

Mobile Communications

Chapter 7: Wireless LANs

- Characteristics
- IEEE 802.11 (PHY, MAC, Roaming, .11a, b, g, h, i, n ... z)
- Bluetooth / IEEE 802.15.x
- IEEE 802.16/.20/.21/.22
- RFID
- Comparison

Prof. Jó Ueyama

Mobile Communication Technology according to IEEE (examples)

802.16e (addition to .16 for mobile devices)

Why is 802.11n faster?

- MIMO technology
 - Multiple Output Multiple Input
 - Signal processing smart antenna
 - Transmits multiple data streams through multiple antennas
 - The result?
 - Up to five times the performance
 - Achieves twice the range to that of 802.11g
- Simultaneous dual band: 2.4/5 GHz frequencies
- Range 175 feet
- Typically up to 450 Mbps

Why is 802.11n faster?

- MIMO is also employed in WiMax
- 802.11g typically achieves up to 54Mbps
- MIMO can simultaneously transmit three streams of data and receive two
- Three non overlapping channels at 2.4 GHz (1, 6 and 11)
- Payload optimization: more data being transmitted in each packet
- 802.11n is ideal for video streaming
- If your 802.11n working with 802.11g laptop will result in slower 802.11g speeds

• Advantages

- very flexible within the reception area
- Ad-hoc networks without previous planning possible
- (almost) no wiring difficulties (e.g. historic buildings, firewalls)
- more robust against disasters like, e.g., earthquakes, fire or users pulling a plug...
- Disadvantages
 - typically very low bandwidth compared to wired networks (1-450 Mbit/s) due to shared medium
 - many patented proprietary solutions, especially for higher bit-rates, standards take their time (e.g. IEEE 802.11n)
 - products have to follow many national restrictions such as frequencies that are permitted within a country (e.g. police, aircraft control, etc.)

- global, seamless operation
- low power for battery use (e.g. WSNs and cell phones)
- no special permissions or licenses needed to use the LAN
- robust transmission technology
- simplified spontaneous cooperation at meetings
- easy to use for everyone, simple management
- protection of investment in wired networks (i.e. interoperable with wired LANs)
- security (no one should be able to read my data), privacy (no one should be able to collect user profiles), safety (low radiation)
- transparency concerning applications and higher layer protocols, but also location awareness if necessary

Comparison: infrared vs. radio transmission

- Infrared
 - uses IR diodes, multiple reflections (walls, furniture etc.)
- Advantages
 - simple, cheap, available in many mobile devices
 - no licenses needed
 - simple shielding possible
- Disadvantages
 - interference by sunlight, heat sources etc.
 - many things absorb IR light
 - low bandwidth
- Example
 - IrDA (Infrared Data Association) interface available everywhere

- Radio
 - typically using the license free ISM band at 2.4 GHz
- Advantages
 - experience from wireless
 WAN and mobile phones can be used
 - coverage of larger areas possible (radio can penetrate walls, furniture etc.)
- Disadvantages
 - very limited license free frequency bands
 - shielding more difficult, interference with other electrical devices
- Example
 - Many different products

Comparison: infrastructure vs. ad-hoc networks

802.11 - Architecture of an infrastructure network

802.11 - Architecture of an ad-hoc network

- Direct communication within a limited range
 - Station (STA): terminal with access mechanisms to the wireless medium
 - Independent Basic Service Set (IBSS): group of stations using the same radio frequency

IEEE standard 802.11

802.11 - Layers and functions

- MAC
 - access mechanisms, fragmentation, encryption
- MAC Management
 - synchronization, roaming, MIB, power management

P	LLC		
C PHY	MAC	MAC Management	Mana
	PLCP	DUV Managament	uo
	PMD	Pririvianagement	at i

- PHY Management includes
 - PLCP Physical Layer Convergence
 Protocol
 - clear channel assessment signal (carrier sense)
 - Medium currently idle?
 - $PMD \ \ \ Physical \ \ Medium \ \ Dependent$
 - modulation, coding, transforms bits into signals

• Station Management

ВГ

Ś

 coordination of all management functions

802.11 - Physical layer (legacy)

- 3 versions: 2 radio (typ. 2.4 GHz), 1 IR
 - data rates 1 or 2 Mbit/s
- FHSS (Frequency Hopping Spread Spectrum) only up to 2Mbs
 - spreading, despreading
 - Frequency multiplexing
- DSSS (Direct Sequence Spread Spectrum) q 802.11b/g/n
 - Multiplexes by code (i.e. using a chipping code)
 - Implementation is more complex than FHHS
 - chipping sequence: +1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1 (Barker code)
 - DATA XOR chipping code
- Infrared
 - Wavelength around 850-950 nm, diffuse light, typ. 10 m range
 - uses near visible light
 - carrier detection, up to 4Mbits/s data rate

FHSS PHY packet format (legacy)

- Synchronization
 - synch with 010101... pattern
- SFD (Start Frame Delimiter)
 - 0000110010111101 start pattern
- PLW (PLCP_PDU Length Word)
 - length of payload incl. 32 bit CRC of payload, PLW < 4096
- PSF (PLCP Signaling Field)
 - data rate of the payload (0000 -> the lowest data rate 1Mbs)
- HEC (Header Error Check)
 - checksum with the standard ITU-T polynomial generator

DSSS PHY packet format (legacy)

- Synchronization
 - synch., gain setting, energy detection, frequency offset compensation
- SFD (Start Frame Delimiter)
 - 1111001110100000
- Signal
 - data rate of the payload (0A: 1 Mbit/s)
- Service
 - future use, 00: 802.11 compliant
- Length
 - length of the payload
- HEC (Header Error Check)
 - protected by checksum using ITU-T standard polynomial error check

802.11 - MAC layer I - DFWMAC

- MAC layer has to fulfill several tasks including:
 - control medium access
 - support for roaming
 - authentication
 - power conservation
- In summary, it has two key tasks:
 - traffic services
 - access control

802.11 - MAC layer I - DFWMAC

- Traffic services (two implementations)
 - Asynchronous Data Service (mandatory)
 - exchange of data packets based on "best-effort"
 - support of broadcast and multicast
 - Time-Bounded Service (optional)
 - implemented using PCF (Point Coordination Function)
- Access methods
 - DFWMAC-DCF CSMA/CA (mandatory)
 - collision avoidance via randomized "back-off" mechanism
 - minimum distance between consecutive packets
 - ACK packet for acknowledgements (not for broadcasts)
 - DFWMAC-DCF w/ RTS/CTS (optional)
 - Distributed Foundation Wireless MAC
 - avoids hidden terminal problem
 - DFWMAC- PCF (optional)
 - access point polls terminals according to a list

802.11 - MAC layer II

- Priorities
 - defined through different inter frame spaces
 - no guarantee, hard priorities
 - SIFS (Short Inter Frame Spacing)
 - highest priority, for ACK, CTS, polling response
 - DSSS SIFS 10 micro seconds
 - PIFS (PCF IFS)
 - medium priority, for time-bounded service using PCF
 - DIFS (DCF Inter frame spacing)
 - lowest priority, for asynchronous data service

802.11 - CSMA/CA access method I

- station ready to send starts sensing the medium (Carrier Sense based on CCA - Clear Channel Assessment)
- if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type)
- if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time)
- if another station occupies the medium during the backoff time of the station, the back-off <u>timer</u> stops (fairness)

802.11 - CSMA/CA access method II

- Sending unicast packets
 - station has to wait for DIFS before sending data
 - receivers acknowledge at once (after waiting for SIFS), if the packet was received correctly (CRC)
 - automatic retransmission of data packets in case of transmission errors

802.11 – Access scheme details (NAV-net allocat.)

- Sending unicast packets
 - station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium)
 - acknowledgement via CTS after SIFS by receiver (if ready to receive)
 - sender can now send data at once, acknowledgement via ACK
 - other stations store medium reservations distributed via RTS and

Fragmentation (advantages?)

DFWMAC-PCF I (almost never used)

- The two previous mechanisms cannot guarantee QoS. Why not?
- PCF on top of the standard DCF (random backoff)
- Using PCF q AP controls medium access and polls single nodes
- Super frame q comprises contention-free + contention period
- Contention period can be used for the two mechanisms

DFWMAC-PCF II

- As PIFS is smaller than DIFS no station can start sending earlier
- Node 3 has nothing to answer and AP will not receive a packet after SIFS

- Types
 - control, management (e.g. beacon) and data frames
- Sequence numbers
 - important against duplicated frames due to lost ACKs
- Addresses
 - receiver, transmitter (physical), BSS identifier, sender (logical)
- Miscellaneous

scenario	to DS	from DS	address 1	address 2	address 3	address 4
ad-hoc network	0	0	DA	SA	BSSID	-
infrastructure	0	1	DA	BSSID	SA	-
network, from AP						
infrastructure	1	0	BSSID	SA	DA	-
network, to AP						
infrastructure	1	1	RA	TA	DA	SA
network, within DS						

DS: Distribution System AP: Access Point DA: Destination Address SA: Source Address BSSID: Basic Service Set Identifier RA: Receiver Address TA: Transmitter Address Address1 – destination Address2 – source (ACK will be sent to) Address3 – filter (often it will carry BSSID addr) Address4 – Address of the source Access Point

Special Frames: ACK, RTS, CTS

Any question?

Read Chapter 7