1.a Lista de Exercícios de SMA304 - Álgebra Linear

Exercício 1. Verifique se em cada um dos itens o conjunto V com as operações + e \cdot indicadas é um espaço vetorial sobre \mathbb{R} .

(a)
$$V \doteq \mathbb{R}^3$$
,
 $(x_1, y_1, z_1) + (x_2, y_2, z_2) \doteq (x_1 + x_2, y_1 + y_2, z_1 + z_2), \quad \alpha \cdot (x, y, z) \doteq (\alpha x, \alpha y, \alpha z),$
onde $(x_1, y_1, z_1), (x_2, y_2, z_2), (x, y, z) \in \mathbb{R}^3$.

(b)
$$V \doteq \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in M_2(\mathbb{R}) ; a, b \in \mathbb{R} \right\}$$
, operações usuais de $M_2(\mathbb{R})$.

- (c) $V \doteq \{(x,y) \in \mathbb{R}^2 : 3x 2y = 0\}$, operações usuais de \mathbb{R}^2 .
- (d) $V \doteq \{f : \mathbb{R} \to \mathbb{R} : f(-x) = f(x), \forall x \in \mathbb{R} \}$, operações usuais de funções.
- (1) $V = \mathscr{P}(\mathbb{R}) = \{\text{polinômios com coeficientes reais}\}, operações usuais de funções.}$
- (e) $V \doteq \mathbb{R}^2$,

$$(x_1, y_1) + (x_2, y_2) \doteq (2x_1 - 2y_1, y_1 - x_1), \quad \alpha \cdot (x, y) \doteq (3\alpha x, -\alpha x),$$

onde $(x_1, y_1), (x_2, y_2), (x, y) \in \mathbb{R}^2.$

(f) $V \doteq \mathbb{R}^2$.

$$(x_1, y_1) + (x_2, y_2) \doteq (x_1 + x_2, y_1 + y_2), \quad \alpha \cdot (x, y) \doteq (\alpha x, 0),$$

onde $(x_1, y_1), (x_2, y_2), (x, y) \in \mathbb{R}^2.$

- (g) $V \doteq \{(x, y, z, w) \in \mathbb{R}^4 : y = x, z = w^2\}$, operações usuais de \mathbb{R}^4 .
- (h) $V = \mathbb{R} \times \mathbb{R}^*$,

$$(x_1, y_1) + (x_2, y_2) \doteq (x_1 + x_2, y_1 y_2), \quad \alpha \cdot (x, y) \doteq (\alpha x, y^{\alpha}),$$

onde $(x_1, y_1), (x_2, y_2), (x, y) \in \mathbb{R} \times \mathbb{R}^*, \text{ com } \mathbb{R}^* \doteq \mathbb{R} \setminus \{0\}.$

Exercício 2. Complete a demonstração da Proposição (1.7) das notas de aula.

Exercício 3. Considere o conjunto $V \doteq \{(x_1, x_2); x_1, x_2 \in \mathbb{R}\}$. Dados $(x_1, x_2), (y_1, y_2) \in V$ e $\lambda \in \mathbb{R}$, defina as seguintes operações:

$$(x_1, x_2) + (y_1, y_2) \doteq (x_1 + y_1, 0)$$
 e $\lambda \cdot (x_1, x_2) \doteq (\lambda x_1, \lambda x_2)$.

 $(V,+,\cdot)$ é um espaço vetorial sobre \mathbb{R} ? Justifique sua resposta.

Exercício 4. Considere o conjunto $V \doteq \{(x_1, x_2); x_1, x_2 \in \mathbb{R}\}$. Mostre que $(V, +, \cdot)$ <u>não</u> é um espaço vetorial sobre \mathbb{R} em relação a cada uma das seguintes operações + e \cdot , justificando a respostas, dadas por:

- (a) $(x_1, x_2) + (y_1, y_2) \doteq (x_1 + y_1, x_2 + y_2)$ e $\lambda \cdot (x_1, x_2) \doteq (\lambda x_1, x_2)$.
- **(b)** $(x_1, x_2) + (y_1, y_2) \doteq (x_1, x_2)$ e $\lambda \cdot (x_1, x_2) \doteq (\lambda x_1, \lambda x_2)$.
- (c) $(x_1, x_2) + (y_1, y_2) \doteq (x_1 y_1, x_2 + y_2)$ e $\lambda \cdot (x_1, x_2) \doteq (\lambda^2 x_1, \lambda^2 x_2)$.

Exercício 5. Considere o conjunto $V = \{(x_1, x_2); x_1, x_2 \in \mathbb{R} \}$. Dados $(x_1, x_2), (y_1, y_2) \in V$ e $\lambda \in \mathbb{R}$, defina as seguintes operações:

$$(x_1, x_2) + (y_1, y_2) \doteq (x_1 + y_1, 0)$$
 e $\lambda \cdot (x_1, x_2) \doteq (\lambda x_1, \lambda x_2)$.

 $(V,+,\cdot)$ é um espaço vetorial sobre \mathbb{R} ? Justifique sua resposta.

Exercício 6. Discuta se \mathbb{R}^2 munido as operações usuais de adição de pares ordenados e multiplicação de número real por par ordenado é um subespaço vetorial de \mathbb{R}^3 munido das operações usuais de adição de ternas ordenados e multiplicação de número real por terna ordenada.

Exercício 7. Sejam U e V espaços vetoriais sobre \mathbb{R} . Considere o produto cartesinao $U \times V$. Dados $(u_1, v_1), (u_2, v_2) \in U \times V$ e $\lambda \in \mathbb{R}$, defina as seguintes operações em $U \times V$:

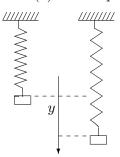
$$(u_1, v_1) + (u_2, v_2) \doteq (u_1 + u_2, v_1 + v_2) \in \lambda \cdot (u_1, v_1) \doteq (\lambda u_1, \lambda v_1).$$

Mostre que $(U \times V, +, \cdot)$ é um espaço vetorial sobre \mathbb{R} .

Exercício 8. Consideremos uma mola (que supomos sem massa) suspensa verticalmente tendo sua extremidade superior presa num suporte rígido. Fixamos um corpo de massa \underline{m} na outra extremidade da mola. Suponha que este corpo seja deslocado verticalmente a partir da sua posição de equilíbrio e, em seguida, liberado. O deslocamente \underline{y} deste corpo, a partir da posição de equilíbrio, é dado por uma função da forma:

$$y(t) = \lambda_1 \cos(\omega t) + \lambda_2 \sin(\omega t)$$
, para $t \in \mathbb{R}$. (\star)

onde $\omega \in \mathbb{R}$ é uma constante que depende da mola e da massa do corpo. Mostre que para um $\omega \in \mathbb{R}$ fixo, o conjunto de todas as funções descritas em (\star) é um espaço vetorial sobre \mathbb{R} .



Exercício 9. Dado o circuito abaixo, onde R é a resistência, I é a corrente, L é a indutância, E é a força eletromotriz e C é a capacitância, sabe-se que a queda de potencial através da capacitância C é Q/C, onde Q é a carga no capacitor. Aplicando a Lei de Kirchhoff (a queda total de potencial no circuito deve ser contrabalanceada pela força eletromotriz aplicada) e sabendo que $I = \frac{dQ}{dt}$, pode ser mostrado que a corrente num instante \underline{t} qualquer é dada pela equação diferencial:

- (a) O conjunto das funções que satisfazem a equação diferencial (★★) é um espaço vetorial sobre R? Justifique sua resposta.
- (b) O conjunto das funções que satisfazem a equação diferencial

$$L\frac{d^2Q}{dt^2} + R\frac{dQ}{dt} + \frac{1}{C}Q = 0$$
, para $t \in \mathbb{R}$,

é um espaço vetorial sobre \mathbb{R} ? Justifique sua resposta.