(Very) Brief Review to **Probabilistic Theory**

Joint and Conditional Probability

- P(X=x and Y=y) = P(x,y)
- If X and Y are independent then P(x,y) = P(x) P(y)
- $P(x \mid y)$ is the probability of x given y $P(x \mid y) = P(x,y) / P(y)$ $P(x,y) = P(x \mid y) P(y)$
- If X and Y are independent then $P(x \mid y) = P(x)$

Law of Total Probability, Marginals

Discrete case Continuous case

$$\sum_{x} P(x) = 1 \qquad \qquad \int p(x) \, dx = 1$$

$$P(x) = \sum_{y} P(x, y) \qquad p(x) = \int p(x, y) dx$$

$$P(x) = \sum_{y} P(x, y) \qquad p(x) = \int p(x, y) \, dy$$
$$P(x) = \sum_{y} P(x \mid y) P(y) \qquad p(x) = \int p(x \mid y) p(y) \, dy$$

Bayes Rule

$$P(x, y) = P(x \mid y)P(y) = P(y \mid x)P(x)$$

$$P(x|y) = \frac{P(y|x) P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$

Solução: lei da probabilidade total!

Não depende de x Difícil de calcular!

$$P(y) = \sum_{x} P(y \mid x) P(x)$$

Bayes Rule

$$P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$

$$P(x \mid y) = \frac{P(y \mid x) \ P(x)}{\sum_{x} P(y \mid x) P(x)} = \eta \ P(y \mid x) P(x)$$

Bayes Rule with Background Knowledge

$$P(x \mid y, z) = \frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}$$

Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is P(open|z)?

Causal vs. Diagnostic Reasoning

- *P(open|z)* is diagnostic.
- P(z|open) is causal.
- Often causal knowledge is easier to obtain. count frequencies!
- Bayes rule allows us to use causal knowledge:

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z)}$$

Example

- P(z|open) = 0.6 $P(z|\neg open) = 0.3$
- $P(open) = P(\neg open) = 0.5$

$$P(open | z) = ??$$

$$P(x \mid y) = \frac{P(y \mid x) \ P(x)}{P(y)}$$

$$P(x \mid y) = \frac{P(y \mid x) \ P(x)}{\sum_{x} P(y \mid x) P(x)} = \eta \ P(y \mid x) P(x)$$

Example

- P(z|open) = 0.6 $P(z|\neg open) = 0.3$
- $P(open) = P(\neg open) = 0.5$

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z \mid open)p(open) + P(z \mid \neg open)p(\neg open)}$$

$$P(open \mid z) = \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{2}{3} = 0.67$$

• z raises the probability that the door is open.

Combining Evidence

- Suppose our robot obtains another observation z_2 .
- How can we integrate this new information?
- More generally, how can we estimate $P(x|z_1...z_n)$?

Recursive Bayesian Updating

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x, z_1,...,z_{n-1}) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

Markov assumption: z_n is independent of $z_1,...,z_{n-1}$ if we know x.

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

= $\eta P(z_n \mid x) P(x \mid z_1,...,z_{n-1})$

12

Actions

- Often the world is **dynamic** since
 - actions carried out by the robot,
 - actions carried out by other agents,
 - or just the **time** passing by change the world.
- How can we incorporate such actions?

Typical Actions

- The robot turns its wheels to move
- The robot uses its manipulator to grasp an object
- Plants grow over time...
- Actions are never carried out with absolute certainty.
- In contrast to measurements, actions generally increase the uncertainty.

14

Modeling Actions

 To incorporate the outcome of an action u into the current "belief", we use the conditional pdf

 This term specifies the pdf that executing u changes the state from x' to x.

15

Example: Closing the door

State Transitions

P(x|u,x') for u = ``close door'':

If the door is open, the action "close door" succeeds in 90% of all cases.

17

Integrating the Outcome of Actions

Continuous case:

$$P(x \mid u) = \int P(x \mid u, x') P(x') dx'$$

Discrete case:

$$P(x | u) = \sum_{x'} P(x | u, x') P(x')$$

18

Example: The Resulting Belief

$$P(closed \mid u) = \sum_{x'} P(closed \mid u, x') P(x')$$

$$P(open \mid u) = \sum_{x'} P(open \mid u, x') P(x')$$

Example: The Resulting Belief

$$P(closed \mid u) = \sum_{x} P(closed \mid u, x') P(x')$$

$$= P(closed \mid u, open) P(open)$$

$$+ P(closed \mid u, closed) P(closed)$$

$$= \frac{9}{10} * \frac{5}{8} + \frac{1}{1} * \frac{3}{8} = \frac{15}{16}$$

$$P(open \mid u) = \sum_{x} P(open \mid u, x') P(x')$$

$$= P(open \mid u, open) P(open)$$

$$+ P(open \mid u, closed) P(closed)$$

$$= \frac{1}{10} * \frac{5}{8} + \frac{0}{1} * \frac{3}{8} = \frac{1}{16}$$

$$= 1 - P(closed \mid u)$$

Bayes Filters: Framework

- Given:
 - Stream of observations z and action data u:

$$d_t = \{u_1, z_1, \dots, u_t, z_t\}$$

- Sensor model P(z|x).
- Action model P(x|u,x').
- Prior probability of the system state P(x').
- Wanted:
 - Estimate of the state X of a dynamical system.
 - The posterior of the state is also called **Belief**:

$$Bel(x_t) = P(x_t | u_1, z_1 ..., u_t, z_t)$$

Markov Assumption

- **Underlying Assumptions**
- Static world Independent noise
- Perfect model, no approximation errors

Bayes Filters

```
Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}
```

```
Algorithm Bayes_filter( Bel(x),d ):
2.
      If d is a perceptual data item z then
         For all x do
             Bel(x) = P(z \mid x)Bel'(x)
             \eta = \eta + Bel(x)
         For all x do
              Bel(x) = \eta^{-1}Bel(x)
      Else if d is an action data item u then
        For all x do
             Bel(x) = \int P(x \mid u, x') Bel(x') dx'
11.
12. Return Bel(x)
```

Bayes Filters are Familiar!

 $Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

Summary

- Bayes rule allows us to compute probabilities that are hard to assess otherwise.
- Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.
- Bayes filters are a probabilistic tool for estimating the state of dynamic systems.