
(Very) Brief Review to 
Probabilistic Theory
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Joint and Conditional Probability

• P(X=x and Y=y) = P(x,y)

• If X and Y are independent then 

P(x,y) = P(x) P(y)

• P(x | y) is the probability of x given y
P(x | y) = P(x,y) / P(y)

P(x,y)   = P(x | y) P(y)

• If X and Y are independent then

P(x | y) = P(x)
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Law of Total Probability, Marginals
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Bayes Rule

evidence

prior likelihood
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Não depende de x

Difícil de calcular!

Solução: lei da probabilidade total!
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Bayes Rule

evidence

prior likelihood
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Bayes Rule 
with Background Knowledge
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Simple Example of State Estimation

• Suppose a robot obtains measurement z

• What is P(open|z)?
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Causal vs. Diagnostic Reasoning

• P(open|z) is diagnostic.

• P(z|open) is causal.
•Often causal knowledge is easier to 
obtain.

•Bayes rule allows us to use causal 
knowledge:
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Example

• P(z|open) = 0.6 P(z|¬open) = 0.3

• P(open) = P(¬open) = 0.5
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Example

• P(z|open) = 0.6 P(z|¬open) = 0.3

• P(open) = P(¬open) = 0.5
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• z raises the probability that the door is open.
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Combining Evidence

•Suppose our robot obtains another 
observation z2.

•How can we integrate this new 
information?

•More generally, how can we estimate
P(x| z1...zn )?
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Recursive Bayesian Updating
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Markov assumption: zn is independent of z1,...,zn-1 if 
we know x.
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Actions

•Often the world is dynamic since
• actions carried out by the robot,

• actions carried out by other agents,

• or just the time passing by

change the world.

•How can we incorporate such 
actions?
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Typical Actions

• The robot turns its wheels to move

• The robot uses its manipulator to grasp 
an object

• Plants grow over time…

• Actions are never carried out with 
absolute certainty.

• In contrast to measurements, actions 
generally increase the uncertainty. 
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Modeling Actions

• To incorporate the outcome of an 
action u into the current “belief”, we 
use the conditional pdf 

P(x|u,x’)

• This term specifies the pdf that 
executing u changes the state 
from x’ to x.
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Example: Closing the door
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State Transitions

P(x|u,x’) for u = “close door”:

If the door is open, the action “close 
door” succeeds in 90% of all cases.

open closed0.1 1

0.9

0
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Integrating the Outcome of Actions
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Continuous case:

Discrete case:
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Example: The Resulting Belief
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Example: The Resulting Belief
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Bayes Filters: Framework

• Given:

• Stream of observations z and action data u:

• Sensor model P(z|x).

• Action model P(x|u,x’).

• Prior probability of the system state P(x’).

• Wanted: 

• Estimate of the state X of a dynamical system.

• The posterior of the state is also called Belief:
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Markov Assumption

Underlying Assumptions

• Static world

• Independent noise

• Perfect model, no approximation errors
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Bayes Filters
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z = observation
u = action
x = state
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Bayes Filter Algorithm 

1. Algorithm Bayes_filter( Bel(x),d ):

2. η=0

3. If d is a perceptual data item z then

4. For all x do

5.

6.

7. For all x do

8.

9. Else if d is an action data item u then

10. For all x do

11.

12. Return Bel(x)
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Bayes Filters are Familiar!

• Kalman filters

• Particle filters

• Hidden Markov models

• Dynamic Bayesian networks

• Partially Observable Markov Decision 
Processes (POMDPs)
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Summary

•Bayes rule allows us to compute 
probabilities that are hard to assess 
otherwise.

•Under the Markov assumption, 
recursive Bayesian updating can be 
used to efficiently combine evidence.

•Bayes filters are a probabilistic tool 
for estimating the state of dynamic 
systems.


