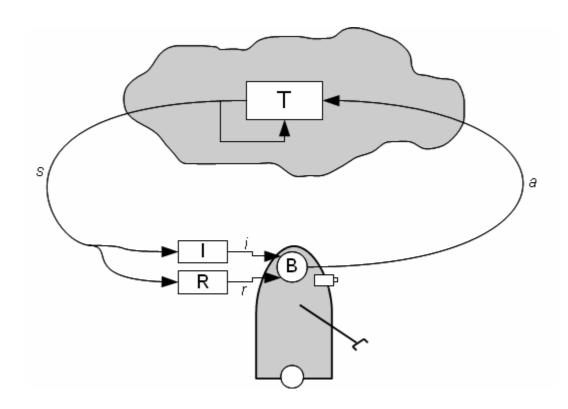
Aprendizado por Reforço

SCC5865-Robótica

Roseli A F Romero

Introdução

O modelo padrão de aprendizado por reforço



Aprendizado por Reforço

Formalmente, o modelo consiste de:

- Um conjunto discreto de estados do ambiente, S;
- Um conjunto discreto de ações do agente, A;
- Um conjunto de sinais de reforço, normalmente {0,1}, ou um número real.

Aprendizado por Reforço

AMBIENTE NON – DETERMINISTICO

Exemplo:

Ambiente: Você está no estado 65. Você possui 4 possíveis ações.

Agente: Eu realizo a ação 2.

Ambiente: Você recebeu um reforço de 7 unidades. Você agora está no estado

15. Você possui 2 possíveis ações.

Agente: Eu realizo a ação 1.

Ambiente: Você recebeu um reforço de -4 unidades. Você agora está no estado

65. Você possui 4 possíveis ações.

Agente: Eu realizo a ação 2.

Ambiente: Você recebeu um reforço de 5 unidades. Você agora está no estado 44. Você possui 5 possíveis ações.

.

Modelos de Comportamento Ótimo

1- Finite-horizon model

$$E\left(\sum_{t=0}^{h} r_{t}\right)$$

Otimizar sua recompensa esperada para os prox. h passos

em que, r_t : recompensa escalar recebida no passo t

2 – Infinite-horizont discounted model

$$E\bigg(\sum_{t=0}^{\infty} \gamma^t r_t\bigg)$$

em que, γ : fator de desconto (0 <= γ < 1) - taxa de interesse, probabilidade de vida ou limitador da soma infinita.

Modelos de Comportamento Ótimo

3) Average-reward model

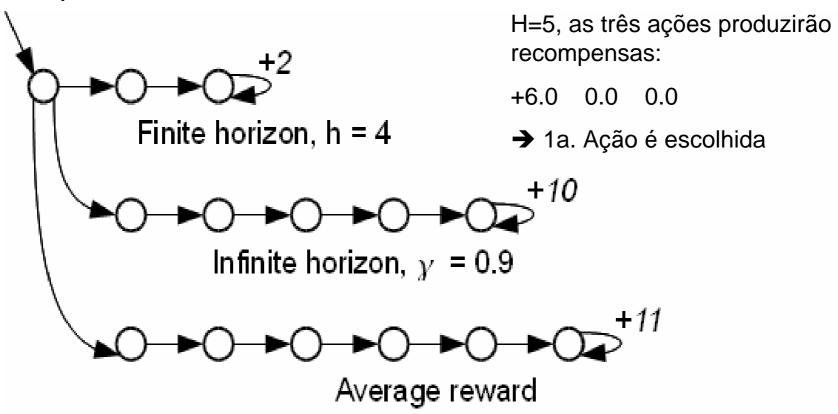
Otimizar a recompensa média de longo termo

$$\lim_{h\to\infty} E\left(\frac{1}{h}\sum_{t=0}^h r_t\right)$$

Tal política é conhecida como política de ganho ótima. Pode ser vista como caso limite do 2o. Modelo quando o fator de desconto se aproxima de 1 (Bertsekas, 1995).

Modelos de Comportamento Ótimo

Comparando modelos



- Convergência para o ótimo;
- Velocidade de convergência para o ótimo;
- Regret;
- Aprendizado por reforço e controle adaptativo.

Exemplo 1

Considere o problema de programação linear:

$$\max f = 8x_1 + 10x_2$$
 sujeito a $4x_1 + 2x_2 \le 12$
$$x_1, x_2 \ge 0$$

Resolvendo o problema acima (método simplex), obtém-se:

$$x_1 = 0; x_2 = 6; f = 60$$

Uma proposta alternativa é determinar a variável gradativamente, através de decomposição do problema em uma série de estágios. A decomposição do problema (1) é ilustrada na Figura 1 abaixo.

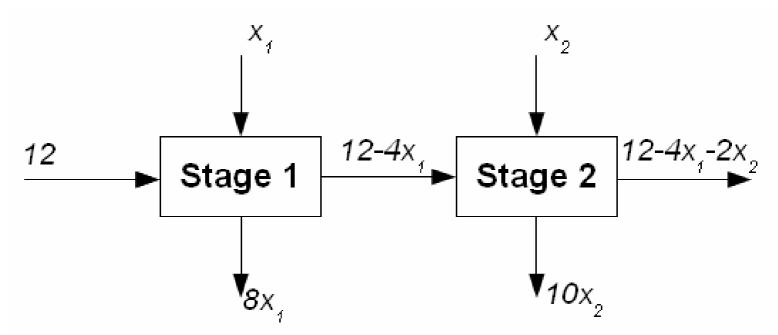


Figura 1 – DRA Fama de Fluxo

$$\max x_1 f_1 = 10x_2$$

sujeito a
$$2x_2 \le 12 - 4x_1^*$$
 $x_2 \ge 0$

Solução:

$$x_2 = 6 - 2x_1^*; f_1 = 60 - 20x_1^*$$

$$\max x_1 f_2 = 8x_1 + f_1 = 60 - 12x_1$$

sujeito a
$$4x_1 \le 12$$

$$x_1 \ge 0$$
 Solução:
$$x_1 = 0; f_2 = 60$$

O estágio de entrada do estágio no. n,y_{n-1} , é transformado em um estado de saída y_n através da mudança provocada pela variável de decisão x_n . As mudanças sucessivas do estado do sistema pode ser formalmente descrita pelas equações de tranformação da forma

$$y_n = t_n(y_{n-1}, x_n)$$
 $n = 1, 2, ..., N$

No exemplo elas tem a forma

$$y_1 = y_0 - 4x_1$$

 $y_2 = \text{RMFR} 2x_2$

Juntas com as restrições de não negatividade $x_1, x_2, y_1, y_2 \ge 0$, elas são equivalentes as restrições do problema original (1), y_0 sendo igual a 12 e y_2 representando a variável de folga (*slack variable*).

O retorno de cada estágio será dependente, em geral, do estado de entrada e das variáveis de decisão:

$$r_n = r_n(y_{n-1}, x_n)$$
 $n = 1, 2, ..., N$

No exemplo em questão as funções de retorno são da forma simples

$$r_1 = 8x_1$$
 RAFR $r_2 = 10x_2$

Introduzindo estes símbolos na Figura 1, o diagrama de fluxo do problema de dois estágios é ilustrado segundo a Figura 2.

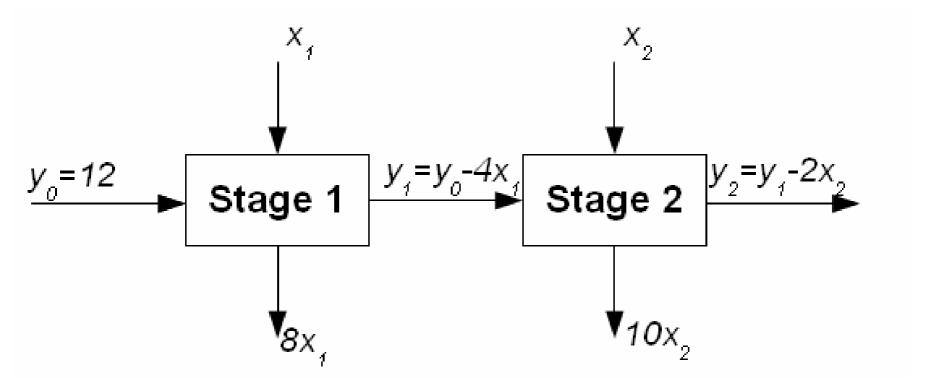


Figura 2 – DRA Fama de Fluxo

$$\max x_2 f_1 = r_2(x_2) = 10x_2$$
 sujeito a $2x_2 \le y_1$
$$x_2 \ge 0$$
 Solução:
$$x_2(y_1) = 0.5y_1$$

$$F_1(y_1) = 5y_1$$

em que, F_1 denota o valor máximo da função de decisão do estágio, $F_1 = \max_{x_2} x_{x_2} \ f_1$

$$\max_{x_2} f_2 = r_1(x_1) + F_1(y_1) = 8x_1 + 5y_1 =$$

$$= 8x_1 + 5(y_0 - 4x_1) = 5y_0 - 12x_1$$
sujeito a $4x_1 \le y_0$

$$x_1 \ge 0$$

Solução:

$$x_1(y_0) = 0$$

 $F_2(y_0) = 5y_0$

em que, $F_2 = \max_{x_1} f_2$

RAFR

$$F_1(y_1) = \max_{x_2} 10x_2 \quad (0 \le x_2 \le 0.5y_1)$$

$$F_2(y_0) = \max_{x_1} (8x_1 + F_1(y_1))$$

$$= \max_{x_1} [8x_1 + F_1(y_0 - 4x_1)] \quad (0 \le x_1 \le 0.25y_0)$$

em que,
$$f = F_2(y_0)$$

$$\max f = \max_{x_1, x_2} [r_1(y_0, x_1) + r_2(y_1, x_2)]$$

$$F_1(y_1) = \max_{x_2} [r_2(y_1, x_2)]$$

$$F_2(y_0) = \max_{x_1} [r_1(y_0, x_1) + F_1(t_1(y_0, x_1))]$$

O diagrama de fluxo para um sistema de N-estágios é apresentado na Figura 3 (próximo slide).

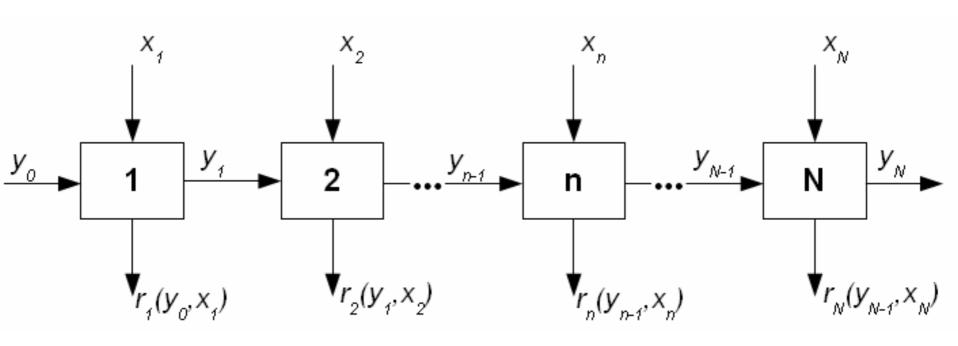


Figura 3 – Diagrama de Fluxo

As funções de decisão dos estágios N, N-1, ..., 2, 1 são respectivamente

$$\begin{split} f_1 &= r_N(y_{N-1}, x_N) \\ f_2 &= r_{N-1}(y_{N-2}, x_{N-1}) + F_1(y_{N-1}); y_{N-1} = t_{N-1}(y_{N-2}, x_{N-1}) \\ \dots \\ f_i &= r_{N-(i-1)}(y_{N-i}, x_{N-(i-1)}) + F_{i-1}(y_{N-(i-1)}); y_{N-(i-1)} = t_{N-(i-1)}(y_{N-i}, x_{N-(i-1)}) \\ \dots \\ f_N &= r_1(y_0, x_1) + F_{N-1}(y_1) \end{split}$$

em que, $y_1 = t_1(y_0, x_1)$ e F_j é o máximo de f_j , j = 1, 2, ..., N.

Maximizando a função de decisão de cada estágio em relação a sua variável de decisão e tratando o estado de entrada como um parâmetro, obtêm-se as soluções de estágio paramétricas

$$x_n = x_n(y_{n-1})$$
 $n = N, N-1, ..., 2, 1$

Caso de Otimização Discreta

Suponha um exemplo no qual r_1 e r_2 são definidas apenas para os intervalos $x_1 \le 3$ e $x_2 \le 6$:

X,	0	1	2	3
$r_{i}(=8x_{i})$	0	8	16	24

	0	1	2	3	4	5	6
r ₂ (=10x	(₂) 0	10	20	30	40	50	60

Caso de Otimização Discreta

	$y_{2}(=y_{1}-2x_{2})$									
$y_1 lx_2$	0	1	2	3	4	5	6			
0	0									
4	4	2	0							
8	8	6	4	2	0					
12	12	10	8	2 6	4	2	0			

Caso de Otimização Discreta

Stage2	$f_1 = r_2(x_2) = 10x_2$						$F_{i}(y_{i})$	$X_2(y_1)$	$y_2(y_1)$	
$y_0 lx_1$	0	1	2	3	4	5	6			
0	0							0	0	0
4	0	10	20					20	2	0
8	0	10	20	30	40			40	4	0
12	0	10	20	30	40	50	60	60	6	0

Stage1	$f_2 = r_1(x_1) + F_1(y_2) = 8x_1 + F_1(y_2)$								
y _o lx,	0	1	2	3	$F_2(y_0)$	$\times_{i}(Y_{0})$	У1(У ₀)		
12	0+60	8+40	16+20	24+0	60	0	12		

Referência

ROMERO, R. A. F.; GOMIDE, F A C. A Neural Network to Solve Discrete Dynamic Programming Problems.

Campinas-SP: Relatório Técnico no 16/92,

DCA/FEE/UNICAMP, 1992 (Relatório Técnico)

Técnicas Justificadas Formalmente

Programação dinâmica

$$V^*(n_1, w_1, ..., n_k, w_k) = \max_i E$$

Future payoff if agent takes action i , then acts optimally for remaining pulls

$$V^{*}(n_{1}, w_{1}, ..., n_{k}, w_{k}) = \max_{i} \begin{pmatrix} \rho_{i}V^{*}(n_{1}, w_{i}, ..., n_{i} + 1, w_{i} + 1, ..., n_{k}, w_{k}) + \\ (1 - \rho_{i})V^{*}(n_{1}, w_{i}, ..., n_{i} + 1, w_{i}, ..., n_{k}, w_{k}) \end{pmatrix}$$

Processos de Decisão de Markov (MDP)

Um MDP consiste de:

- Um conjunto de estados S;
- Um conjunto de ações A;
- Uma função de recompensa $R: SxA \to \Re$;

Processos de Decisão de Markov (MDP)

• Uma função de transferência de estado $T: SxA \to \Pi(S)$, em que um membro de $\Pi(S)$ é uma distribuição de probabilidade sobre o conjunto S. Dessa maneira, T(s,a,s') é a probabilidade de realizar a transição do estado s para o estado s' através da ação a.

Definindo uma política de um modelo

$$V^*(s) = \max_{\pi} E\left(\sum_{t=0}^{\infty} \gamma^t r_t\right)$$

$$V^*(s) = \max_{a} \left(R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V^*(s') \right), \forall s \in S$$

(1)

Definindo uma política de um modelo

$$\pi^*(s) = \arg\max_{a} \left(R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V^*(s') \right)$$

Algoritmo Value Iteration

Definindo uma política de um modelo

```
initialize V(s) arbitrarily
loop until policy good enough
  loop for s \in S
    loop for a \in A
         Q(s,a) := R(s,a) + \gamma \sum_{s' \in S} T(s,a,s')V(s')
   V(s) := \max_{a} Q(s, a)
  end loop
end loop
```

Complexidade: quadratica no no. de estados e linear no no. de ações

Definindo uma política de um modelo baseada na eq. 1

$$Q(s,a) := Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$

r é uma amostra com média R(S,a) e variancia limitada e s´ é amostrado da distr. T(s,a,s´)

Algoritmo de Policy Iteration

Definindo uma política de um modelo

choose an arbitrary policy π' loop

$$\pi := \pi'$$

compute the value function of policy π : solve the linear equations

$$V_{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V_{\pi}(s')$$

improve the policy at each state:

$$\pi'(s) := \arg\max_{a} \left(R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V_{\pi}(s') \right)$$

until
$$\pi = \pi$$

RAFR

Métodos Livres de Modelos

Q-Learning

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \max_{a'} Q^*(s',a')$$

$$Q(s,a) := Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$

Q-Learning [Watkins, 1989]

- No tempo *t, o agente*:
 - \square observa estado s_t e reforço R_t , seleciona ação a_t ;
- No tempo *t+1, o agente*:
 - \square observa estado s_{t+1} ;
 - □ atualiza o **valor de ação** Q_t(s_t ,a_t) de acordo com

- Convergência garantida
- Ações de treino podem ser escolhidas livremente

Convergência extremamente lenta

Q-Learning

Exploração X Exploitação

O algoritmo pode ser tendioso se a escolha for sempre para a melhor ação (exploração). Então deve-se colocar uma taxa de exploitação (ainda que pequena) para que uma ação seja escolhida de forma aleatória.

R-learning

[Schwartz, 1993]

- Semelhante ao Q-learning, mas:
 - Maximiza a recompensa média para cada passo.
 - \square Não utiliza descontos (γ).
- Atualiza o valor de ação R_t(s_t, a_t) de acordo com

$$\Delta R_t(s_t, a_t) = \alpha_t [r_t - \rho + \max_a R_t (s_{t+1}, a) - R_t(s_t, a_t)]$$

ρ só é atualizado quando a não for aleatório:

$$\rho_t = \rho_t + \beta \left[r_t + max_a R_t \left(s_{tAFR} \right) - max_a R_t \left(s_t , a \right) - \rho_t \right]$$

Referências

Kaelbling, L. P.; Littman, M. L.; Moore, A. W. (1996). Reinforcement Learning: A Survey. **Journal of Artificial Intelligence Research**, vol. 4, pg. 237 – 285.