
10/08/2010 1

Elementos de Lógica Digital II

Prof. Vanderlei Bonato - vbonato@icmc.usp.br

Aula 2 – Introduction to VHDL

10/08/2010 2

Sumário
• History
• VHDL Structure
• Sequencial and Parallel Execution
• Signal and Variable
• Data Types
• Operations
• State Machine Example
• Exercises

10/08/2010 3

Concepts
• VHDL is the VHSIC (Very High Speed

Integrated Circuit) Hardware Description
Language

• VHDL is an international standard
specification language for describing digital
hardware used by industry worldwide

• VHDL enables hardware modeling from the
gate to system level

• VHDL provides a mechanism for digital
design and reusable design documentation

10/08/2010 4

History of VHDL
• Launched in 1980
• Aggressive effort to advance state of the art
• Object was to achieve significant gains in

VLSI technology
• Need for common descriptive language
• In July 1983, a team of Intermetrics, IBM and

Texas Instruments were awarded a contract
to develop VHDL

10/08/2010 5

History of VHDL
• In August 1985, the final version of the

language under government contract was
released: VHDL Version 7.2

• In December 1987, VHDL became IEEE
Standard 1076-1987 and in 1988 an ANSI
approved standard

• In September 1993, VHDL was
restandardized to clarify and enhance the
language (IEEE Standard 1076-1993)

• Since then there has been many other VHDL
standard revision

10/08/2010 6

How about Quartus II 9.1
• The Quartus II software supports a subset of

the constructs defined by the IEEE Std 1076-
1987 and IEEE Std 1076-1993
– It supports only those constructs that are relevant

to logic synthesis
• The Quartus II software also supports

packages defined in IEEE Std 1076.3-1997
• The Quartus II software contains support for

VHDL 2008, IEEE Std 1076-2008

10/08/2010 7

Why Use VHDL?
• Provides technology independence
• Describes a wide variety of digital hardware
• Eases communication through standard

language
• Allows for better design management
• Provides a flexible design language

10/08/2010 8

10/08/2010 9

Sample VHDL Design Process
• Problem: design a single bit half adder with

carry and enable
• Specifications

– Passes results only on enable high
– Passes zero on enable low
– Result gets x plus y
– Carry gets any carry of x plus y

10/08/2010 10

Entity Declaration

• An entity declaration describes the interface
of the component

• PORT clause indicates input and output
ports

• An entity can be thought of as a symbol for a
component

• Generics may be added for readability,
maintenance and configuration

10/08/2010 11

Entity Declaration

10/08/2010 12

Architecture Declaration
• Architecture declarations describe the

operation of the component

• Many architectures may exist for one entity,
but only one may be active at a time

• An architecture is similar to a schematic of
the component

10/08/2010 13

10/08/2010 14

Packages and Libraries
• User defined constructs declared inside

architectures and entities are not visible to
other entities
– Subprograms, user defined data types, and

constants can not be shared
• Packages and libraries provide the ability to

reuse constructs in multiple entities and
architectures

10/08/2010 15

Sequential and Concurrent Statements
• VHDL provides two different types of

execution: sequential and concurrent
• Different types of execution are useful for

modeling of real hardware
– Supports various levels of abstraction

• Sequential statements view hardware from a
"programmer" approach

• Concurrent statements are order-
independent and asynchronous

10/08/2010 16

Sequential Statements
• Sequential statements run in top to bottom

order
• Sequential execution most often found in

behavioral descriptions
• Statements inside PROCESS execute

sequentially

10/08/2010 17

Concurrent Statements
• All concurrent statements occur

simultaneously
• How are concurrent statements processed?
• Simulator time does not advance until all

concurrent statements are processed
• Some concurrent statements

– Block, process, assert, signal assignment,
procedure call, component instantiation

10/08/2010 18

VHDL Processes
• Assignments executed sequentially
• Sequential statements

– {Signal, variable} assignments
– Flow control

• if <condition> then <statements> else <statements> end if;
• for <range> loop <statements> end loop;

while <condition> loop <statements> end loop;
• case <condition> is when <value> => <statements>;

when <value> => <statements>;
when others => <statements>;
end case;

– Wait on <signal> until <expression> for <time>;
– Assert <condition> report <string> severity <level>;

10/08/2010 19

VHDL Processes
• A VHDL process statement is used for all

behavioral descriptions

10/08/2010 20

Process Example - Carry Bit

10/08/2010 21

A Design Example - 2-bit Counter
ENTITY count2 IS

PORT (clock : IN BIT;
q1, q0: OUT BIT);

END count2;

ARCHITECTURE behavior OF count2 IS

BEGIN
count_up: PROCESS (clock)

VARIABLE count_value: NATURAL := 0;

BEGIN
IF clock='1' THEN

count_value := (count_value+1) MOD 4;
q0 <= bit'val(count_value MOD 2);
q1 <= bit'val(count_value/2);

END IF;
END PROCESS count_up;

END behavior;

10/08/2010 22

Signals vs Variables
• Variables

– Used for local storage of data
– Generally not available to multiple components and

processes
– All variable assignments take place immediately
– Variables are more convenient than signals for the storage

of data
– Variables may be made global

• Signals
– Used for communication between components
– Signals can be seen as real, physical signals
– Some delay must be incurred in a signal assignment

10/08/2010 23

Assignments

10/08/2010 24

Signal x Variable Behaviour
ENTITY aulavhdl IS

PORT (clock, data_in : IN BIT;
r_v, r_s, r_s_par: OUT BIT);

END aulavhdl;

ARCHITECTURE behavior OF aulavhdl IS
signal a_s, a_s_par: BIT := '0';

BEGIN
PROCESS (clock)

variable a_v: BIT := '0';
BEGIN

IF clock='1' THEN
a_v := data_in;
r_v <= a_v;

a_s <= data_in;
r_s <= a_s;

END IF;
END PROCESS;
a_s_par <= data_in;
r_s_par <= a_s_par;

END behavior;

10/08/2010 25

Signal x Variable Behaviour
• Percebam a diferença de comportamento do

“signal” dentro e fora do processo!
• Quanto a “variable” não há surpresa, pois é

utilizada somente dentro do processo

10/08/2010 26

Data Types

10/08/2010 27

Dealing with Data Types

10/08/2010 28

Scalar Assignments

10/08/2010 29

Vector Assignments

10/08/2010 30

Ilegal Assignments

10/08/2010 31

DOWNTO and TO

10/08/2010 32

Bit Levels

Most of the std_logic are intended for simulation only!

10/08/2010 33

ULOGIC

10/08/2010 34

SIGNED and UNSIGNED
• Their syntax similar to STD_LOGIC_VECTOR
• SIGNED and UNSIGNED are intended mainly

for arithmetic operations
• Logic operations are not allowed

10/08/2010 35

Data Conversion

• VHDL does not allow direct operations
between data of different types

• Conversions are necessary
• Several data conversion functions can be

found in the std_logic_arith package of IEEE
library

10/08/2010 36

std_logic_arith Conversion Functions

10/08/2010 37

Operators

10/08/2010 38

Some Explanations

10/08/2010 39

State Machine – Alarm Example

10/08/2010 41

Alarm State Machine Waveform
• Compare the VHDL source code and identify

what is the difference from the alarm state
machine seen in the first class

10/08/2010 42

Exercises 1

• Deixar o alarme com o mesmo
comportamento da máquina de estados visto
na aula anterior

• Adicionar um temporizador no alarme para
que o mesmo toque somente se o sensor
ficar acionado por mais de 5 segundos e
desligue o alarme (ir para o estado inicial) se
o sensor ficar desacionado por mais de 20
segundos

10/08/2010 43

Exercises 2
• Implemente um elevador para 4 andares com

as seguintes entradas e saídas:
– Entrada:

• Um botão de chamada externo
• 4 botões internos para indicar o andar
• Sensor de fechamento da porta
• Sensor de presença na porta
• Um sensor de presença de elevador no andar

– Saída
• Motor elevador (liga/desliga)
• Direção_elevador (sobe/desce)
• Motor porta (liga/desliga)
• Direção_porta (abre/fecha)

10/08/2010 44

Tips
• The ENTITY name and the file name must be

the same
• Physical and time data types are not

synthesizable for FPGAs
– ohm, kohm
– fs, ps, ns, um, ms, min, hr

10/08/2010 45

And more ...
• Function

– Produce a single return value
– Requires a RETURN statement

• Procedure
– Produce many output values
– Do not require a RETURN statement

• Testbench
– Generate stimulus for simulation
– Compare output responses with expected values

10/08/2010 46

References
• Pedroni, Volnei A. Circuit Design with VHDL,

MIT Press, 2004

• DARPA/Tri-Services RASSP Program
– http://www.vhdl.org/rassp/

