Neur odynamics
Dynamical System:

A dynamical system may be defined as a
deterministic mathematical prescription for
evolving the state of a system forward in time

Continuous System: Time is a continuous variable

dx
tl_Fl(Xl'XZ’ ...... , XN)
dx , y =F
dt Fz(xl’x2’ """ ' XN) or x= (X,,U) X N
dx
tN _FN(Xl’XZ’ ...... y XN)

WwithxguooN, g0Ovoor
whereU andV are open sets in™N and”

Neur odynamics

Discrete System: Time is a discrete integer-valued variable
Xne1 = F(Xy)

wherex is aN dimensional vector. Given an initial statg
we can generate an orbit of the discrete time system
Xg» X1, X4 .... DY iterating the map.

For example: x,, = -0.5x%




Continuous Dynamical Systems

For the dynamical system:

x =F(x, 4 xOON (1)
Let Y =X - X(t) (2)
Where x(t) is a fixed point.
Then, >.<:x.f (t)+§/
Using the Taylor expanding aboy(t) gives
x = F(x(1) + D)y + AlF) 3)
Using the factor thatx; (t) = F(x(t)), we get
y =DF(x(®)y + AP (4)

Continuous Dynamical Systems

Sincey is small, so it is reasonable that the stability of the
original system could be answered by studying the associated
linear system:

y =DF(x()y (5)
Then, y(t)=e>""y, (6)
SinceDF(x;(t)) = DF(x;), then

y = Ay @




Continuous Dynamical Systems

A is called a Jacobian matrix (partial derivatives):

of, of, [ \]

a(x) a(x)
A=DF(x)= s

_axz (x) 6x: (x)_

Continuous Dynamical Systems

We have an eigenvalue equation:

Ae=\e (8)
N

y(t)=> Ag exp(t) 9)
k=1

N

whereA, are determined from the initial conditioy, :Z Ace,
k=1

MNk=1,2, ..., N) are eigenvalues/f




Continuous Dynamical Systems

Definition 1: (Lyapunov stability) x(t) is said to be stable or
Lyapunov stable, if givem> 0, there exists a= &) > 0 such
that, for any other solutio(t), of the system (2-2), satisfying

Xi(to) - Y(to)l < & then X(t) - y()| <efort>1, (O 0O.
Definition 2: (asymptotic stability) x(t) is said to be asymptotic
stable if it is lyapunov stable and if there exists a congtand
such that if %(ty) - y(tp)| <b, then %(t) - y(t)] = 0 when t- co.
Definition 3: Letx = x; be a fixed point of F(x), then x; is
called ahyperbolic fixed point if none of the eigenvalues of
DF(x;) have zero real part. (a hyperbolic fixed point of a
N-dimensional map is defined as: none of its eigenvalues have
absolute one)

Stability of Equilibrium State

Theorem 1. Suppose all of the eigenvaluesfofn Eqn.

(7)

have negative real parts. Then the equilibrium solutjon
of the nonlinear flow defined by Eqn.(1) is asymptotically

stable.

Theorem 2: if one of the eigenvalues &f has a positive real

part, the fixed point is unstable




Stability of Equilibrium State

For a two-dimensional continuous system, the stability of
a fixed point can be classified by its eigenvalues of the
Jacobian matrix evaluated at a fixed point in three types:

* The eigenvalues are real and have the same sign. If the
eigenvalues are negative, this istable point; if the
eigenvalues are positive, this isirstable point.

» The eigenvalues are real and have opposite signs. In this
case, there is a one-dimensional stable manifold and a one-
dimensional unstable manifold. This fixed point is called a
unstablesaddle point.

» The eigenvalues are complex conjugates. If the real part of
the eigenvalues is negative, this ist@ble spiral or aspiral

sink. If the real part is positive, this is anstable spiral or a
spiral source. If the real parts are zero, then this seater.

Stability of Equilibrium State

i

\
A
\
.




Stability of Equilibrium State
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Stability of Equilibrium State

dx/dt =x - x3/3 -y + I(t)
dy/dt = c(x + a - by)

(@a=0.7,b=0.8,c=0.1)
— 2 —
3= 1-x 1
C -bc

Ay 5= -[(0C- 1 +X2) % (2 -1 +hbc)? - 4017 /2




Stability of Equilibrium State

*For 0 <A, < 0.341, the eigenvalues are complex and the real paf
is negative and hence the fixed poy {) is a stable focus.

*At A, = 0.341, the real part of eigenvalues vanishes and the
system undergoes a Hopf bifurcation.

*For 0.341 <A, < 1.397, the real part is positive and the fixed
point is unstable, one can expect a stable limitcycle in this range
*At A, = 1.397 the real part of the eigenvalues vanishes and the
system undergoes Hopf bifurcation.

*ForA, > 1.397, the real part is negative, the system'’s solution is
again a stable fixed point.

For sufficiently larged,, the system points diverge to infinity.

Stability of Equilibrium State

L yapunov Function

According to the definition of stability it would be
sufficient to find a neighborhodd of x; for which
orbits starting irlJ remain inU for positive times.

This condition would be satisfied if we could show
that the vector field is either tangent to the boundary
of U or pointing inward towara;.




Stability of Equilibrium State
L yapunov Function
Theorem:. Consider the following continuous dynamical system
X =F(x) xdon

Let x; be a fixed point and l&t: U - [0 be a continuous
differentiable function defined on some neighborhbtloaf x;
such that

i) V(X;) = 0 anaV(x) > 0 if x # ;.

i) V (x)<0 inU -{xg}.
Thenx; is stable. Moreover, if

i) V (x)<0 inU -{x}.
Thenx; is asymptotically stable.

Stability of Equilibrium State

Lyapunov Function

x=f (X,y)
. (x,y) O 0O2
y=9g(x,y)

Let (x, y;) be a fixed point. Le¥(x, y) be the scalar-valued
function,V: 02 - 0%, with V(x;, y;) = 0, and the locus of
points satisfying/(x, y) =C = constant form closed curves
for different values o€ encircling (%, y;) with V(x, y) >0

in a neighborhood of {xy;).




Stability of Equilibrium State
Lyapunov Function

Stability of Equilibrium State
Lyapunov Function

The gradient oV, [IV, is a vector perpendicular to the
tangent vector along each curve\bivhich points in

the direction of increasing. So if the vector field were
always to be either tangent or pointing inward for each
of these curves surrounding, (%), we would have

OV(X, Y) (x yj <0




Stability of Equilibrium State
Lyapunov Function

. _ #

: | ’

Xt Y)

Discrete Dynamical Systems
Linearized Stability of Equilibrium Solutions

fixed point (stationary point or equilibrium point):
is an equilibrium solution of a point x; OON such that
X¢ = F(x(1)).

Example 1 (logistic map) : % = f(x,) = X,(1-x,)
There is only one fixed point: x =0

Example 2 (logistic map):x,,, = f(x,) = 2x,(1-X,)
There are two fixed points: x =0 and x = 0.5
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Discrete Dynamical Systems

Linearized Stability of Equilibrium Solutions

Example 3 (Henon map):( Xnﬂj (a - er + by”j

yn+1
a=1b=1

There are two fixed points: (x=1,y=1)and (x =-1,y =-1)

Stability of Equilibrium State

XN = X + YN (10)
Yne1 = DF(Xpyy + O(Y\?) (11)
Yn+1 =AY (12)
Ae=\e (13)
N
yn+1:Z Akek/‘rll (14)
k=1

Conclusion:
directions corresponding t,| > 1 are unstable;
directions corresponding ty,| < 1 is stable.
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Discrete Dynamical Systems

Linearized Stability of Equilibrium Solutions

Example 1 (logistic map) : % = (X)) = X,(1-x,)
There is only one fixed point: x =0
Since f(X)}-o=1-2x}-,=1, then x = 0 is a center

Example 2 (logistic map):x,,, = f(x,) = 2x,(1-X,)
There are two fixed points: x =0 and x = 0.5
Since f(X)k-o=2 - 4x} - o= 2, then x = 0 is unstable
Since f'(X)} - 5= 2 - 4x} - 5= 0, then x = O stable
(super-stable)

Discrete Dynamical Systems
Linearized Stability of Equilibrium Solutions

Example 3 (Henon map): (Xnﬂj _|la- Xf + by,
yn+1 X

n

a=1,b=1

There are two fixed points: (x =1,y=1)and (x=-1,y =-1)
-2x 1
DF(x)=
1 0
For (x=1,y=1) A,=-1++/2, 1,=-1-4/2, unstable
For (x=-1,y=-1) A,=1+4/2, A,=1-4/2,  unstable
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Stability of Equilibrium State

Exercises:
1) Let I(x) = ax+b, where a and b are constants. Foe which
values of a and b does | have na attracting fixed point? A
repelling fixed point?
2) Let f(x) = x- . Show that x = 0 is a fixed point of f, and
described the dynamical behavior of points near O.
3) For each of the following linear maps, decide whether
the origin is a sink, source, or saddle.

0 g =

Stability of Equilibrium State

Exercises:
4) Let g(x, y) = (®-5x+y, »). Find and classify the fixed
points of g as sink, source, or saddle.

5) Let f(x, y) = (sintv3)x, y/2). Find all fixed points and
their stability. Where does the orbit of each initial value go?

6) Find
(45 8 \'(6
lim
nm(—z —3.5} (9}
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Hopfield Models

General Idea: Artificial Neural Networks Dynamical Systems

Initial Conditions Equilibrium Points

Continuous Hopfield M odel

c ax; (1) __ x (1),
"ot R

Z Wij¢j(xj(t))+|i
B

a) the synaptic weight matrix is symmetsig, = w;, for alli andj.

b) Each neuron has a nonlinear activation of its owny,ize@;(x;).

Here, ¢,(*) is chosen as a sigmoid function;

c) The inverse of the nonlinear activation function exists, so we n

write X = @(y).

lay

14



Continuous Hopfield M odel

Lyapunov Function:

N N

=32 YWy

>.2 RI ¢‘1(y.)dx—Zl Y,

dE_ & (& X; dy.
— = wW.y. —+|. =L
dt Z[Z‘l 1) R j dt

_y C{d¢;%yn}dm
1 dt dt

S (W det )
B Z‘lc‘(dtj[ dt }

Discrete Hopfield M odel

+ Recurrent network
* Fully connected
 Symmetrically connected (w=
* Zero self-feedback (y= 0)
* One layer
* Binary States:
x; = 1 firing at maximum value
X; = 0 not firing
* or Bipolar
x; = 1 firing at maximum value
X; = -1 not firing

w;;, or W = W)
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Discrete Hopfield M odel

l
%

Discrete Hopfield Model
(Bipole)

Transfer Function for Neuron i:

\

1 D wix;=6,>0
iZi

x=1-1 > w,;x,=6,<0
j#i

X; > w;x;,=6,=0

j#i

X = (X, X, ... X): bipole vector, network state.
g : threshold value of x..

X :sgn(z W; X6,

j#i

] x =sgn(Wx - @)

16



Discrete Hopfield M odel

Energy Function:

E :‘%ZZWUXin +>6,%

i JH#

For simplicity, we consider all thresho#i= O:

E ?%ZZWM X;

i JH#

Discrete Hopfield M odel

L earning Prescription (Hebbian L earning):

1 M
Wi = WZ $uiSui
u=1

{&,h=1, 2, ..., M} M memory patterns

Patternés = (&3, &5, ..., &3, where &3 take value 1 or -1

In the matrix form:

_ 19 T
W __Zéﬂgﬂ_lvll
N 7=
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Discrete Hopfield M odel

Energy function islowered by thislearning rule:

E=- _ZZ %X = _ZZ Eﬂ,igﬂ,i

E N

—szmfm

N

Discrete Hopfield M odel

Pattern Association (asynchronous update):

AE =E(k +1) - E(k)

—ZZW,Jx,(k+1)x += ZZ % (K)x,

i j# i j#

= =X (K)D wx,

J#i

AE, <0

18



Example:

Discrete Hopfield Model

Consider a network with three neurons, the weight

matrix is:

W

1
3

0 -2 2°
-2 0 -2
2 -2 0




(-1,1,-1)

stable

(-1,-1,-1)

(-1,1,1)

1,1,1)

D @)
/v
< (1,1,-1)

('1’ '1’ 1) @, >

»

A

-

1,-1,-1)

(1,-1,1)
stable

The model with three neurons has two fundamental
memories (-1, 1, -I)and (1, -1, 1)

State (1, -1, D™

Wx==-2 0 -2|-1
3

0 -2 2]
1
2 -2 0

1

sgr{Wx]z -1{=X

1

A stable state
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State (-1, 1, -DT

0 -2 2|-1 -4
Wx=1{-2 0 -2|1|=% 4
3 3
2 -2 0]-1 -4
-1
sgr{Wx]: 1 (=X
-1

A stable state

State (1, 1, D™
0 -2 21 0
szl -2 0 -2 1:} -4
2 -2 01 % 0
L
sgr{Wx]: -1|#X
1

An unstable state. However, it converges to its nearest
stable state (1, -1, 1)

21



State (-1, 1, D™

O -2 2|-1 0
WX:} -2 0 -2|1 :1- 0
3 3
2 -2 01 -4
-1
sgnwx]=| 1
-1

An unstable state. However, it converges to its nearest
stable state (-1, 1, -1)

Thus, the synaptic weight matrix can be determined by
thetwo patterns:

iE iE JL 00

W= -1[-1 1 —]]+§ -1[-1 1 —]]—50 10
1 1 001
0 -2 2

=H 2 0 -2
2 -2 0
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Computer Experiments

Significance of Hopfield Model

1) The Hopfield model establishes the bridge between
various disciplines.

2) The velocity of pattern recalling in Hopfield models
is independent on the quantity of patterns stored in

the net.
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L imitations of Hopfield Model
1) Memory capacity;
The memory capacity is directly dependent on the number

of neurons in the network. A theoretical result is
N

2logN

WhenN is large, it is approximately
p=0.14N

p<

2) Spurious memory;

3) Auto-associative memory;
4) Reinitialization

5) Oversimplification

Problema de Caixeira Viajante

e Buscar um caminho mais curto entre 7 cidades visitando
cada cidade somente uma vez e voltando a cidade de
partida.

» Um problema classico de otimizacdo combinatodrio;

« Algoritmos para encontrar uma solugao exato sao

NP-dificeis

24



Problema de Caixeira Viajante

O B

j=1

W n n n
2
+7 : (ij+1+xk]—l ]dlj
i=1 j=1k=1
Xio = Xin . . . o
_ d;;: distancia entre cidade i e |
Xi n+l Xi1

Cidade/Posicao 1 2 3 4
1 1 0 0 O
2 O 0 1 O
3 0O 0 O 1
4 0 .1\/40 0

X;: Output do neurdnio (i, j)

N cidadesN? neuronios
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i] ki

1
5= [ gwe

xj(t)={l iff x. (t) Zxk, /N2

0 otherwise




