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Centrality indices are to quantify an intuitive feeling that in 
most networks some vertices or edges are more central 
than others. 
 
It should be noted that the term ‘centrality’ is by no means 
clearly defined. What is it that makes a vertex central and 
another vertex peripheral? For example, a vertex can be 
regarded as central if it is heavily required for the transport 
of information within the network or if it is connected to 
other important vertices. These few examples from a set of 
dozens other possibilities show that the interpretation of 
‘centrality’ is heavily dependent on the context. 

1.Degree 
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in-degree centrality 
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2. Facility Location Problems  

The first family consists of those problems that use 
a minimax criterion. As an example, consider the 
problem of determining the location for an 
emergency facility such as a hospital. The main 
objective of such an emergency facility location 
problem is to find a site that minimizes the 
maximum response time between the facility and 
the site of a possible emergency. 

2. Facility Location Problems  

The second family of location problems optimizes a 
minisum criterion which is used in determining the 
location for a service facility like a shopping mall. The 
aim here is to minimize the total travel time.  
 
A third family of location problems deals with the 
location of commercial facilities which operate in a 
competitive environment. The goal of a competitive 
location problem is to estimate the market share 
captured by each competing facility in order to 
optimize its location. 

2.1 Eccentricity 
 
The aim of the first problem family is to determine a location 
that minimizes the maximum distance to any other location in 
the network. Suppose that a hospital is located at a vertex u ∈ 
V. We denote the maximum distance from u to a random vertex 
v in the network, representing a possible incident, as the 
eccentricity e(u) of u, where e(u) = max{d(u, v): v ∈ V }. The 
problem of finding an optimal location can be solved by 
determining the minimum over all e(u) with u ∈ V . 
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2.1 Eccentricity – Equivalent Definition 

This measure is consistent with our general 
notion of vertex centrality, since e(u)−1 grows 
if the maximal distance of u decreases. 
Thus, for all vertices u ∈ V of the center of G: 
cE(u) ≥ cE(v) for all v ∈ V . 
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2.2 Closeness 
 
We consider the second type of location problems – the 
minisum location problem, often also called the median 
problem  or service facility location problem . Suppose we 
want to place a service facility, e.g., a shopping mall, such that 
the total distance to all customers in the region is minimal. This 
would make traveling to the mall as convenient as possible for 
most customers. We denote the sum of the distances from a 
vertex u ∈ V to any other vertex in a graph G = (V,E) as the 
total distance 

( )∑ ∈Vv
vud ,

The problem of finding an appropriate location can be solved 
by computing the set of vertices with minimum total distance.  

2.2 Closeness  

In social network analysis a centrality index based on this 
concept is called closeness. The focus lies here, for example, 
on measuring the closeness of a person to all other people in 
the network. People with a small total distance are considered 
as more important as those with a high total distance. 

2.2 Closeness  
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where ∆G and n denote the diameter of the graph and the number of 
vertices, respectively. The index measures how well a vertex is 
integrated in a network. The better a vertex is integrated the closer 
the vertex must be to other vertices. The primary difference between 
cC and cR is that cR reverses the distances to get a closeness-based 
measure and then averages these values for each vertex. 

2.3 Centroid Values  
 
The last centrality index presented here is used in 

competitive settings: Suppose each vertex represents a 

customer in a graph. The service location problem 

considered above assumes a single store in a region. In 

reality, however, this is usually not the case. There is often at 

least one competitor offering the same products or services. 

Competitive location problems deal with the planning of 

commercial facilities which operate in such a competitive 

environment.  

2.3 Centroid Values  
 
For reasons of simplicity, we assume that the competing 

facilities are equally attractive and that customers prefer the 

facility closest to them. Consider now the following situation: A 

salesman selects a location for his store knowing that a 

competitor can observe the selection process and decide 

afterwards which location to select for her shop. Which vertex 

should the salesman choose? 
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2.3 Centroid Values  
 

Given a connected undirected graph G of n vertices. For a pair 

of vertices u and v, γu(v) denotes the number of vertices which 

are closer to u than to v, that is γu(v) = |{w ∈ V : d(u,w) < d(v,w)}|. 

If the salesman selects a vertex u and his competitor selects a 

vertex v, then he will have the following number of customers: 
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2.3 Centroid Values  

Thus, letting f(u, v) = γu(v) − γv(u), the competitor will choose a 

vertex v which minimizes f(u, v). The salesman knows this 

strategy and calculates for each vertex u the worst case, that is 

                       cF(u) = min{f(u, v): v ∈ V − u} 

cF(u) is called the centroid value and measures the advantage of 

the location u compared to other locations, that is the minimal 

difference of the number of customers which the salesman gains 

or loses if he selects u and a competitor chooses an appropriate 

vertex v different from u. 

2.3 Centroid Values  

Notice that for each vertex u ∈ V in graph shown here cF (u) ≤ −1. 

Here, the salesman loses his advantage to choose as first. The 

strategy “choose after the leader has chosen” would be optimal. 

3. Structural Properties  

Center of a Graph . The eccentricity of a vertex u ∈ G was defined 

as e(u) = max{d(u, v): v ∈ V }. Recall, that by taking the minimum 

over all e(u) we solve the emergency location problem. In graph 

theory, this minimum is called the radius r(G) = min{e(u): u ∈ V }. 

Using the radius of G the center C(G) of a graph G is C(G) = {u ∈ 

V : r(G) = e(u)}.  

3. Structural Properties  

Median of a Graph . The service facility problem was solved by 

determining the set of vertices with minimum total distance. If the 

minimum total distance of G is denoted by s(G) = min{s(u): u ∈ 

V}, the median M(G) of G is given by 

                            M(G) = {u ∈ V : s(G) = s(u)} . 

3. Structural Properties  

Centroid of a Graph . The computation of the centroid of a 

graph is a maximin optimization problem. We defined the 

centroid value for a given vertex u by cF(u) = min{f(u, v): v ∈ V 

−u}. In addition we call the objective function value f(G) = 

max{cF(u): u ∈V } the centroid value of G and denote by Z(G) 

= {u ∈ V : f(G) = cF(u)}, the set of vertices representing the 

centroid of G. 
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4. Shortest Paths  

4.1 Stress Centrality  

where σst(v) denotes the number of shortest 

paths containing v. 
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The number of shortest path that contain an 

element x gives an approximation of the 

amount of ‘work’ or ‘stress’ the element has 

to sustain in the network. 

4. Shortest Paths  

4.2 Shortest-Path Betweenness Centrality  
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δst(v) denote the fraction of shortest paths 

between s and t that contain vertex v and 

σst denotes the number of all shortest-path 

between s and t. 

4. Shortest Paths  

4.2 Shortest-Path Betweenness Centrality  
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5. Vitality  

Definition (Vitality Index). Let G be the set of all 

simple, undirected and unweighted graphs G = (V, 

E) and f : G → R be any real-valued function on G 

∈ G. A vitality index V(G, x) is then defined as the 

difference of the values of f on G and on G without 

element x: V(G, x) = f(G) − f(G\{x}). 

5. Vitality  

5.1 Flow Betweenness Vitality 

define the max-flow betweenness vitality for a 
vertex u ∈ V by 
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where fst(u) is the amount of flow which must go through 
u. We determine fst(u) by fst(u) = fst − f~st where f~st is the 
maximal s-t-flow in G \ u. That is, f~st is determined by 
removing u form G and computing the maximal s-t-flow in 
the resulting network G \ u. 

5. Vitality  

5.2 Closeness Vitality 

( ) ( )∑∑
∈ ∈

=
Vv Vw

W wvdGI ,Wiener Index 

cCV (x) = IW(G) − IW(G \ {x}) 

Let the distance between two vertices represent the 
costs to send a message from s to t. Then the closeness 
vitality denotes how much the transport costs in an all-
to-all communication will increase if the corresponding 
element x is removed from the graph. 
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6. Feedback  

Now we present centralities in which a node is the 

more central the more central its neighbors are. 

6.1 Counting All Paths – The Status Index of Katz 

To determine the importance or status of an individual in a social 

network where directed edges (i, j) can, for example, be interpreted 
as “i votes for j”, it is not enough to count direct votes. If, e.g., only 

two individuals k and l vote for i but all other persons in the network 
vote either for k or for l, then it may be that i is the most important 
person in the network – even if she got only two direct votes. All 

other individuals voted for her indirectly. 

6.1 Counting All Paths – The Status Index of Katz 

To take the number of intermediate individuals into account, a 

damping factor α > 0 is introduced: the longer the path between 

two vertices i and j is, the smaller should its impact on the status 

of j be. 

The associated mathematical model is hence an unweighted (i.e. 

all weights are 1) directed simple graph G = (V,E) without loops 

and associated adjacency matrix A.  

6.1 Counting All Paths – The Status Index of Katz 

Using the fact that (Ak)ji holds the number of paths from j to i with 

length k we hence have as status of vertex i 
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1n is the n-dimensional vector where every entry is 1. 

6.1 Counting All Paths – The Status Index of Katz 

Assuming convergence we find a closed form expression for 

the status index of Katz: 
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or, in another form 

( ) nK
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an inhomogeneous system of linear equations emphasizing 

the feedback nature of the centrality: the value of cK(i) 

depends on the other centrality values cK(j), j ≠ i. 

6.2 General Feedback Centralities 

Bonacich’s Eigenvector Centrality. In 1972 Phillip 

Bonacich introduced a centrality measure based on the 

eigenvectors of adjacency matrices. He presented three 

different approaches for the calculation and all three of them 

result in the same valuation of the vertices, the vectors differ 

only in a constant factor.  

6.2 General Feedback Centralities 

In the following we assume that the graph G to be analyzed is 

undirected, connected, loop-free, simple, and unweighted. As 

the graph is undirected and loop-free the adjacency matrix 

A(G) is symmetric and all diagonal entries are 0. 

 

The three methods of calculation are: 

a. the factor analysis approach (sa), 

b. the convergence of an infinite sequence (sb), and 

c. the solving of a linear equation system (sc). 
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6.2 General Feedback Centralities 

We declare that sa
i sa

j should be close to aij and interprete the 

problem as the minimization of the least squared difference. We 

are therefore interested in the vector sa that minimizes the 

following expression: 
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6.2 General Feedback Centralities 

A second approach presented by Bonacich is based on an 

infinite sequence. For a given λ1 we define 

n
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According to the Theorem, the sequence 

k

b
k

b
b AA

k

k

11

01

λλ
ss

s ==
−

converges towards an eigenvector sb of the adjacency matrix A if  

λ1 equals the largest eigenvalue. 
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6.2 General Feedback Centralities 

The third approach follows the idea of calculating an 

eigenvector of a linear equation system. If we define the 

centrality of a vertex to be equal to the sum of the centralities of 

its adjacent vertices, we get the following equation system: 

This equation system has a solution only if det(A−I) = 0. We 

solve λs = As, the eigenvalue problem for A, instead. 
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6.2 General Feedback Centralities 
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We have seen three methods for the calculation of the 

solution vectors sa, sb, sc. These vectors differ only by a 

constant factor. The eigenvector centrality is therefore 

(independently from the solution method) defined by: 

6.2 General Feedback Centralities 

Everett and Borgatti explain this behavior via their core-periphery 

model, where in the idealized case the core corresponds to a 

complete subgraph and the nodes in the periphery do not interact 

with each other. To measure how close a graph is to the ideal core-

periphery structure (or, in other words, how concentrated the graph 

is) they define the ρ-measure 

with δij = cicj, where aij are the components of the adjacency matrix 

and ci measures the coreness of a node, ci ∈ [0, 1].  
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δρ

6.2 General Feedback Centralities 

To determine the coreness of the nodes, the authors propose to 

minimize the sum of squared distances of aij and the product 

cicj, which is nothing else than one approach to compute 

Bonacich’s Standard Centrality. Hence nothing else then 

computing the principal eigenvector of the adjacency matrix. 

Thus, only the core-vertices get high c-values, nodes in smaller 

clusters not belonging to the core will get values near zero. 
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7. WEB Page Centrality - PageRank 

PageRank PR is the prestige measure used by Google to 

rank Web pages. It is supposed to simulate the behavior of 

a user browsing the Web. Most of the time, the user visits 

pages just by surfing, i.e., by clicking on hyperlinks of the 

page he is on; otherwise, the user will jump to another 

page by typing its URL on the browser, or going to a 

bookmark, etc.  

7. WEB Page Centrality - PageRank 

On a graph, this process can be modeled by a simple combination 

of a random walk with occasional jumps toward randomly selected 

nodes. This can be described by the simple set of implicit relations: 
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Here, n is the number of nodes of the graph, p(i) is the PR value 

of node i, kout(j) the outdegree of node j, and the sum runs over 

the nodes pointing toward i. The damping factor q is a probability 

that weighs the mixture between random walk and random jump. 

7. WEB Page Centrality - Eigenvector centrality 

The EV is also based on the principle that the importance of a 

node depends on the importance of its neighbors. In this case 

the relationship is more straightforward than for PR: the prestige 

xi of node i is just proportional to the sum of the prestiges of the 

neighboring nodes pointing to it, 
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we see that xi is just the i component of the eigenvector of the 

transpose of the adjacency matrix with eigenvalue λ. 


