

4. PRINCIPAIS MODELOS DISCRETOS

2010

Principais modelos probabilísticos discretos

4.1. Modelo Bernoulli

Muitos experimentos admitem apenas dois resultados.

Exemplos:

- 3. Uma peça é classificada como defeituosa ou não defeituosa;
- 4. Em um certo dia chove ou não chove.
- 5. Um entrevistado concorda ou não com uma afirmação feita;
- 6. No lançamento de um dado ocorre ou não face 6;
- 7. O número de veículos em um certo trecho excede ou não excede a capacidade da via.

Situações com alternativas dicotômicas podem ser representadas genericamente por sucesso ou insucesso (fracasso ou falha).

Esses experimentos recebem o nome de ensaios de Bernoulli e originam uma v.a. com distribuição de Bernoulli.

Distribuição de Bernoulli

X é uma v.a. que assume apenas dois valores: 1 se ocorrer sucesso (S) e 0 se ocorrer fracasso (F). Sendo p a probabilidade de sucesso, 0 < p <1.

X(S) = 1 e X(F) = 0. A distribuição de probabilidade é dada por

$$x$$
 0 1 $f(x) = P(X = x) = \begin{cases} p^{x}(1-p)^{1-x}, & \text{se } x = 0, 1. \\ 0, & \text{c.c.} \end{cases}$

Notação: X ~ Bernoulli (p) indica que a v.a. X tem distribuição de Bernoulli. O parâmetro da distribuição é p.

Se X ~ Bernoulli(p), então

$$E(X) = p$$

$$e Var(X) = p (1 - p).$$

Repetições independentes de um ensaio de Bernoulli dão origem ao modelo binomial.

4.2. Modelo binomial

Exemplo. A probabilidade de uma peça se defeituosa é p. Um lote de três peças é inspecionado. Determine a distribuição de probabilidade da variável número de peças defeituosas no lote (X).

Denotemos S: sucesso, se a peça é defeituosa e F: fracasso, caso contrário.

O espaço amostral para este experimento é

 Ω = {FFF, FFS, FSF, SFF, FSS, SFS, SSF,SSS}.

Fazemos $X_i \sim \text{Bernoulli}(p)$, i = 1,2,3. Logo, $X = X_1 + X_2 + X_3$ representa o número de peças defeituosas no lote.

Ω	Probabilidade	X_1	X_2	X ₃	$X = X_1 + X_2 + X_3$
FFF	$(1-p)^3$	0	0	0	0
FFS	$(1-p)^2p$	0	0	1	1
FSF	$(1-p)^2p$	0	1	0	1
SFF	$(1-p)^2p$	1	0	0	1
FSS	$(1-p)p^2$	0	1	1	2
SFS	$(1-p)p^2$	1	0	1	2
SSF	$(1-p)p^2$	1	1	0	2
SSS	p^3	1	1	1	3

Calculamos

$$P(X = 0) = P(\{FFF\}) = (1 - p)^{3},$$

 $P(X = 1) = P(\{FFS, FSF, SFF\}) = 3p(1 - p)^{2},$
 $P(X = 2) = P(\{FSS, SFS, SSF\}) = 3p^{2}(1 - p)$ e
 $P(X = 3) = P(\{SSS\}) = p^{3}.$

A distribuição de probabilidade da v.a. X é dada por

X	0	1	2	3
f(x) = P(X = x)	$(1- p)^3$	$3p(1-p)^2$	$3p^2(1-p)$	p^3

f(x) pode ser escrita como

$$f(x) = \begin{cases} \binom{3}{x} p^x (1-p)^{3-x}, & \text{se } x = 0,1,2,3, \\ 0, & \text{c.c.} \end{cases}$$
em que $\binom{3}{x} = \frac{3!}{x!(3-x)!}$.

Distribuição binomial

Repetição de n ensaios de Bernoulli independentes, todos com a mesma probabilidade de sucesso p. A variável aleatória que conta o número de sucessos nos n ensaios de Bernoulli é denominada de variável aleatória binomial com parâmetros n e p.

$$f(x) = \begin{cases} \binom{n}{x} p^{x} (1-p)^{n-x}, & \text{se } x = 0,1,\dots,n, \\ 0, & \text{c.c.,} \end{cases}$$

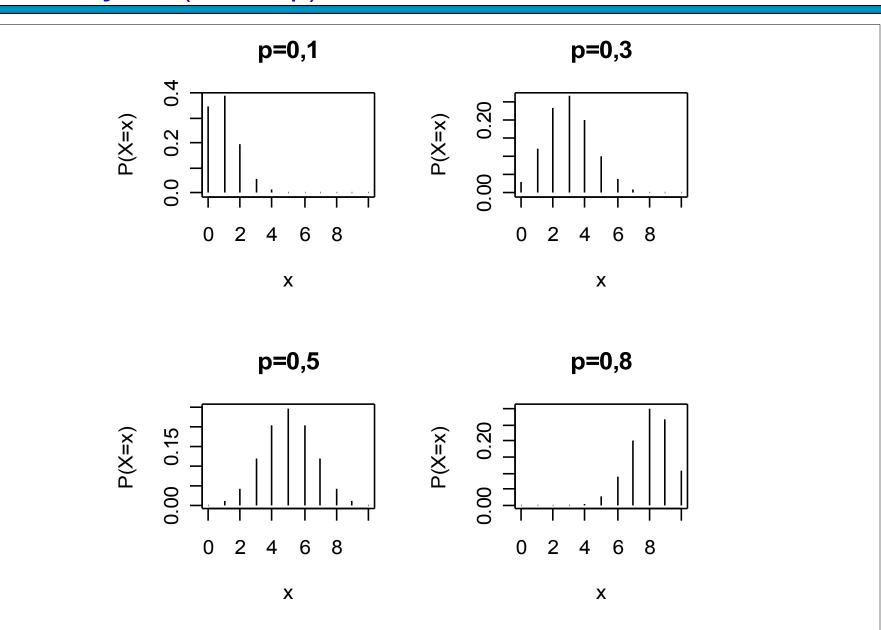
em que
$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$
 representa o coeficiente binomial.

Notação: $X \sim B(n,p)$ para indicar que a v.a. X tem distribuição Binomial com parâmetros n e p.

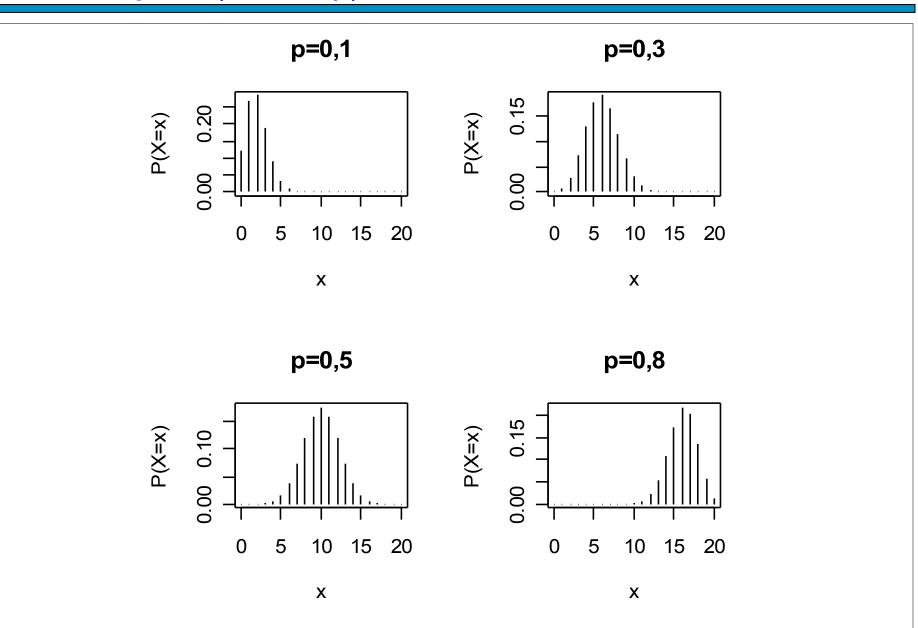
$$E(X) = np e$$

$$Var(X) = np(1 - p).$$

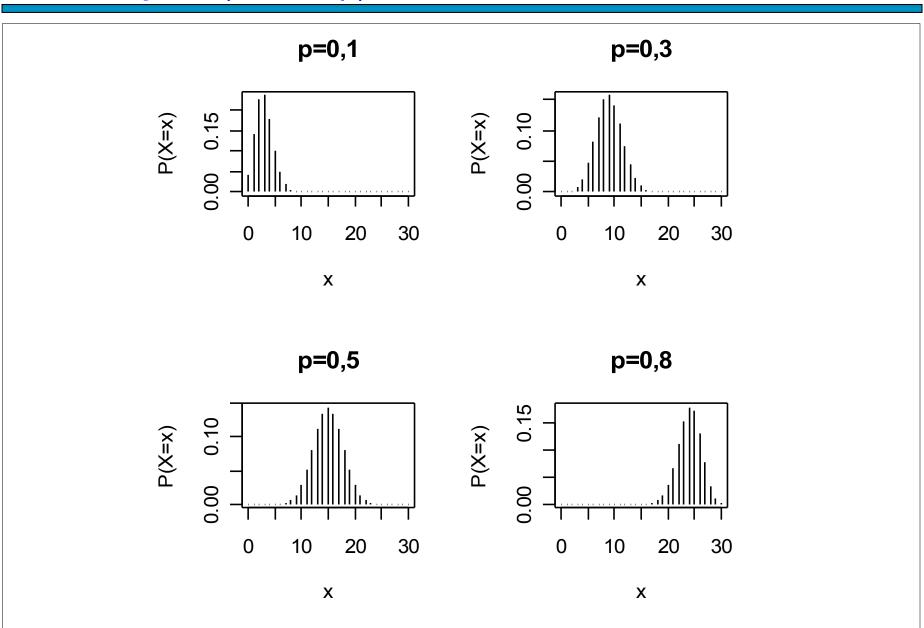
Distribuição B(n =10, p)



Distribuição B(n = 20, p)



Distribuição B(n = 30, p)



O professor da disciplina de Estatística elaborou uma prova de múltipla escolha, composta de 10 questões cada uma com 5 alternativas. Aprovação na disciplina requer pelo menos 6 questões corretas. Se um aluno responde a todas as questões baseado em palpite ("chute"), qual a probabilidade de ser aprovado?

Solução. X é a v.a. número de questões respondidas corretamente nas 10 questões. Eventos: S: "questão respondida corretamente" e F: "questão respondida incorretamente".

$$P(S) = 1 / 5 e P(F) = 4 / 5$$
. Logo, $X \sim B(10, p)$.

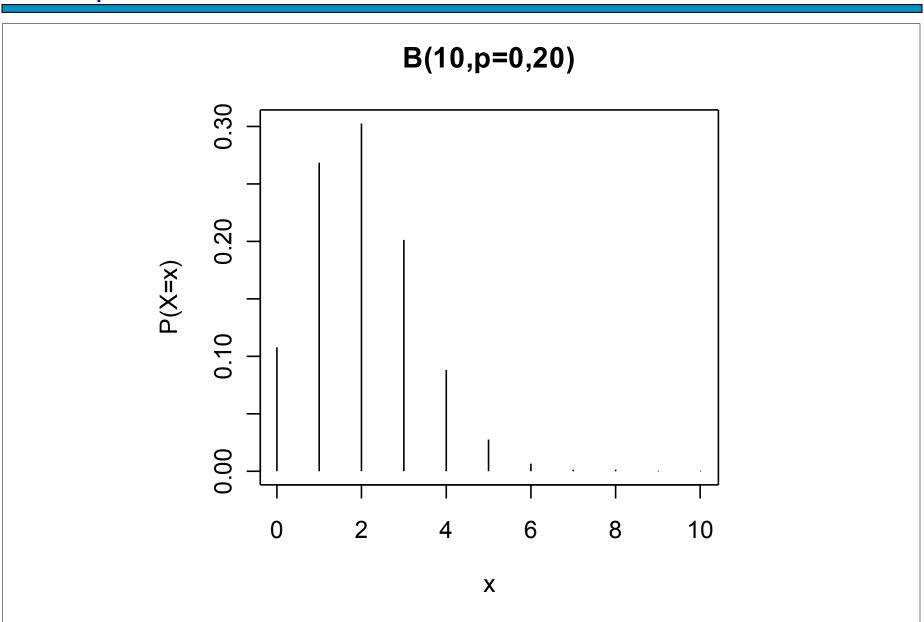
$$f(x) = \begin{cases} \left(\frac{10}{x}\right) \left(\frac{1}{5}\right)^x \left(\frac{4}{5}\right)^{10-x}, & \text{se } x = 0,1,\dots,10, \\ 0, & \text{c.c.} \end{cases}$$

A probabilidade de aprovação é

$$P(X \ge 6) = 1 - P(X < 6) = 1 - P(X \le 5) = 1 - F(5)$$

= 1 - 0,9936306 = 0,00637.

X	f(x)	F(x)
0	0,107374	0,10737
1	0,268435	0,37581
2	0,301990	0,67780
3	0,201327	0,87913
4	0,088080	0,96721
5	0,026424	0,99363
6	0,005505	0,99914
7	0,000786	0,99992
8	0,000074	1,00000
9	0,000004	1,00000
10	0,000000	1,00000



Um fabricante adquire certo tipo de componente de um fornecedor. Segundo este fornecedor, a proporção de componentes defeituosos é 2%.

- (a) O fabricante seleciona 15 componentes de um lote para inspeção. Qual a probabilidade de que seja encontrado pelo menos um componente defeituoso neste lote?
- (b) O fabricante adquire 10 lotes por mês e de cada lote são selecionados 15 componentes para inspeção, como no item (a). Qual a probabilidade de que sejam encontrados três lotes com pelo menos um componente defeituoso?

Solução. (a) Definimos o evento sucesso (S) como "o componente selecionado é defeituoso". Pelo enunciado, P(S) = p = 0.02. A v.a. X é definida como sendo o número de componentes defeituosos (sucessos) em n = 15 componentes. Supondo independência, $X \sim B(n = 15, p = 0.02)$.

Devemos calcular $P(X \ge 1)$, que é dada por

$$P(X \ge 1) = 1 - P(X < 1) = 1 - P(X = 0)$$

$$= 1 - {15 \choose 0} \times 0.02^{0} \times (1 - 0.02)^{15 - 0}$$

$$= 1 - 0.98^{15} = 0.261.$$
Em Excel:
$$= 1 - DISTRBINOM(0; 15; 0.02; FALSO)$$

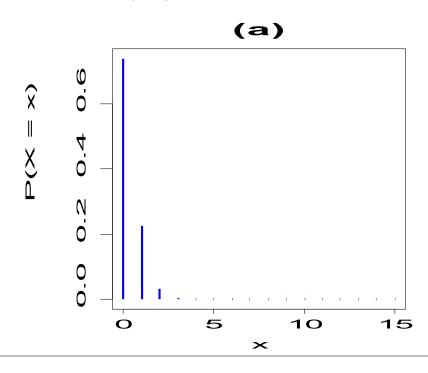
Solução. (b) Definimos o evento sucesso (S) como "o lote contém pelo menos um componente defeituoso". De acordo com o item (a), P(S) = p = 0.261. A v.a. Y é definida como sendo o número de lotes com pelo um componente defeituoso (sucessos) em n = 10 lotes. Supondo independência, Y ~ B(n = 10, p = 0.261).

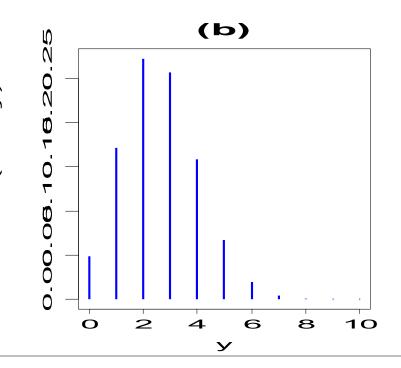
Devemos calcular P(Y = 3), que é dada por

$$P(Y = 3) = {10 \choose 3} \times 0.261^3 \times (1 - 0.261)^{10-3} = 0.257.$$

Em Excel:

= DISTRBINOM(3; 10; 0,261; FALSO)





4.3. Modelo hipergeométrico

Um conjunto de N elementos é dividido em duas classes. Uma classe com M (M < N) elementos (sucessos) e a outra com N – M elementos (fracassos).

Por exemplo, no caso de N itens produzidos, podem ser considerados M itens defeituosos e N – M itens não defeituosos.

Uma amostra de tamanho n (n < N) é sorteada sem reposição. A v.a. X é definida como o número de elementos com a característica de interesse (sucesso) na amostra de tamanho n.

(1) n elementos são selecionados de um conjunto de N elementos. (2) x sucessos são escolhidos de uma classe com M sucessos. (3) Finalmente, n – x fracassos são escolhidos de uma classe com N – M fracassos.

A função de probabilidade da v.a. X é

$$f(x) = \begin{cases} \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}}, & \text{se } x = \max\{0, n-(N-M)\}, \dots, \min\{n, M\}, \\ \binom{N}{n} & \text{o.c.} \end{cases}$$

Notação: $X \sim H(N, M, n)$ indica que a v.a. X tem distribuição hipergeométrica com parâmetros N, M e n.

Se X ~ H(N, M, n), então
$$E(X) = n \left(\frac{M}{N}\right)$$
 e $Var(X) = n \left(\frac{M}{N}\right) \left(1 - \frac{M}{N}\right) \left(\frac{N-n}{N-1}\right)$.

Exemplo (Hines et al., 2006, p. 105)

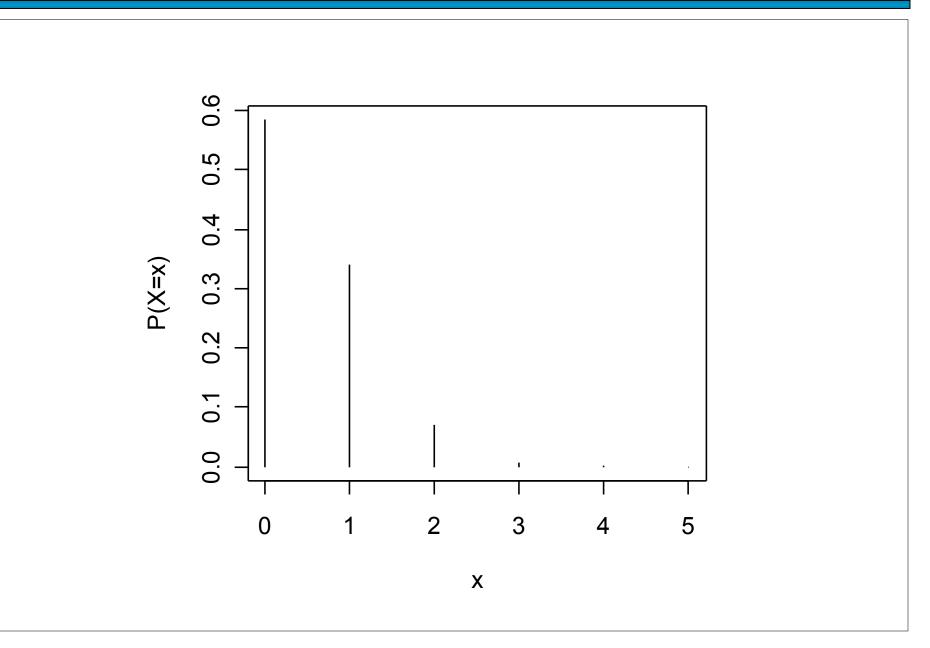
Em um departamento de inspeção de recebimento, lotes de eixo de bomba são recebidos periodicamente. Os lotes contêm 100 unidades e o seguinte plano de amostragem de aceitação é usado. Seleciona-se uma amostra de 10 unidades sem reposição. O lote é aceito se a amostra tiver, no máximo, um eixo defeituoso. Suponha que um lote seja recebido e que 5% dos itens sejam defeituosos. Qual a probabilidade de que o lote seja aceito ?

X: número de defeituosos na amostra \Rightarrow X ~ H(N = 100, M = 5, n = 10).

P(aceitar o lote) = P(X \le 1) = P(X = 0) + P(X = 1)
=
$$\frac{\binom{5}{0}\binom{95}{10}}{\binom{100}{10}} + \frac{\binom{5}{0}\binom{95}{9}}{\binom{100}{10}} = 0,923.$$

Em Excel: =DIST.HIPERGEOM(0;10;5;100) + DIST.HIPERGEOM(1;10;5;100).

Exemplo (Hines et al., 2006, p. 105)



4.4. Modelo de Poisson

Muitos experimentos consistem em observar a ocorrência de eventos em determinada unidade (de tempo, volume, comprimento, área, ...)

Exemplos

- Número de navios que atracam em um porto em uma semana.
- Número semanal de acidentes de trabalho em uma fábrica.
- Número de pequenos defeitos por m² de uma chapa metálica.
- Número de veículos que passam por um ponto de uma estrada a cada 10 min.
- Número de microorganismos por cm³ de água contaminada.
- Número de defeitos em cada bloco pré-moldado produzido por uma fábrica.

Suposições básicas

O fenômeno estudado ocorre em intervalos (de tempo, por exemplo).

O intervalo pode ser dividido em subintervalos com comprimentos suficientemente pequenos tais que

- a probabilidade de ocorrência de mais um evento em um subintervalo é pequena,
- a probabilidade de ocorrência de um evento em um subintervalo seja a mesma para todos os subintervalos e proporcional ao comprimento do subintervalo e
- a contagem em cada subintervalo seja independente de outros subintervalos.

Pode ser provado que a distribuição do número de ocorrências é Poisson.

Distribuição de Poisson

Uma v. a. discreta X tem distribuição de Poisson com parâmetro $\,\mu$ se sua função de probabilidade é dada por

$$f(x) = \begin{cases} \frac{e^{-\mu} \mu^{x}}{x!}, & \text{se } x = 0,1,2,\dots, \\ 0, & \text{c.c.,} \end{cases}$$

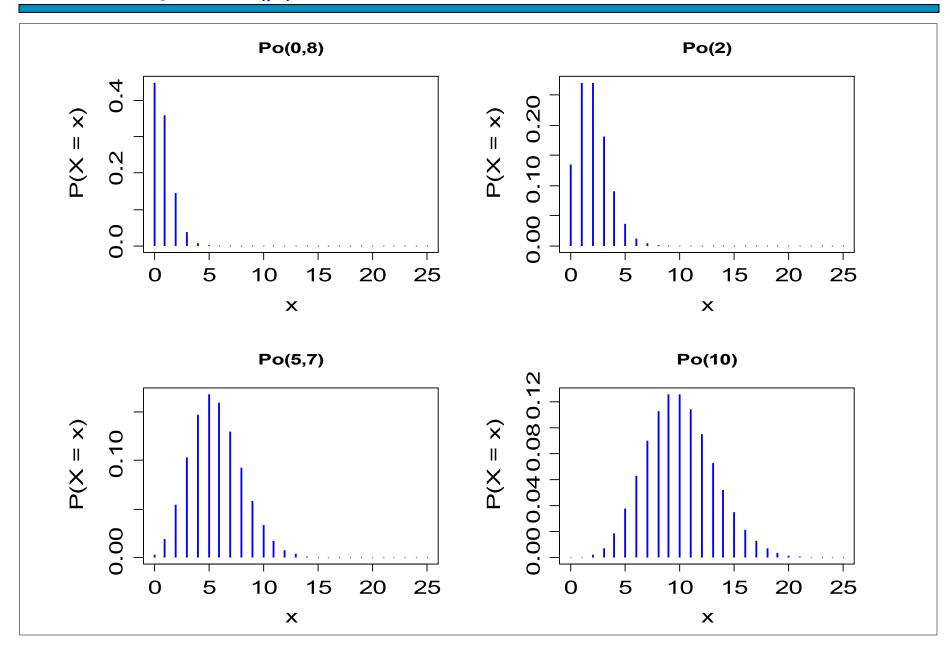
em que x é número de eventos em t unidades de medida,

 λ é o número médio de eventos (taxa) em uma unidade de medida (t = 1) e $\mu = \lambda$ t é o número médio de eventos em t unidades de medida.

Notação: $X \sim Po(\mu)$ indica que a v.a. X tem distribuição de Poisson com parâmetro μ .

Propriedades: $E(X) = \mu e Var(X) = \mu$.

Distribuição Po(μ)



As chegadas a um posto de atendimento ocorrem de forma independente seguindo a distribuição de Poisson. Suponha que a média de chegadas é 3 a cada 4 minutos. Qual é a probabilidade de que este posto receba no máximo 2 solicitações em um intervalo de 2 minutos?

Solução. Se X é número de chegadas a este posto a cada 2 minutos,

então X ~ Po(μ). Aqui, t = 2 min e λ = $\frac{3}{4}$ = 0,75. Logo, μ = 0,75 × 2 = 1,5. Ou seja,

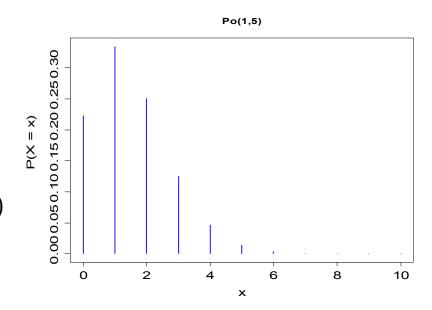
$$X \sim Po(1,5) e$$

$$f(x) = \frac{e^{-1.5} 1.5^x}{x!}$$
, se $x = 0.1, 2.3...$

Calculamos

$$P(X \le 2) = F(2) = P(X = 0) + P(X = 1) + P(X = 2)$$

=
$$e^{-1.5}(1+1.5+\frac{1.5^2}{2})$$
 = 0.809.

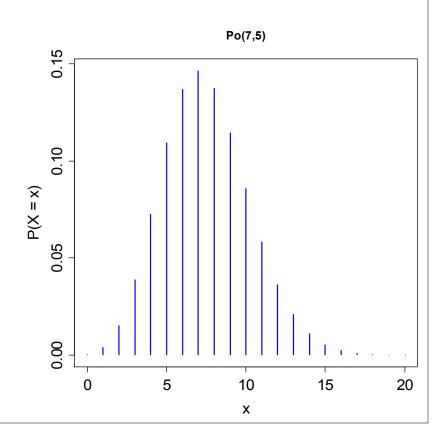


Em Excel: =POISSON(2;1,5; VERDADEIRO).

- O número de pedidos de reparos que uma construtora recebe por mês é uma variável aleatória, sendo que em média são recebidos 7,5 pedidos por mês. Determine as probabilidades de que, em um mês qualquer, a construtora receba
- Exatamente 2 pedidos de reparo;
- No máximo 2 pedidos de reparo;
- No mínimo 8 pedidos de reparo.

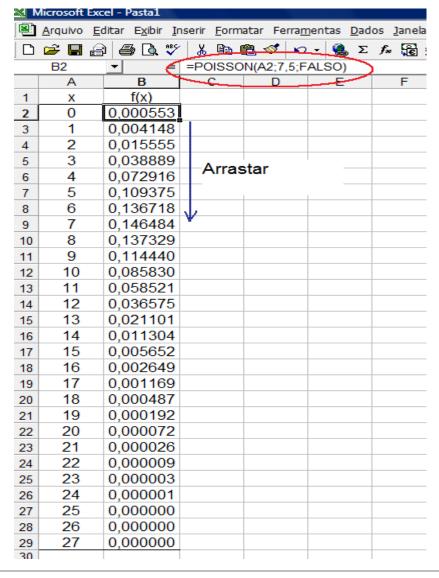
Solução. Supomos que X (número de pedidos de reparo que a construtora recebe por mês) tem distribuição Poisson com média μ = 7,5. Logo,

$$f(x) = \frac{e^{-7.5}7.5^x}{x!}$$
, se $x = 0.1, 2, \cdots$



X	f(x)=P(X=x)
0	0,000553
1	0,004148
2	0,015555
3	0,038889
3 4 5	0,072916
5	0,109375
6	0,136718
7	0,146484
8	0,137329
9	0,114440
10	0,085830
11	0,058521
12	0,036575
13	0,021101
14	0,011304
14 15	0,005652
16	0,002649
17	0,001169
18	0,000487
19	0,000192
20	0,000072
21	0,000026
22	0,000009
23	0,000003
24	0,000001
25	0,000000
26	0,000000
27	0,000000

Em Excel:



Calculamos

(a)
$$P(X = 2) = \frac{e^{-7.5}(7.5)^2}{2} = 0.0156,$$

(b)
$$P(X \le 2) = F(2) = P(X = 0) + P(X = 1) + P(X = 2)$$

= 0,000553 + 0,004148 + 0,015555 = 0,0203 e

(c)
$$P(X \ge 8) = 1 - P(X < 8) = 1 - F(7) = 1 - \sum_{x=0}^{7} P(X = x)$$

= $1 - (0,000553 + \dots + 0,146484)$
= $1 - 0,5246385 = 0,4754$.

O número de partículas contaminantes que ocorrem em um líquido tem uma distribuição de Poisson e o número médio de partículas por cm³ é 0,1. Um frasco de 100 cm³ será analisado. Calcule a probabilidade de que 12 partículas sejam encontradas no frasco.

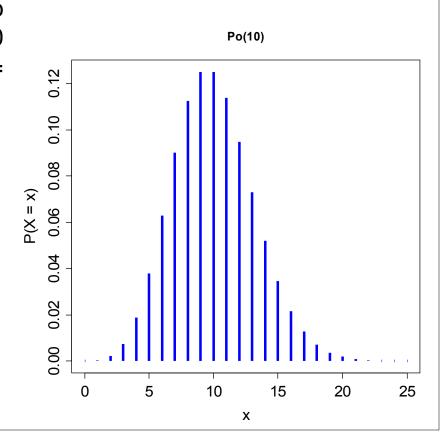
Solução. Se X é o número de partículas no frasco, então X ~ Po(μ). Temos t = 100 cm³ e λ = 0,1 por cm³. Logo, μ = t × λ = 100 × 0,1 = 10. Ou seja, X ~ Po(10) e

$$f(x) = \frac{e^{-10}10^x}{x!}, x = 0,1,2,\dots$$

Calculamos

$$P(X = 12) = \frac{e^{-10}10^{12}}{12!} = 0,095.$$

Em Excel: =POISSON(12;10;FALSO).



Resultado. Se $X_1,...,X_n$ são variáveis aleatórias independentes com distribuição de Poisson com parâmetros $\mu_1,...,\mu_n$ respectivamente, então a variável aleatória $Y = X_1 + ... + X_n$ tem distribuição Poisson com parâmetro $\mu = \mu_1 + ... + \mu_n$.

Exemplo. Em uma fábrica, dados históricos mostram que em três semanas típicas os números médios de acidentes são 2,5 na primeira semana, 2 na segunda semana e 1,5 na terceira semana. Suponha que o número de acidentes por semana segue uma distribuição de Poisson. Qual a probabilidade de que ocorram 4 acidentes em três semanas típicas?

Solução. X_i representa o número de acidentes na i-ésima semana, i = 1,2,3, com X_i ~ Po(μ_i). Supomos que X_1 , X_2 e X_3 são independentes. Portanto, $Y = X_1 + X_2 + X_3$ tem distribuição Poisson com parâmetro μ = 2,5 + 2 + 1,5 = 6. Calculamos

$$P(Y = 4) = \frac{6^4 e^{-6}}{4!} = 0,1339.$$

4.5. Modelo geométrico

Ensaios de Bernoulli são realizados de forma independente e cada um com probabilidade de sucesso igual a p.

Estamos interessados no número de ensaios que antecedem a ocorrência do 1º sucesso.

A v.a. X que conta este número tem distribuição geométrica com parâmetro p, notando que $X \in \{0, 1, 2, ...\}$.

Se "S" e "F" representam os eventos sucesso e fracasso e X = x, temos a sequência

$$F$$
 F ... FS .

Sendo assim,

$$P(X = x) = \underbrace{(1-p)} \times \underbrace{(1-p)} \times \dots \times \underbrace{(1-p)} \times p.$$
x fracassos

Distribuição geométrica

Se ensaios de Bernoulli independentes e com probabilidade de sucesso igual a p são realizados, o número de ensaios que antecedem o primeiro sucesso tem uma distribuição geométrica com parâmetro p e sua função de probabilidade é dada por

$$f(x) = P(X = x) = (1 - p)^{x} p$$
, se $x = 0,1,2,...$ e $0 .$

Notação: X ~ Geo(p).

Se X ~ Geo(p), então

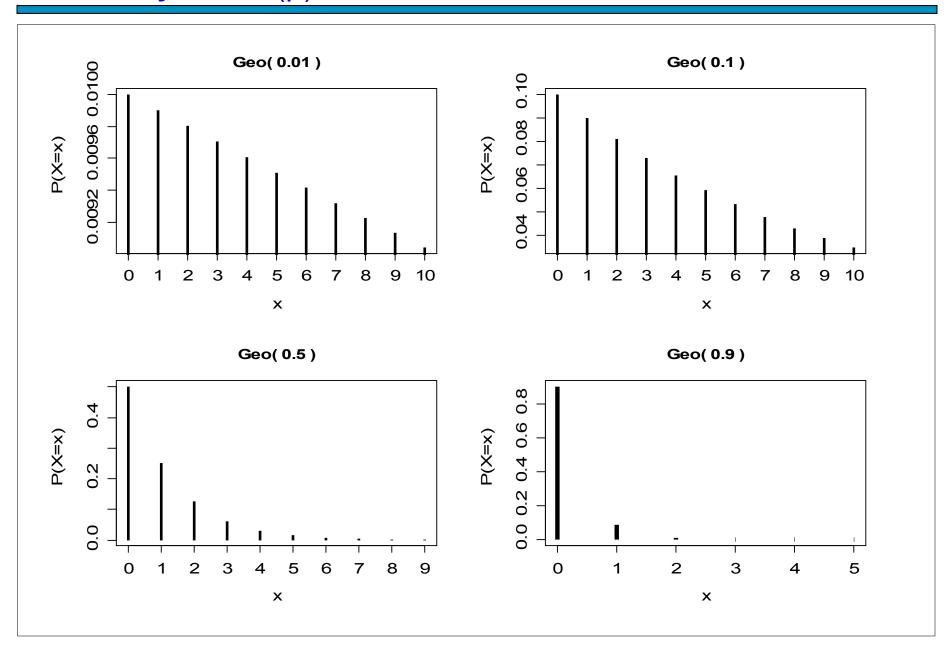
$$E(X) = (1 - p) / p e$$

$$Var(X) = (1 - p) / p^2$$
.

Propriedade: Se X ~ Geo(p), então $P(X > k + m \mid X > m) = P(X > k)$.

É a única distribuição discreta com esta propriedade ("falta de memória").

Distribuição Geo(p)



Outra definição de distribuição geométrica

Se ensaios de Bernoulli independentes e com probabilidade de sucesso igual a p são realizados, o número de ensaios Y até que ocorra o primeiro sucesso tem uma distribuição geométrica com parâmetro p e sua função de probabilidade é dada por

$$f(y) = P(Y = y) = (1 - p)^{y-1} p$$
, se $y = 1,2,...$ e $0 .$

Relação entre as duas definições:

$$Y = X + 1$$
,
 $E(Y) = E(X) + 1 = (1 - p) / p + 1 = 1 / p$ e
 $Var(Y) = Var(X) = (1 - p) / p^2$.

Exemplo (Hines et al., 2006, p. 101)

- Certo experimento deve ser realizado até que seja obtido um resultado bem sucedido. As realizações são independentes e o custo de cada experimento é \$25.000, sendo que se o resultado for um insucesso, há um custo adicional de \$5.000 para o preparo da próxima realização.
- (a) Obtenha o custo esperado do experimento.
- (b) Se o orçamento não pode ultrapassar \$500.000, qual a probabilidade de que este valor seja ultrapassado.

Solução. Definimos Y como sendo o número de realizações até que ocorra o primeiro resultado bem sucedido, notando que Y \in {1, 2, ...} e tem distribuição geométrica com parâmetro p e f(y) = $(1 - p)^{y-1}p$ (veja lâmina 29). Pelo enunciado, o custo é uma v.a., função de Y, dada por

$$C(Y) = 25000 Y + 5000 (Y - 1) = 30000 Y - 5000.$$

Usando propriedades do valor esperado obtemos

$$E[C(Y)] = 30000 E(Y) - 5000 = 30000 / p - 5000.$$

Se p = 0.25, o custo esperado vale \$115.000.

Exemplo (Hines et al., 2006, p. 101)

Na letra (b) devemos calcular P(C(Y) > 500000). Usando a expressão de C(Y),

$$P(C(Y) > 500000) = P(30000 Y - 5000) > 500000)$$

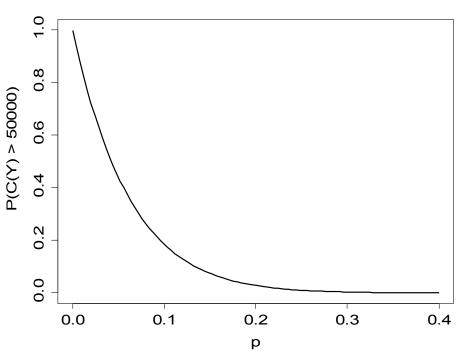
$$= P(Y > 505000 / 30000) = P(Y > 16,8)$$

$$= 1 - P(Y \le 16,8) = 1 - P(Y \le 16)$$

$$= 1 - \sum_{k=1}^{16} (1 - p)^{k-1} p, \quad 0$$

Se p = 0,25,

$$P(C(Y) > 500000) = 0,010.$$



4.6. Modelo binomial negativa

Ensaios de Bernoulli são realizados de forma independente e cada um com probabilidade de sucesso igual a p.

Interesse no número de ensaios que até que ocorram r sucessos, $r \ge 1$.

A v.a. X que conta este número tem distribuição binomial negativa com parâmetros $r \in p$, notando que $X \in \{r, r + 1, r + 2, ...\}$.

Se "S" e "F" representam os eventos sucesso e fracasso e X = x, temos sequências do tipo

FSF SF ... FS, cada uma com probabilidade = $p^r (1 - p)^{x-r}$.

Distribuição binomial negativa

Se ensaios de Bernoulli independentes e com probabilidade de sucesso igual a p são realizados, o número de ensaios até que ocorram r sucessos tem uma distribuição binomial negativa com parâmetros r e p. Sua função de probabilidade é dada por

$$f(x) = P(X = x) = {x-1 \choose r-1} p^r (1-p)^{x-r}$$
, se $x = r, r+1, r+2, ...$ e $0 .$

Notação: X ~ BN(r, p).

Se $X \sim BN(r, p)$, então

$$E(X) = r/pe$$

$$Var(X) = r (1 - p) / p^2$$
.

Obs. (a) r = 1: distribuição geométrica na lâmina 29.

(b) Em Excel: função DIST.BIN.NEG.

Distribuição BN(r, p)

