1ª Lista de Exercícios - Análise de Regressão – 1º semestre de 2011 Profª Cibele Russo - www.icmc.usp.br/~cibele

Considere o modelo de regressão linear simples

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, i = 1, ..., n$$

com $E(\epsilon_i) = 0$ e $Var(\epsilon_i) = \sigma^2$, com ϵ_i não correlacionado com ϵ_i , i, j = 1, ..., n e $i \neq j$.

1. Mostre que

i.
$$S_{XX} = \sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} (X_i - \bar{X}) X_i = \sum_{i=1}^{n} X_i^2 - n \bar{X}^2$$

ii.
$$S_{YY} = \sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (Y_i - \bar{Y}) Y_i = \sum_{i=1}^{n} Y_i^2 - n \bar{Y}^2$$

iii.
$$S_{XY} = \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) = \sum_{i=1}^{n} (X_i - \bar{X})Y_i = \sum_{i=1}^{n} X_i Y_i - n \bar{X}\bar{Y}$$

(Dica: Ver Draper & Smith, pág 24-25)

- 2. Ajuste o modelo de regressão linear simples aos dados de tempo de reação (Dados acuidade, disponíveis na CoteiaWiki) com Y o tempo de reação e X a idade, apresentando todos os cálculos (utilize apenas a calculadora). Em seguida, utilize um pacote estatístico para obter o mesmo ajuste. Se optar pelo R, veja o arquivo Exercicio_MQ.r). Qual a interpretação das estimativas dos parâmetros obtidas?
- 3. No modelo de regressão linear simples, mostre que $Cov(\hat{\beta}_0,\hat{\beta}_1) = -\frac{\sigma^2 \bar{X}}{S_{XX}}$.
- 4. Considerando o modelo de regressão linear simples, mostre que $E(\hat{Y}_i) = E(Y_i)$ e que $Var(\hat{Y}_i) = \sigma^2 \left[\frac{1}{n} + \frac{(X_i \bar{X})^2}{S_{XX}}\right]$.
- 5. Mostre que se $\epsilon_i \sim N(0, \sigma^2)$ para i=1,...,n e ϵ_i e ϵ_j são não correlacionados, os estimadores de máxima verossimilhança de β_0 e β_1 no modelo de regressão linear simples coincidem com os estimadores de mínimos quadrados e são dados por $\hat{\beta}_0 = \bar{Y} \hat{\beta}_1 \bar{X}$ e $\hat{\beta}_1 = \frac{S_{XY}}{S_{XX}}$.
- 6. Obtenha intervalos com 95% de confiança para β_0 e β_1 considerando os dados de tempo de reação com Y o tempo de reação e X a idade. Avalie (separadamente) se $\beta_1 = 0$ ou se $\beta_0 = 0$, apresentando todos os cálculos (utilize apenas a calculadora). Programe em R os intervalos de confiança e os testes de hipóteses acima.