Análise sintática

Função, interação com o compilador Análise descendente e ascendente Especificação e reconhecimento de cadeias de tokens válidas Implementação Tratamento de erros

Prof. Thiago A. S. Pardo

ASA: precedência de operadores

Exercício: reconheça a expressão (id)

Tabela sintática

	id	/	&	()	\$
id		>	>		>	>
/	<	۸	<	<	۸	>
&	<	۸	>	<	۸	>
(<	<	<	<	=	
)		^	>		^	>
\$	<	'	<	<		

Cadeia	Regra
(id)\$	
!	!

Exercício: reconheça a expressão (id)

Tabela sintática

	id	/	&	()	\$
id		۸	>		۸	>
/	<	۸	<	٧	۸	>
&	<	۸	>	٧	۸	>
(<	٧	<	٧	I	
)		>	>		>	>
\$	<	<	<	<		

Pilha	Cadeia	Regra	
\$<	(id)\$	empilha	
\$<(<	id)\$	empilha	
\$<(<id>></id>)\$	reduz	
\$<(=)\$	empilha	
\$<(=)>	\$	reduz	
\$E	\$	SUCESSO	

3

ASA: precedência de operadores

Algorimo do ASA de precedência de operadores

Seja S o símbolo inicial da gramática, a o símbolo terminal mais ao topo da pilha e b o primeiro símbolo da cadeia de entrada

repita

se (\$S é o topo da pilha e \$ é o primeiro símbolo da cadeia) então SUCESSO senão se (a
b ou a=b) então empilha b senão se (a>b) então

desempilha até haver < entre o terminal do topo e o último desempilhado senão ERRO

- 2 métodos para construção da tabela sintática
 - Intuitivo: baseado no conhecimento da precedência e associatividade dos operadores
 - Mecânico: obtem-se a tabela diretamente da gramática

5

ASA: precedência de operadores

- Método intuitivo
 - Para 2 operadores quaisquer x e y
 - Se x tem maior precedência do que y, então tem-se x (na pilha) > y (na cadeia) e y (na pilha) < x (na cadeia)
 - Exemplo: como * tem maior precedência que +, então *>+ e +<*</p>
 - Se x e y têm precedência igual (ou são iguais) e são associativos à esquerda, então tem-se x>y e y>x; se são associativos à direita, então tem-se x<y e y<x
 - Exemplo: como * e / têm a mesma precedência e são associativos à esquerda, tem-se *>/ e />*; como o operador de exponenciação ** é associativo à direita, tem-se **<**</p>

- 3. As relações entre os operadores e os demais símbolos terminais (operandos e delimitadores) são fixas
 - Para qualquer operador x, tem-se x>\$, \$<x, x<id, id>x, x<(, (<x, x>) e)>x
- 4. As relações entre os operandos também são fixas
 - (<(,)>), id>), \$<(, (=),)>\$, id>\$, \$<id, (<id

7

ASA: precedência de operadores

Exemplo: construir a tabela sintática para a gramática abaixo

$$::= + | * | ** | () | id$$

sabendo-se que: ** tem maior precedência e é associativo à direita; * tem precedência intermediária e é associativo à esquerda; + tem menor precedência e é associativo à esquerda

	+	*	**	()	id	\$
+							
*							
**							
(
)							
id							
\$							

Exemplo: construir a tabela sintática para a gramática abaixo

$$<\!\!E\!\!> ::= <\!\!E\!\!> + <\!\!E\!\!> \mid <\!\!E\!\!>^* <\!\!E\!\!> \mid <\!\!E\!\!>^{**} <\!\!E\!\!> \mid (<\!\!E\!\!>) \mid id$$

sabendo-se que: ** tem maior precedência e é associativo à direita; * tem precedência intermediária e é associativo à esquerda; + tem menor precedência e é associativo à esquerda

	+	*	**	()	id	\$
+	>	<	<	<	^	<	^
*	^	^	'	'	^	<	>
**	^	^	'	'	^	<	>
(<	<	<	<	=	<	
)	^	^	^		^		>
id	>	>	^		^		^
\$	<	<	<	<		<	OK

9

ASA: precedência de operadores

- Método mecânico: aplicável para gramáticas não ambíguas
 - Para os terminais a e b
 - 1. a=b se $\alpha a\beta b\gamma$ é lado direito de produção e β é λ ou um único símbolo não terminal
 - 2. a<b se αaXβ é lado direito de produção e X produz γbδ e γ é</p>
 λ ou um único símbolo não terminal
 - \$<b se S produz γbδ e γ é λ ou um único símbolo não terminal
 - 4. a>b se $\alpha Xb\beta$ é lado direito de produção e X produz $\gamma a\delta$ e δ é λ ou um único símbolo não terminal
 - 5. a>\$ se S produz γ a δ e δ é λ ou um único símbolo não terminal

- Em outras palavras
 - Um terminal a seguido imediatamente de um não terminal X tem precedência menor do que os primeiros símbolos terminais deriváveis a partir de X (precedidos de λ ou um não terminal)
 - Todos os últimos terminais que podem ser derivados a partir de um não terminal X (seguidos de λ ou um não terminal) têm precedência maior do que um terminal que segue imediatamente a X

11

ASA: precedência de operadores

Exemplo: construir a tabela sintática para a gramática abaixo

$$::= + | * | ** | () | id$$

Inicialmente, deve-se eliminar a ambiguidade da gramática (mantendo a precedência e a associatividade dos operadores)

Determinam-se, para cada não terminal, os primeiros e últimos terminais possíveis de ocorrerem em uma cadeia derivada a partir do não terminal

	Primeiros	Últimos
Е	+ * ** (id	+ * **) id
Т	* ** (id	* **) id
F	** (id	**) id
Р	id (id)

13

ASA: precedência de operadores

Para computar <, procurar pares aX nos lados direitos de produção; tem-se que a tem menor precedência do que qualquer primeiro terminal derivado a partir de X

Para computar >, procurar pares Xb nos lados direitos de produção; tem-se que qualquer último terminal derivado de X tem precedência maior do que b

```
Pares: E+ T* P** E)

Relações: \{+, *, **, ), id\} > + \{*, **, ), id\} > * \{ \}, id\} > ** \{ \}, id\} > ** \{ \}, id\} > *
```

15

ASA: precedência de operadores

Para computar =, procurar $a\beta b$ nos lados direitos das produções, onde β é λ ou um não terminal, e fazer a=b

Dada o lado direito (E), tem-se (=)

\$ tem precedência menor do que todos os primeiros terminais deriváveis a partir do símbolo inicial da gramática

Todos os últimos terminais derivados a partir do símbolo inicial da gramática têm precedência maior do que \$

$$\{+,^*,^{**},),id\} >$$
\$

Exercício

 Construir a tabela sintática para a gramática abaixo pelo método mecânico

$$S \rightarrow (S O S) | a | b$$

 $O \rightarrow + | *$

17

Exercício

 Utilizando a tabela construída anteriormente, reconheça a cadeia (a*b)