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Failure During Program 
Execution

♦ Computers today are much faster, but applications 
are more complicated 

♦ Applications which still take a long time -
∗ (1) Database Updates
∗ (2) Fluid-flow Simulation - weather and climate 

modeling
∗ (3) Optimization - optimal deployment of resources by 

industry (e.g. - airlines)
∗ (4) Astronomy -  N-body simulations and modeling of  

universe 
∗ (5) Biochemistry - study of protein folding 

♦ When execution time is very long - both probability of 
failure during execution and cost of failure become 
significant
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Checkpointing - Definition

♦ A checkpoint is a snapshot of entire state of the process 
at the moment it was taken 

∗ all information needed to restart the process from that 
point

♦ Checkpoint saved on stable storage of sufficient 
reliability

♦ Most commonly used - Disks: can hold data even if power 
is interrupted (but no physical damage to disk); can hold 
enormous quantities of data very cheaply

♦ Checkpoints can be very large - tens or hundreds of 
megabytes

♦ RAM with a battery backup is also used as stable storage
♦ No medium is perfectly reliable - reliability must be 

sufficiently high for the application at hand
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Overhead and Latency of Checkpoint

♦ Checkpoint Overhead: increase in execution time of 
application due to taking a checkpoint (i.e. time that the 
application is blocked from executing)

♦ Checkpoint Latency: time needed to save checkpoint  
♦ In a simple system - overhead and latency are identical
♦ If part of checkpointing can be overlapped with 

application execution - overhead may be substantially 
smaller than latency

♦ Example: A process checkpoints by writing its state 
into an internal buffer - CPU can continue execution 
while the checkpoint is written from buffer to disk
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Checkpointing Latency 
Example

  for (i=0; i<1000000; i++) 
       if (f(i)<min) {min=f(i); imin=i;}
  for (i=0; i<100; i++) {
       for (j=0; j<100; j++) {
            c[i][j] += i*j/min;
          }
      }

♦ 1st part - compute 
smallest value of f(i) 
for 0<i<1000000

  2nd part - 
multiplication followed 
by division

♦ Latency depends on checkpoint size - is program 
dependent and can change during execution

♦ few kilobytes or as large as several gigabytes
♦ 1st part: small checkpoint - only program counter 

and variables  min and imin
♦ 2nd part: checkpoint must include c[i][j] computed 

so far
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Issues in Checkpointing

♦ At what level (kernel/user/application) should we 
checkpoint? 

♦ How transparent to user should checkpointing be?  
♦ How many checkpoints should we have?
♦ At which points during the program execution 

should we checkpoint?
♦ How can we reduce checkpointing overhead?
♦ How do we checkpoint distributed systems 

with/without a central controller?
♦ How do we restart the computation at a different 

node if necessary



 

slide 7

Checkpointing at the Kernel Level
♦ Transparent to user; no changes to program 
♦ When system restarts after failure - kernel  responsible 

for managing recovery operation
♦ Every OS takes checkpoints when process preempted  

∗ process state is recorded so that execution can resume 
from interrupted point without loss of computational 
work   

♦ But, most OS have little or no checkpointing for fault 
tolerance

Checkpointing at the User Level
♦ A user-level library provided for checkpointing

∗ Application programs are linked to this library
♦ Like kernel-level checkpointing, this approach 

generally requires no changes to application code
♦ Library also manages recovery from failure
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Checkpointing at the Application Level
♦ Application responsible for all checkpointing functions 
♦ Code for checkpointing & recovery part of application
♦ Provides greatest control over checkpointing process 
♦ Disadvantage - expensive to implement and debug

Comparing Checkpointing Levels
♦ Information available to each level may be different
♦ Multiple threads - invisible at the kernel 
♦ User & application levels do not have access to 

information held at kernel level
∗ Cannot assign process identifying numbers – can be a 

problem
♦ User & application levels may not be allowed to 

checkpoint parts of file system 
∗ May have to store names and pointers to appropriate files
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Optimal Checkpointing - Analytic Model

♦ Boxes denote latency;  shaded part - overhead 
♦ Latency –total checkpointing time 
♦ Overhead - part of checkpointing not done in parallel with 

application execution - CPU is busy checkpointing 
application is blocked from executing due to checkpointing

♦ Overhead has a greater impact on performance than 
latency

♦ Latency Tlt = t2-t0=t5-t3=t8-t6 
♦ Overhead Tov = t1-t0=t4-t3=t7-t6 
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Model Notations

♦ Checkpoint represents state of system at t0,t3,t6 
♦ If a failure occurs in [t3,t5] - checkpoint is useless - 

system must roll back to previous checkpoint t0
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Reducing Overhead - Buffering

♦ Processor writes checkpoint into main memory and 
then returns to executing application

♦ Direct memory access (DMA) is used to copy 
checkpoint from main memory to disk
∗ DMA requires CPU involvement only at beginning 

and end of operation
♦ Refinement - copy on write buffering 
♦ No need to copy portions of process state that are 

unchanged since last checkpoint  
♦ If process does not update main memory pages too 

often - most of the work involved in copying pages to 
a buffer area can be avoided
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Copy on Write Buffering

♦ Most memory systems provide memory protection 
bits (per page of physical main memory) indicating: 
(page) is read-write, read-only, or inaccessible

♦ When checkpoint is taken, protection bits of pages 
belonging to process are set to read-only 

♦ Application continues running while checkpointed 
pages are transferred to disk

♦ If application attempts to update a page, an access 
violation is triggered

♦ System then buffers page, and permission is set to 
read-write

♦ Buffered page is later copied to disk
♦ This is an example of incremental checkpointing 
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Incremental Checkpointing 

♦ Recording only changes in process state since the 
previous checkpoint was taken  

♦ If these changes are few - less has to be saved per 
incremental checkpoint

♦ Disadvantage: Recovery is more complicated
♦ Not just loading latest checkpoint and resuming 

computation from there 
♦ Need to build system state by examining a 

succession of incremental checkpoints
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Reducing Checkpointing 
Overhead - Memory Exclusion

♦ Two types of variables that do not need to be 
checkpointed:  
∗ Those that have not been updated, and 
∗ Those that are “dead”  

♦ A dead variable is one whose present value will never 
again be used by the program

♦ Two kinds of dead variables: 
∗ Those that will never again be referenced by 

program, and
∗ Those for which the next access will be a write

♦ The challenge is to accurately identify such variables
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Identifying Dead Variables
♦ The address space of a process has four segments: code, global data, heap, 

stack
∗ Finding dead variables in code is easy: self-modifying code  no 

longer used - code is read-only, no need to checkpoint  
∗ Stack segment equally easy: contents of addresses held in 

locations below stack pointer are obviously dead 

∗ Heap segment: many languages allow programmers to 
explicitly allocate and deallocate memory (e.g., malloc() and 
free() calls in C) - contents of free list are dead by definition

∗ Some user-level checkpointing packages (e.g., libckpt) provide 
programmer with procedure calls (e.g., checkpoint_here()) that 
specify regions of memory that should be excluded from, or 
included in, future checkpoints
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Reducing Latency
♦ Checkpoint compression - less written to disk
♦ How much is gained through compression depends on:

∗ Extent of compression - application-dependent - can 
vary between 0 and 50%

∗ Work required to execute the compression 
algorithm - done by CPU - adds to checkpointing 
overhead as well as latency   

♦ In simple sequential checkpointing where Tlt = Tov   - compression 
may be beneficial 

♦ In more efficient systems where  Tov << Tlt                    - 
usefulness of this approach is questionable and must be carefully 
assessed

♦ Another way of reducing latency is incremental checkpointing
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CARER: Cache-Aided Rollback Error 
Recovery

♦ CARER scheme 
∗ Marks process footprint in main memory and cache as 

parts of checkpointed state 
∗ Reduces time required to take a checkpoint  
∗ Allows more frequent checkpoints 
∗ Reduces penalty of rollback upon failure

♦ Assuming memory and cache are less prone to failure 
than processor 

♦ Checkpointing consists of storing processor's registers 
in main memory

♦ Includes processes' footprint in main memory +  lines of 
cache marked as part of checkpoint
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Checkpoint Bit For Each Cache Line
♦ Scheme requires hardware modification - an extra 

checkpoint bit associated with each cache line 
♦ When bit is 1 - corresponding line is unmodifiable

∗ Line is part of latest checkpoint 
∗ May not update without being forced to take a 

checkpoint immediately
♦ When bit is 0 - processor is free to modify word 
♦ Process' footprint in memory + marked cache lines serve as 

both memory and part of checkpoint 
∗ Less freedom when deciding when to checkpoint

♦ Checkpointing is forced when
∗ A line marked unmodifiable is to be updated
∗ Anything in memory is to be updated
∗ An I/O instruction is executed or an external interrupt 

occurs
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Checkpointing and Roll Back

♦ Taking a checkpoint involves:
∗ (a) Saving processor registers in memory 
∗ (b) Setting to 1 the checkpoint bit associated 

with each valid cache line
♦ Rolling back to previous checkpoint simple: restore 

registers, and mark invalid all cache lines with 
checkpoint bit = 0

♦ Cost:  
∗ A checkpoint bit for every cache line
∗ Every write-back of a cache line into memory 

involves taking a checkpoint 
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Checkpointing in Distributed Systems

♦ Distributed system: processors and associated 
memories connected by an interconnection 
network 
∗ Each processor may have local disks 
∗ Can be a network file system accessible by all 

processors 
♦ Processes connected by directional channels 

-point-to-point connections from one process to 
another
∗ Assume channels are error-free and deliver 

messages in the order received
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Process/Channel/System State

♦ The state of channel at t is 
∗ set of messages carried by it up to time t 
∗ order in which they were received

♦ State of distributed system: aggregate states of 
individual processes and channels 

♦ State is consistent if, for every message delivery 
there is a corresponding message-sending event

♦ A state violating this - a message delivered that had 
not yet been sent - violates causality
∗ Such a message is called an orphan

♦ The converse - a system state reflecting sending of a 
message but not its receipt - is consistent
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Consistent/Inconsistent 
States

♦ Example:2 processes P and Q,                                                  
each takes two checkpoints;                                                        
            Message m is sent by P to Q 

♦ Checkpoint sets representing consistent system states:
∗ {CP1,CQ1}: Neither checkpoint knows about m
∗ {CP2, CQ1}: CP2 indicates that m was sent; CQ1 has no 

record of receiving m
∗ {CP2,CQ2}: CP2 indicates that m was sent; CQ2 indicates 

that it was received
♦ {CP1,CQ2} is inconsistent:                             

∗ CP1 has no record of m being sent
∗ CQ2 records that m was received 
∗ m is an orphan message
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Recovery Line
♦ Consistent set of checkpoints

 forms a recovery line- can
 roll system back to them and
 restart from there

♦ Example: {CP1,CQ1} 
∗ Rolling back P to CP1 undoes sending of m
∗ Rolling back Q to CQ1 means: Q has no record of m 
∗ Restarting from CP1,CQ1, P will again send m

♦ Example: {CP2,CQ1}
∗ Rolling back P to CP2 means: it will not retransmit m 
∗ Rolling back Q to CQ1: Q has no record of receiving m

♦ Recovery process has to be able to play back m to Q  
∗ Adding it to checkpoint of P, or 
∗ Have a separate message log which records everything received by Q
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Useless 
Checkpoints

♦ Checkpoints can be useless                                                   
∗ Will never form part of a recovery line
∗ Taking them is a waste of time

♦ Example: CQ2 is a useless checkpoint
♦ CQ2 records receipt of m1, but not sending of m2  
♦ {CP1,CQ2} not consistent 

∗ otherwise m1 would become an orphan 
♦ {CP2,CQ2} not consistent 

∗ otherwise m2 would become an orphan
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 The 
Domino 
Effect 

♦ A single failure can cause a sequence of rollbacks that 
send every process back to its starting point

♦ Happens if checkpoints are not coordinated either 
directly (through message passing) or indirectly (by using 
synchronized clocks)

♦ Example: P suffers a transient failure 
∗ Rolls back to checkpoint CP3
∗ Q rolls back to CQ2 (so m6 will not be an orphan) 
∗ P rolls back to CP2 (so m5 will not be an orphan) 
∗ This continues until both processes have rolled back 

to their starting positions
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Lost 
Messages

♦ Suppose Q rolls back to CQ1 after receiving message 
m from P

♦ All activity associated with having received m is lost
♦ If P does not roll back to CP2 – the message was lost – 

not as severe as having orphan messages 
♦ m can be retransmitted
♦ If Q sent an acknowledgment of that message to P 

before rolling back, then the acknowledgment would be 
an orphan message unless P rolls back to CP2
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 Livelock
♦ Another problem that can 

arise in distributed 
checkpointed systems

♦ Q sends P a message m1;                                                       
  P sends Q a message m2

♦ P fails before receiving m1  
♦ Q rolls back to CQ1 (otherwise m2 is orphaned)
♦ P recovers, rolls back to CP2, sends another copy of m2, 

and then receives the copy of m1 that was sent before all 
the rollbacks began  

♦ Because Q has rolled back, this copy of m1 is now 
orphaned, and P has to repeat its rollback

♦ This orphans the second copy of m2 and Q must repeat its 
rollback

♦ This may continue indefinitely unless there is some outside 
intervention
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 Wrapping up

♦ Chapter 6 – Fault tolerant systems by Israel Koren
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