
types

types
types
types
types

(STD _LOGIC), correct indexing
(STD LOGIC), correct indexing
(STD LOGIC), correct indexing
(BIT), correct indexing

(

STD LOGIC), correct i1ndexing

STD LOGIC), correct indexing

(

(STD LOGIC), correct indexing
(STD LOGIC), correct indexing
(

STD LOGIC), correct indexing

10/08/2010

28

Vector Assignments

x <= "11111110";

y <= ("1','1','1','1"','1','1','0"','2");

z <= "11111" & "0Q00";

X <= (OTHERS => '1l');

y <= (7 =>'0', 1 =>'0', OTHERS => '1');

Z <= ¥i

v(2 DOWNTO 0) <= z(6 DOWNTO 4);

w2 (0) (7 DOWNTO 0) <= "11110000";

w3i(2) <= vy;

z <= wi(l);

z(5 DOWNTO 0) <= w3(l)(2 TO 7);

w3(l) <= "00000000";

w3(1l) <= (OTHERS => '0');

w2 <= ((OTHERS=>'0"'), (OTHERS=>'0"), (OTHERS=>'0"), (OTHERS=>'0"));

w3 <= ("11111100", ('0','0','0','0','2"',"'2','3",'2",),
(OTHERS=>'0"'), (OTHERS=>'0"));

wl <= ((OTHERS=>'Z'), "11110000" ,"11110000", (OTHERS=>'0'));

10/08/2010 29

llegal Assignments

——————= TIllegal scalar assignments: —————————mm————ee——-

b <= a; -- type mismatch (BIT x STD LOGIC)
wl(0)(2) <= x(2); —-— 1ndex of wl must be 2D
w2(2,0) <= a; —= 1ndex of w2 must be 1Dx1D

—————— Illegal array assignments: - - - - ——————————————————

X <= VY3 -— type mismatch

v(5 TO 7) <= z(6 DOWNTO 0); -- wrong direction of vy
wl <= (QOTHERS => '1'"}); -- wl 1s a 2D array
wl(0, 7 DOWNTO 0) <="11111111"; -- wl 1s a 2D array

w2 <= (QTHERS => 'Z'):; -— w2 18 a 1Dx1D array
w2 (0, 7 DOWNTO 0) <= "11110000"; —— 1index should be 1Dx1D

10/08/2010 30

DOWNTO and TO

SIGNAL x: BIT;

-— X 1s declared as a one-digit signal of type BIT.

SIGNAL y: BIT VECTOR (3 DOWNTO 0);
-— vy 18 a 4-bit wvector, with the leftmost bit being the MSB.

SIGNAL w: BIT VECTOR (0 TO 7);
-— w 1s an 8-bit vector, with the rightmost bit being the MSB.

}::-:: Ill:

-— ¥ 18 a single-bit signal (as specified above), whose value 1is

--— "1'. Notice that single guotes (' ') are used for a single bit.
y <= "0111";

-- vy 1s a 4-bit signal (as specified above), whose value 1s "0111"
-— (MSB='0'). Notice that double guotes (" ") are used for

-- vectors.

w <= "01110001";
-- w 1s an 8-bit signal, whose wvalue 1s "01110001" (MSB='1"').

10/08/2010 31

Bit Levels

« BIT (and BIT_VECTOR): 2-level logic (‘07 “I')

« STD_LOGIC (and STD_LOGIC_VECTOR): 8-valued logic system introduced in
the IEEE 1164 standard.

‘X’ Forcing Unknown (synth a1z=1b1 unknown)

‘0" Forcing Low (synthesizable logic *17)

‘1" Forcing High (synthesizable logic “0)

‘Z’ High impedance (synthe 1z=1blc tri-state buffer)

"W Weak unknown
‘LY Weak low
‘H* Weak high

"

— Don’t care

Most of the std_logic are intended for simulation only!

10/08/2010 32

ULOGIC

« STD_ULOGIC (STD_ULOGIC_VECTOR): 9-level logic system introduced in
the IEEE 1164 standard (U, *X°, 07, I, *Z°, *"W’, ‘'L’, ‘"H’,).

« STD_LOGIC system described above 1s a subtype of STD _ULOGIC. The latter
includes an extra logic value, *U’, which stands for unresolved. Thus, contrary to
STD_LOGIC, conflicting logic levels are not automatically resolved here, so output
wires should never be connected together directly. However, if two output wires are
never supposed to be connected together, this logic system can be used to detect
design errors.

10/08/2010 33

SIGNED and UNSIGNED

* Their syntax similarto STD_LOGIC_VECTOR

 SIGNED and UNSIGNED are intended mainly
for arithmetic operations

* Logic operations are not allowed

SIGHNAL x: SIGHNED (7 DOWNTO 0});
SIGHNAL vy: UNSIGNED (0 TO 3);

10/08/2010 34

Data Conversion

« VHDL does not allow direct operations
between data of different types

« Conversions are necessary

e Several data conversion functions can be

found in the std_logic_arith package of IEEE
library

10/08/2010 35

std _logic_arith Conversion Functions

« conv_integer(p) : Converts a parameter p of type INTEGER, UNSIGNED,
SIGNED, or STD_ULOGIC to an INTEGER value. Notice that STD_LOGIC_
VECTOR is not included.

* conv_unsigned(p, b): Converts a parameter p of type INTEGER, UNSIGNED,
SIGNED, or STD_ULOGIC to an UNSIGNED value with size b bits.

« conv_signed(p, b): Converts a parameter p of type INTEGER, UNSIGNED,
SIGNED, or STD_ULOGIC to a SIGNED value with size b bits.

« conv_std_logic_vector(p, b): Converts a parameter p of type INTEGER, UN-

SIGNED, SIGNED. or STD LOGIC to a STD LOGIC VECTOR wvalue with size
b bits.

10/08/2010 36

Operators

Operator type Operators Data types
Assignment <=, 1=, => Any
Logical NOT, AND, NAND, BIT, BIT_VECTOR,
OR., NOR, XOR, XNOR STD_LOGIC, STD_LOGIC_VECTOR,
STD ULOGIC, STD ULOGIC VECTOR
Arithmetic +, =, %, [, *F INTEGER, SIGNED, UNSIGNED
(mod, rem, abs)*
Comparison =, [=, <, >, <=, >= All above
Shift sll, srl, sla, sra, rol, ror BIT VECTOR
Concatenation & (,,,) Same as for logical operators, plus SIGNED and
UNSIGNED

10/08/2010 37

The concatentation operator &

VARIABLE shifted, shiftin : BIT_. VECTOR {0 TO 3):

shifted :=shiftin{l TO 3} & "0, -

O 1 2

N

SHIFTIN ‘ ;

SHIFTED

The exponentiation operator **

5*5 — BAG. OK
05*2 — 053, OK

.= 4%*0.5 — 47°0.5, bad

= 0.5 (2} — 0552}, OK

State Machine — Alarm Example

10/08/2010

39

ENTITY alarme IS5
FCOET (clk,reset : IH EIT:
sensor, botao: IN EBIT:
girene: OUT BIT) ;
EHND alarme;
GRECHITECTURE behawvior OF alarme IS
TYPE estados IS5 (desligado, ativado,
SIGHAL estado: estados:;

BEGIHN
FROCESS (clk)
BEGIN
if (reset = '1') then
estado <= desligado;
girene <= '0°"';

elzif (clk'ewvent) and (clk =
case estado is
WHEH des=sligado =>
2irene <= 'Q0';
if (botao = "1")

dis=sparado) ;

'1'}y then

then

ezstado <= atiwvado;

end if:
WHEN atiwvado =»
if [(sen=mor = "1')

then

estado <= disparado;

end if;

WHEH disparado =>
girene <= '1"';
if (botao = "1")

then

estado <= desligado;

end if;
end case;
end if;
END» FROCESS;
END behavior:;

Alarm State Machine Waveform

« Compare the VHDL source code and identify
what is the difference from the alarm state
machine seen in the first class

[ps BD.!} ns 1 El}il} ns 24DiD ns ?:-El}i[!' ns 4I}I}il} ns 4E~I}il} ns E-El}il} ns E-'-'H}i[
Nam |n ps
1
-0 clk I O i N e O At R S O At R A F 1 D I N At D N
(1 reset |
2 botao |]
3 SEnsor |
Iy 4 sirene | |
10/08/2010 41

Exercises 1

 Deixar o alarme com 0 mesmo
comportamento da maquina de estados visto
na aula anterior

e Adicionar um temporizador no alarme para
gue 0 mesmo togue somente se 0 sensor
ficar acionado por mais de 5 segundos e
desligue o alarme (ir para o estado inicial) se
0 sensor ficar desacionado por mais de 20
segundos

10/08/2010 42

Exercises 2

 Implemente um elevador para 4 andares com
as seguintes entradas e saidas:

— Entrada:
« Um botao de chamada externo
* 4 botdes internos para indicar o andar
 Sensor de fechamento da porta
e Sensor de presenca na porta
« Um sensor de presenca de elevador no andar
— Saida
 Motor elevador (liga/desliga)
* Direcao_elevador (sobe/desce)
 Motor porta (liga/desliga)
* Direcdo_porta (abre/fecha)

10/08/2010 43

Tips

e The ENTITY name and the file name must be
the same

 Physical and time data types are not
synthesizable for FPGAs
— ohm, kohm
— fs, ps, ns, um, ms, min, hr

10/08/2010

44

And more ...

 Function

— Produce a single return value

— Requires a RETURN statement
 Procedure

— Produce many output values

— Do not require a RETURN statement
e Testbench

— Generate stimulus for simulation
— Compare output responses with expected values

10/08/2010

45

References

 Pedroni, Volnei A. Circuit Design with VHDL,
MIT Press, 2004

« DARPA/Tri-Services RASSP Program
— http://www.vhdl.org/rassp/

10/08/2010

46

