

slide 1

SSC0146 – Sistemas Computacionais
Tolerantes a Falhas

Prof. Jó Ueyama

Checkpointing

slide 2

Failure During Program
Execution

♦ Computers today are much faster, but applications
are more complicated

♦ Applications which still take a long time -
∗ (1) Database Updates
∗ (2) Fluid-flow Simulation - weather and climate

modeling
∗ (3) Optimization - optimal deployment of resources by

industry (e.g. - airlines)
∗ (4) Astronomy - N-body simulations and modeling of

universe
∗ (5) Biochemistry - study of protein folding

♦ When execution time is very long - both probability of
failure during execution and cost of failure become
significant

slide 3

Checkpointing - Definition

♦ A checkpoint is a snapshot of entire state of the process
at the moment it was taken

∗ all information needed to restart the process from that
point

♦ Checkpoint saved on stable storage of sufficient
reliability

♦ Most commonly used - Disks: can hold data even if power
is interrupted (but no physical damage to disk); can hold
enormous quantities of data very cheaply

♦ Checkpoints can be very large - tens or hundreds of
megabytes

♦ RAM with a battery backup is also used as stable storage
♦ No medium is perfectly reliable - reliability must be

sufficiently high for the application at hand

slide 4

Overhead and Latency of Checkpoint

♦ Checkpoint Overhead: increase in execution time of
application due to taking a checkpoint (i.e. time that the
application is blocked from executing)

♦ Checkpoint Latency: time needed to save checkpoint
♦ In a simple system - overhead and latency are identical
♦ If part of checkpointing can be overlapped with

application execution - overhead may be substantially
smaller than latency

♦ Example: A process checkpoints by writing its state
into an internal buffer - CPU can continue execution
while the checkpoint is written from buffer to disk

slide 5

Checkpointing Latency
Example

 for (i=0; i<1000000; i++)
 if (f(i)<min) {min=f(i); imin=i;}
 for (i=0; i<100; i++) {
 for (j=0; j<100; j++) {
 c[i][j] += i*j/min;
 }
 }

♦ 1st part - compute
smallest value of f(i)
for 0<i<1000000

 2nd part -
multiplication followed
by division

♦ Latency depends on checkpoint size - is program
dependent and can change during execution

♦ few kilobytes or as large as several gigabytes
♦ 1st part: small checkpoint - only program counter

and variables min and imin
♦ 2nd part: checkpoint must include c[i][j] computed

so far

slide 6

Issues in Checkpointing

♦ At what level (kernel/user/application) should we
checkpoint?

♦ How transparent to user should checkpointing be?
♦ How many checkpoints should we have?
♦ At which points during the program execution

should we checkpoint?
♦ How can we reduce checkpointing overhead?
♦ How do we checkpoint distributed systems

with/without a central controller?
♦ How do we restart the computation at a different

node if necessary

slide 7

Checkpointing at the Kernel Level
♦ Transparent to user; no changes to program
♦ When system restarts after failure - kernel responsible

for managing recovery operation
♦ Every OS takes checkpoints when process preempted

∗ process state is recorded so that execution can resume
from interrupted point without loss of computational
work

♦ But, most OS have little or no checkpointing for fault
tolerance

Checkpointing at the User Level
♦ A user-level library provided for checkpointing

∗ Application programs are linked to this library
♦ Like kernel-level checkpointing, this approach

generally requires no changes to application code
♦ Library also manages recovery from failure

slide 8

Checkpointing at the Application Level
♦ Application responsible for all checkpointing functions
♦ Code for checkpointing & recovery part of application
♦ Provides greatest control over checkpointing process
♦ Disadvantage - expensive to implement and debug

Comparing Checkpointing Levels
♦ Information available to each level may be different
♦ Multiple threads - invisible at the kernel
♦ User & application levels do not have access to

information held at kernel level
∗ Cannot assign process identifying numbers – can be a

problem
♦ User & application levels may not be allowed to

checkpoint parts of file system
∗ May have to store names and pointers to appropriate files

slide 9

Optimal Checkpointing - Analytic Model

♦ Boxes denote latency; shaded part - overhead
♦ Latency –total checkpointing time
♦ Overhead - part of checkpointing not done in parallel with

application execution - CPU is busy checkpointing
application is blocked from executing due to checkpointing

♦ Overhead has a greater impact on performance than
latency

♦ Latency Tlt = t2-t0=t5-t3=t8-t6
♦ Overhead Tov = t1-t0=t4-t3=t7-t6

slide 10

Model Notations

♦ Checkpoint represents state of system at t0,t3,t6
♦ If a failure occurs in [t3,t5] - checkpoint is useless -

system must roll back to previous checkpoint t0

slide 11

Reducing Overhead - Buffering

♦ Processor writes checkpoint into main memory and
then returns to executing application

♦ Direct memory access (DMA) is used to copy
checkpoint from main memory to disk
∗ DMA requires CPU involvement only at beginning

and end of operation
♦ Refinement - copy on write buffering
♦ No need to copy portions of process state that are

unchanged since last checkpoint
♦ If process does not update main memory pages too

often - most of the work involved in copying pages to
a buffer area can be avoided

slide 12

Copy on Write Buffering

♦ Most memory systems provide memory protection
bits (per page of physical main memory) indicating:
(page) is read-write, read-only, or inaccessible

♦ When checkpoint is taken, protection bits of pages
belonging to process are set to read-only

♦ Application continues running while checkpointed
pages are transferred to disk

♦ If application attempts to update a page, an access
violation is triggered

♦ System then buffers page, and permission is set to
read-write

♦ Buffered page is later copied to disk
♦ This is an example of incremental checkpointing

slide 13

Incremental Checkpointing

♦ Recording only changes in process state since the
previous checkpoint was taken

♦ If these changes are few - less has to be saved per
incremental checkpoint

♦ Disadvantage: Recovery is more complicated
♦ Not just loading latest checkpoint and resuming

computation from there
♦ Need to build system state by examining a

succession of incremental checkpoints

slide 14

Reducing Checkpointing
Overhead - Memory Exclusion

♦ Two types of variables that do not need to be
checkpointed:
∗ Those that have not been updated, and
∗ Those that are “dead”

♦ A dead variable is one whose present value will never
again be used by the program

♦ Two kinds of dead variables:
∗ Those that will never again be referenced by

program, and
∗ Those for which the next access will be a write

♦ The challenge is to accurately identify such variables

slide 15

Identifying Dead Variables
♦ The address space of a process has four segments: code, global data, heap,

stack
∗ Finding dead variables in code is easy: self-modifying code no

longer used - code is read-only, no need to checkpoint
∗ Stack segment equally easy: contents of addresses held in

locations below stack pointer are obviously dead

∗ Heap segment: many languages allow programmers to
explicitly allocate and deallocate memory (e.g., malloc() and
free() calls in C) - contents of free list are dead by definition

∗ Some user-level checkpointing packages (e.g., libckpt) provide
programmer with procedure calls (e.g., checkpoint_here()) that
specify regions of memory that should be excluded from, or
included in, future checkpoints

slide 16

Reducing Latency
♦ Checkpoint compression - less written to disk
♦ How much is gained through compression depends on:

∗ Extent of compression - application-dependent - can
vary between 0 and 50%

∗ Work required to execute the compression
algorithm - done by CPU - adds to checkpointing
overhead as well as latency

♦ In simple sequential checkpointing where Tlt = Tov - compression
may be beneficial

♦ In more efficient systems where Tov << Tlt -
usefulness of this approach is questionable and must be carefully
assessed

♦ Another way of reducing latency is incremental checkpointing

slide 17

CARER: Cache-Aided Rollback Error
Recovery

♦ CARER scheme
∗ Marks process footprint in main memory and cache as

parts of checkpointed state
∗ Reduces time required to take a checkpoint
∗ Allows more frequent checkpoints
∗ Reduces penalty of rollback upon failure

♦ Assuming memory and cache are less prone to failure
than processor

♦ Checkpointing consists of storing processor's registers
in main memory

♦ Includes processes' footprint in main memory + lines of
cache marked as part of checkpoint

slide 18

Checkpoint Bit For Each Cache Line
♦ Scheme requires hardware modification - an extra

checkpoint bit associated with each cache line
♦ When bit is 1 - corresponding line is unmodifiable

∗ Line is part of latest checkpoint
∗ May not update without being forced to take a

checkpoint immediately
♦ When bit is 0 - processor is free to modify word
♦ Process' footprint in memory + marked cache lines serve as

both memory and part of checkpoint
∗ Less freedom when deciding when to checkpoint

♦ Checkpointing is forced when
∗ A line marked unmodifiable is to be updated
∗ Anything in memory is to be updated
∗ An I/O instruction is executed or an external interrupt

occurs

slide 19

Checkpointing and Roll Back

♦ Taking a checkpoint involves:
∗ (a) Saving processor registers in memory
∗ (b) Setting to 1 the checkpoint bit associated

with each valid cache line
♦ Rolling back to previous checkpoint simple: restore

registers, and mark invalid all cache lines with
checkpoint bit = 0

♦ Cost:
∗ A checkpoint bit for every cache line
∗ Every write-back of a cache line into memory

involves taking a checkpoint

slide 20

Checkpointing in Distributed Systems

♦ Distributed system: processors and associated
memories connected by an interconnection
network
∗ Each processor may have local disks
∗ Can be a network file system accessible by all

processors
♦ Processes connected by directional channels

-point-to-point connections from one process to
another
∗ Assume channels are error-free and deliver

messages in the order received

slide 21

Process/Channel/System State

♦ The state of channel at t is
∗ set of messages carried by it up to time t
∗ order in which they were received

♦ State of distributed system: aggregate states of
individual processes and channels

♦ State is consistent if, for every message delivery
there is a corresponding message-sending event

♦ A state violating this - a message delivered that had
not yet been sent - violates causality
∗ Such a message is called an orphan

♦ The converse - a system state reflecting sending of a
message but not its receipt - is consistent

slide 22

Consistent/Inconsistent
States

♦ Example:2 processes P and Q,
each takes two checkpoints;
 Message m is sent by P to Q

♦ Checkpoint sets representing consistent system states:
∗ {CP1,CQ1}: Neither checkpoint knows about m
∗ {CP2, CQ1}: CP2 indicates that m was sent; CQ1 has no

record of receiving m
∗ {CP2,CQ2}: CP2 indicates that m was sent; CQ2 indicates

that it was received
♦ {CP1,CQ2} is inconsistent:

∗ CP1 has no record of m being sent
∗ CQ2 records that m was received
∗ m is an orphan message

slide 23

Recovery Line
♦ Consistent set of checkpoints

 forms a recovery line- can
 roll system back to them and
 restart from there

♦ Example: {CP1,CQ1}
∗ Rolling back P to CP1 undoes sending of m
∗ Rolling back Q to CQ1 means: Q has no record of m
∗ Restarting from CP1,CQ1, P will again send m

♦ Example: {CP2,CQ1}
∗ Rolling back P to CP2 means: it will not retransmit m
∗ Rolling back Q to CQ1: Q has no record of receiving m

♦ Recovery process has to be able to play back m to Q
∗ Adding it to checkpoint of P, or
∗ Have a separate message log which records everything received by Q

slide 24

Useless
Checkpoints

♦ Checkpoints can be useless
∗ Will never form part of a recovery line
∗ Taking them is a waste of time

♦ Example: CQ2 is a useless checkpoint
♦ CQ2 records receipt of m1, but not sending of m2
♦ {CP1,CQ2} not consistent

∗ otherwise m1 would become an orphan
♦ {CP2,CQ2} not consistent

∗ otherwise m2 would become an orphan

slide 25

 The
Domino
Effect

♦ A single failure can cause a sequence of rollbacks that
send every process back to its starting point

♦ Happens if checkpoints are not coordinated either
directly (through message passing) or indirectly (by using
synchronized clocks)

♦ Example: P suffers a transient failure
∗ Rolls back to checkpoint CP3
∗ Q rolls back to CQ2 (so m6 will not be an orphan)
∗ P rolls back to CP2 (so m5 will not be an orphan)
∗ This continues until both processes have rolled back

to their starting positions

slide 26

Lost
Messages

♦ Suppose Q rolls back to CQ1 after receiving message
m from P

♦ All activity associated with having received m is lost
♦ If P does not roll back to CP2 – the message was lost –

not as severe as having orphan messages
♦ m can be retransmitted
♦ If Q sent an acknowledgment of that message to P

before rolling back, then the acknowledgment would be
an orphan message unless P rolls back to CP2

slide 27

 Livelock
♦ Another problem that can

arise in distributed
checkpointed systems

♦ Q sends P a message m1;
 P sends Q a message m2

♦ P fails before receiving m1
♦ Q rolls back to CQ1 (otherwise m2 is orphaned)
♦ P recovers, rolls back to CP2, sends another copy of m2,

and then receives the copy of m1 that was sent before all
the rollbacks began

♦ Because Q has rolled back, this copy of m1 is now
orphaned, and P has to repeat its rollback

♦ This orphans the second copy of m2 and Q must repeat its
rollback

♦ This may continue indefinitely unless there is some outside
intervention

slide 28

 Wrapping up

♦ Chapter 6 – Fault tolerant systems by Israel Koren

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

