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Neurodynamics
Dynamical System: 

A dynamical system may be defined as a 
deterministic mathematical prescription for 

evolving the state of a system forward in time 
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Continuous System: Time is a continuous variable

or = F(x, µµµµ) x∈ℜN 
•
x

With x ∈ U ⊂ ℜN , µµµµ ∈ V ⊂ ℜP

where U and V are open sets in ℜN and ℜP

Neurodynamics

Discrete System: Time is a discrete integer-valued variable

xN+1 = F(xN)

where x is a N dimensional vector. Given an initial state x0, 
we can generate an orbit of the discrete time system 

x0, x1, x2, .... by iterating the map.  

For example: xN+1 = -0.5xN
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y = x - xf(t) 

= F(xf(t)) + DF(xf(t))y + Ο(|y|2) 
•
x

•••
+= yxx )(tf

= F(xf(t)), 
•

)(tfx

= DF(xf(t))y + Ο(|y|2) 
•
y

Continuous Dynamical Systems

For the dynamical system:

= F(x, µµµµ) x∈ℜN 
•
x (1)

Let (2)

Where xf(t) is a fixed point.

Then,

Using the Taylor expanding aboutxf(t) gives

Using the factor that we get

(3)

(4)

= DF(xf(t))y
•
y

Ayy =
•

Continuous Dynamical Systems

(5)

(6)

Since y is small, so it is reasonable that the stability of the 
original system could be answered by studying the associated 
linear system:

Since DF(xf(t)) = DF(xf), then 

(7)

0
)()( yy x tDF fet =Then,
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Continuous Dynamical Systems
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A is called a Jacobian matrix (partial derivatives):

∑
=

=
N

k
kkk teAt

1

)exp()( λy

Ae = λe 

We have an eigenvalue equation:

(8)

(9)

∑
=

=
N

k
kk eAy

1
0whereAk are determined from the initial condition: 

λk (k = 1, 2, ......, N) are eigenvalues of A

Continuous Dynamical Systems
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Definition 1: (Lyapunov stability) xf(t) is said to be stable or

Lyapunov stable, if given ε > 0, there exists a δ = δ(ε) > 0 such 

that, for any other solution, y(t), of the system (2-2), satisfying

|xf(t0) - y(t0)| < δ, then  |xf(t) - y(t)| < ε for t > t0,  t0 ∈ ℜ.

Definition 2: (asymptotic stability) xf(t) is said to be asymptotic 

stable if it is lyapunov stable and if there exists a constant b > 0 

such that if  |xf(t0) - y(t0)| < b, then  |xf(t) - y(t)| = 0 when t → ∞.

Continuous Dynamical Systems

Definition 3: Let x = xf be a fixed point of = F(x), then,xf is 

called a hyperbolic fixed point if none of the eigenvalues of 

DF(xf) have zero real part. (a hyperbolic fixed point of a 

N-dimensional map is defined as: none of its eigenvalues have 

absolute one)

Stability of Equilibrium State

Theorem 1: Suppose all of the eigenvalues of A in Eqn. 

(7) 

have negative real parts. Then the equilibrium solutionxf

of the nonlinear flow defined by Eqn.(1) is asymptotically 

stable.

Theorem 2: if one of the eigenvalues of A has a positive real 

part, the fixed point is unstable
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Stability of Equilibrium State

For a two-dimensional continuous system, the stability of 
a fixed point can be classified by its eigenvalues of the
Jacobian matrix evaluated at a fixed point in three types:

• The eigenvalues are real and have the same sign. If the
eigenvalues are negative, this is a stable point; if the
eigenvalues are positive, this is a unstable point.
• The eigenvalues are real and have opposite signs. In this 
case, there is a one-dimensional stable manifold and a one-
dimensional unstable manifold. This fixed point is called a 
unstable saddle point.
• The eigenvalues are complex conjugates. If the real part of
the eigenvalues is negative, this is a stable spiral or a spiral 

sink. If the real part is positive, this is an unstable spiral or a 
spiral source. If the real parts are zero, then this is a center. 

Stability of Equilibrium State

y

x

y

x
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Stability of Equilibrium State

y

x

Stability of Equilibrium State

dx/dt = x - x3/3 - y + I(t)
dy/dt = c(x + a - by) 

(a = 0.7, b = 0.8, c = 0.1)
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λ1, 2 = -[(bc - 1 + x2) ± ((x2 -1 + bc)2 - 4c)1/2] /2 
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Stability of Equilibrium State

•For 0 < A0 < 0.341, the eigenvalues are complex and the real part

is negative and hence the fixed point (xp, yp) is a stable focus. 

•At A0 = 0.341, the real part of eigenvalues vanishes and the 

system undergoes a Hopf bifurcation. 

•For 0.341 < A0 < 1.397, the real part is positive and the fixed 

point is unstable, one can expect a stable limitcycle in this range. 

•At A0 = 1.397 the real part of the eigenvalues vanishes and the 

system undergoes Hopf bifurcation. 

•For A0 > 1.397, the real part is negative, the system’s solution is 

again a stable fixed point. 

•For sufficiently large A0, the system points diverge to infinity. 

Stability of Equilibrium State

Lyapunov Function

According to the definition of stability it would be 

sufficient to find a neighborhood U of xf for which 

orbits starting in U remain in U for positive times. 

This condition would be satisfied if we could show

that the vector field is either tangent to the boundary 

of U or pointing inward towardxf. 
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Stability of Equilibrium State
Lyapunov Function

Theorem: Consider the following continuous dynamical system 

= F(x) x∈ℜN               

Let xf be a fixed point and let V: U→ℜ be a continuous 

differentiable function defined on some neighborhood U of xf

such that

i) V(xf) = 0 and V(x) > 0 if x ≠ xf.

ii)                in U -{ xf}.

Thenxf is stable. Moreover, if

iii)                in U -{ xf}.

Thenxf is asymptotically stable.
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•
x

Stability of Equilibrium State

Lyapunov Function
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(x, y) ∈ ℜ2

Let (xf, yf) be a fixed point. Let V(x, y) be the scalar-valued 

function, V: ℜ2 →ℜ1, with V(xf, yf) = 0, and the locus of 

points satisfying V(x, y) = C = constant form closed curves 

for different values of C encircling (xf, yf) with V(x, y) > 0 

in a neighborhood of (xf, yf). 
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Stability of Equilibrium State
Lyapunov Function

V = C3

V = C2

(xf, yf)

V = C1

Stability of Equilibrium State
Lyapunov Function

The gradient of V, ∇V, is a vector perpendicular to the 

tangent vector along each curve of V which points in 

the direction of increasing V. So if the vector field were 

always to be either tangent or pointing inward for each 

of these curves surrounding (xf, yf), we would have

0 ,x · y) V(x, ≤






∇
••
y
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Stability of Equilibrium State
Lyapunov Function

∇V

∇V∇V

∇V

∇V
∇V

∇V

V 

(xf, yf) 

Discrete Dynamical Systems

Linearized Stability of Equilibrium Solutions

fixed point (stationary point or equilibrium point):
is an equilibrium solution of a point xf ∈ℜN such that
xf = F(xf(t)).

Example 1 (logistic map) : xn+1 = f(xn) = xn(1-xn)

There is only one fixed point: x = 0

Example 2 (logistic map): xn+1 = f(xn) = 2xn(1-xn)
There are two fixed points: x = 0 and x = 0.5
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Discrete Dynamical Systems

Linearized Stability of Equilibrium Solutions

Example 3 (Henon map): 

There are two fixed points: (x = 1, y = 1) and (x = -1, y = -1)
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a = 1, b = 1

Stability of Equilibrium State

xN = xf + yN

yN+1 = DF(xf)yN + Ο(yN
2) 

yN+1 = AyN 

Ae = λe 

∑
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+ =
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Conclusion:
directions corresponding to |λk| > 1 are unstable; 
directions corresponding to |λk| < 1 is stable.

(10)

(11)

(12)

(13)

(14)
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Discrete Dynamical Systems

Linearized Stability of Equilibrium Solutions

Example 1 (logistic map) : xn+1 = f(xn) = xn(1-xn)

There is only one fixed point: x = 0

Since f’(x)|x = 0 = 1 - 2x|x = 0 = 1, then x = 0 is a center

Example 2 (logistic map): xn+1 = f(xn) = 2xn(1-xn)
There are two fixed points: x = 0 and x = 0.5

Since f’(x)|x = 0 = 2 - 4x|x = 0 = 2, then x = 0 is unstable
Since f’(x)|x = 0.5= 2 - 4x|x = 0.5= 0, then x = 0 stable 
(super-stable)

Discrete Dynamical Systems

Linearized Stability of Equilibrium Solutions

Example 3 (Henon map): 

There are two fixed points: (x = 1, y = 1) and (x = -1, y = -1)
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For (x=1 , y = 1) ,21,21 21 −−=+−= λλ unstable

For (x=-1 , y = -1) ,21,21 21 −=+= λλ unstable

a = 1, b = 1
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Stability of Equilibrium State

Exercises: 

1) Let l(x) = ax+b, where a and b are constants. Foe which 

values of a and b does l have na attracting fixed point? A 

repelling fixed point?

2) Let f(x) = x- x2. Show that x = 0 is a fixed point of f, and 

described the dynamical behavior of points near 0.

3) For each of the following linear maps, decide whether

the origin is a sink, source, or saddle.
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Stability of Equilibrium State

Exercises: 

4) Let g(x, y) = (x2-5x+y, x2). Find and classify the fixed

points of g as sink, source, or saddle.

5) Let f(x, y) = (sin(π/3)x, y/2). Find all fixed points and 

their stability. Where does the orbit of each initial value go?

6) Find 
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Hopfield Models 

General Idea: Artificial Neural Networks ↔ Dynamical Systems

Initial Conditions Equilibrium Points

Continuous Hopfield Model

i
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a) the synaptic weight matrix is symmetric,wij = wji, for all i and j. 

b) Each neuron has a nonlinear activation of its own, i.e.yi = ϕi(xi). 

Here, ϕi(•) is chosen as a sigmoid function; 

c) The inverse of the nonlinear activation function exists, so we may 

write x = ϕi
-1(y).
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Continuous Hopfield Model
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Discrete Hopfield Model

• Recurrent network
• Fully connected
• Symmetrically connected (wij = wji, or W = WT)
• Zero self-feedback (wii = 0)
• One layer 
• Binary States: 

xi = 1 firing at maximum value
xi = 0 not firing

• or Bipolar 
xi = 1 firing at maximum value
xi = -1 not firing
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Discrete Hopfield Model

Discrete Hopfield Model 
(Bipole)
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Transfer Function for Neuron i:

x = (x1, x2 ... xN): bipole vector, network state.              
θi : threshold value of xi. 
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Discrete Hopfield Model

E w x x xij i j i i
ij ii

= − +∑∑∑
≠

1
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E w x xij i j
j ii

= −
≠
∑∑

1
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For simplicity, we consider all threshold θi = 0:

Energy Function:

Discrete Hopfield Model

Learning Prescription (Hebbian Learning):

Pattern ξs = (ξs
1, ξs

2, ...,  ξs
n), where  ξs

i take value 1 or -1

∑
=

=
M

jiij N
w

1
,,

1

µ
µµ ξξ

{ ξµ µ = 1, 2, ..., M}: M memory patterns 

In the matrix form:

IξξW M
N

M
T −= ∑

=1

1

µ
µµ
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Discrete Hopfield Model

Energy function is lowered by this learning rule:
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Discrete Hopfield Model

Pattern Association (asynchronous update):
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Discrete Hopfield Model

Example:

Consider a network with three neurons, the weight 
matrix is:
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(1, 1, 1)

(1, -1, 1)
stable

(1, -1, -1)(-1, -1, -1)

(-1, 1, -1)
stable

(-1, 1, 1)

(-1, -1, 1)

(1, 1, -1)

The model with three neurons has two fundamental 
memories (-1, 1, -1)T and (1, -1, 1)T
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State (1, -1, 1)T:

A stable state
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State (-1, 1, -1)T:

A stable state
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State (1, 1, 1)T:

An unstable state. However, it converges to its nearest
stable state (1, -1, 1)T
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State (-1, 1, 1)T:

An unstable state. However, it converges to its nearest
stable state (-1, 1, -1)T
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Thus, the synaptic weight matrix can be determined by
the two patterns:
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Computer Experiments

Significance of Hopfield Model

1) The Hopfield model establishes the bridge between 

various disciplines. 

2) The velocity of pattern recalling in Hopfield models 

is independent on the quantity of patterns stored in 

the net. 
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Limitations of Hopfield Model

2) Spurious memory;

3) Auto-associative memory;

4) Reinitialization 

5) Oversimplification

1) Memory capacity;

The memory capacity is directly dependent on the number

of neurons in the network. A theoretical result is 

N

N
p

log2
<

When N is large, it is approximately

p = 0.14N

Problema de Caixeira Viajante

• Buscar um caminho mais curto entre n cidades visitando 

cada cidade somente uma vez e voltando a cidade de 

partida.

• Um problema clássico de otimização combinatório;

• Algoritmos para encontrar uma solução exato são 

NP-difíceis 
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Problema de Caixeira Viajante
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dij: distancia entre cidade i e j

Cidade/Posição       1     2     3     4  

1                   1     0     0     0

2                   0     0     1     0

3                   0     0     0     1

4                   0     1     0     0

xij: Output do neurônio (i, j) 

N cidades, N2 neurônios
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