

Semântica – parte 1

SCC5869 Tópicos em Processamento de Língua Natural

Thiago A. S. Pardo

Significado e representação

- Significado de palavras, orações, sentenças, textos
 - Atenção: há vários níveis de tratamento do significado
- Essencial para que sistemas de PLN sejam mais inteligentes
 - Exemplos?

3

Semântica

- Significado de palavras, orações, sentenças, textos
 - Atenção: há vários níveis de tratamento do significado
- Essencial para que sistemas de PLN sejam mais inteligentes
 - De tarefas simples a complexas
 - Tradução e sumarização de textos
 - · Geração e verificação de respostas de exames
 - Reação apropriada a ações, p.ex., acompanhar de desempenhar apropriadamente em um diálogo
 - Aprendizado automático
 - · Perceber insultos, ironias, metáforas, etc.
 - · Interpretar instruções

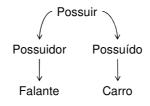
- Análise semântica: mapear superfície textual em significado
 - Dados lingüísticos para não lingüísticos
 - Expressões lingüísticas para conceitos, proposições
- Representação do significado
 - <u>Linguagens</u> de representação do significado

5

Semântica

• Exemplos de representação

"Eu tenho um carro"


∘ Lógica de 1ª ordem

 ∃ e,c Possuir(e) ∧ Possuidor(e,Falante) ∧ Possuído(e,c) ∧ Carro(c)

• Exemplos de representação

"Eu tenho um carro"

• Rede semântica

7

Semântica

• Exemplos de representação

"Eu tenho um carro"

- Representação baseada em *frames*
 - Possuir

Possuidor: FalantePossuído: Carro

Exemplos de representação

"Eu tenho um carro"

Diagrama de dependência conceitual

Carro

↑ Possuído-por
Falante

9

Semântica

- Linguagens de representação
 - Suposições diferentes
 - Perspectivas variadas da questão
 - Poder de representação variado
 - Fundamentos em comum
 - · Símbolos que correspondem a objetos
 - · Propriedades de objetos
 - · Relações entre objetos

- Linguagens de representação
 - 2 aspectos
 - Representação do conteúdo lingüístico
 - · Representação do estado de coisas no mundo
 - Há requisitos desejáveis para as representações

11

Requisitos da representação

- Verificabilidade
 - Deve ser possível verificar a veracidade de representações
 - Por exemplo, via constatação em uma base de conhecimento
 - Exemplo
 - · Pergunta: O restaurante serve comida vegetariana?
 - Representação: Serve(Restaurante,Comida_vegetariana)
 - · Se estiver na base, OK/VERDADE
 - · Caso contrário, FALSO
 - · Negativo ou não se sabe

Requisitos da representação

- Evitar ambigüidade
 - Apesar de haver ambigüidades, a representação deve evitá-las
 - · Nem sempre é possível
 - Exemplo
 - · Sentença: O homem viu a torre Eiffel enquanto voava.
 - · Representação:
 - Viu(Homem,Torre_Eiffel) \(\times \) Momento(Viu,Enquanto_voava)
 - Viu(Homem,Torre_Eiffel) \(\times \) Voava(Torre_Eiffel)

19

Requisitos da representação

- Representação de vagueza
 - Interpretações abertas, mas não ambíguas
 - Exemplo
 - · Sentença: Eu quero comer comida italiana.
 - O termo "comida italiana" é suficientemente específico para se decidir por um restaurante, por exemplo
 - ... mas é muito vago para saber o que se quer de fato comer

Requisitos da representação

- Forma canônica
 - Mesmo significado por meio de diferentes expressões lingüísticas, mas se deseja uma única representação
 - Exemplo
 - Várias sentenças, mesmo significado

 - O restaurante serve comida vegetariana?Comida vegetariana é servida no restaurante?
 - · O restaurante tem pratos vegetarianos?
 - · Tem comida vegetariana no restaurante?
 - Idealmente, representação única
 - Serve(Restaurante, Comida_vegetariana)
 - Alternativamente, meio de se verificar compatibilidade entre representações
 - Serve(Restaurante,Comida_vegetariana) = Tem(Restaurante,Pratos_vegetarianos)

Requisitos da representação

- Forma canônica
 - Mesmo significado por meio de diferentes expressões lingüísticas, mas se deseja uma única representação
 - Exemplo

Por quê?

- Várias sentenças, mesmo significado
 - · O restaurante serve comida vegetariana?
 - Comida vegetariana é servida no restaurante?
 - · O restaurante tem pratos vegetarianos? · Tem comida vegetariana no restaurante?
- Idealmente, representação única
- Serve(Restaurante,Comida_vegetariana)
- Alternativamente, meio de se verificar compatibilidade entre representações
 - Serve(Restaurante,Comida_vegetariana) = Tem(Restaurante,Pratos_vegetarianos)

Requisitos da representação

- Inferência e variáveis
 - Tirar conclusões sobre a veracidade de proposições que não são explicitamente representadas na base de conhecimento
 - Exemplos
 - Sentença: Vegetarianos podem comer naquele restaurante?
 - É preciso saber
 - · "vegetarianos comem comida vegetariana"
 - "se aquele restaurante serve comida vegetariana"
 - Sentença: Gostaria de encontrar um restaurante em que eu posso comer comida vegetariana.
 - · Não se cita nome de nenhum restaurante
 - · Precisa-se de um elemento variável
 - Serve(x,Comida_vegetariana)

17

Requisitos da representação

- Expressividade
 - Capacidade de se representar qualquer (ou uma grande variedade de) tipo de assunto/conhecimento
 - Qualquer "segmento textual" que faça sentido deve ser passível de representação
 - Restrição forte!

Lógica de 1ª ordem

19

Características

- Lógica de 1ª ordem
 - Flexível
 - Bem entendida
 - Computacionalmente tratável
 - Verificabilidade
 - Inferência
 - Expressividade
- Cálculo de predicados

Elementos básicos

- Termos: representam objetos
 - Constantes (sempre capitalizadas)
 - · Restaurante, Comida_vegetariana
 - Funções (podem indicar propriedades)
 - LocalDe(Restaurante)
 - Variáveis (não capitalizadas)
 - · x, y, e, c
 - · Necessitam de quantificadores

2

Elementos básicos

- Predicados: representam relações entre objetos
 - Serve(Restaurante,Comida_vegetariana)
 - Restaurante(Lanchonete_da_Maria)

Elementos básicos

- Representações compostas, via conectivos lógicos
 - Eu tenho cinco reais e não tenho tempo.
 - Ter(Falante,Cinco_reais) ∧ ¬Ter(Falante,Tempo)

23

Elementos básicos

- Conectivos lógicos
 - ∘ V = Verdade
 - F = Falso

Р	Q	¬P	P∧Q	P _V Q	P⇒Q
F	F	V	F	F	V
F	V	V	F	V	V
V	F	F	F	V	F
V	V	F	V	V	V

Variáveis e quantificadores

- Variáveis
 - 2 possíveis usos
 - · Objeto anônimo
 - Objetos de uma coleção
 - Uso de quantificadores
 - Existencial: ∃ (lê-se "existe")
 - Universal: ∀ (lê-se "para todo")

25

Variáveis e quantificadores

- Quantificador existencial
 - Exemplo: objeto anônimo
 - Um restaurante que serve comida mexicana perto do instituto.
 - ∃ x Restaurante(x) ∧ Serve(x,Comida_mexicana) ∧ PertoDe(LocalDe(x),LocalDe(Instituto))
 - Essa sentença será verdadeira se e somente se houver pelo menos um x que satisfaça todas as fórmulas (em uma base de conhecimento ou inferidas a partir da base)

Variáveis e quantificadores

- Quantificador universal
 - Exemplo: coleção de objetos
 - Todos os restaurantes vegetarianos servem comida vegetariana.
 - ∀ x RestauranteVegetariano(x) ⇒ Serve(x,Comida_Vegetariana)
 - Essa sentença só será verdadeira se toda substituição de x tornar a sentença verdadeira

27

Variáveis e quantificadores

- Quantificador universal
 - Exemplo: coleção de objetos
 - RestauranteVegetariano(Natureba)_{VERDADE} ⇒ Serve(Natureba,Comida_Vegetariana)_{VERDADE}
 - RestauranteVegetariano(MorraNatureza)_{VERDADE} ⇒ Serve(MorraNatureza,Comida_Vegetariana)_{FALSO}
 222
 - RestauranteVegetariano(Churrascada)_{FALSO} ⇒ Serve(Churrascada,Comida_Vegetariana)_{FALSO}

Variáveis e quantificadores

- Quantificador universal
 - Exemplo: coleção de objetos
 - RestauranteVegetariano(Natureba)_{VERDADE} ⇒ Serve(Natureba,Comida_Vegetariana)_{VERDADE} →VERDADE
 - RestauranteVegetariano(MorraNatureza)_{VERDADE} ⇒ Serve(MorraNatureza,Comida_Vegetariana)_{FALSO} →FALSO
 - RestauranteVegetariano(Churrascada)_{FALSO} ⇒ Serve(Churrascada,Comida_Vegetariana)_{FALSO} → VERDADE

29

Notação Lambda

- Útil para abstrair de uma fórmula em específico
- Uso do lambda (λ) + variável + predicado
- Exemplo
 - $\circ \lambda x.P(x)$

Notação Lambda

- Operação de "redução Lambda"
 - Instancia/especifica a fórmula com constantes
- Exemplo
 - $\circ \lambda x.P(x)$ (constante A) \rightarrow P(A)

31

Notação Lambda

- Operação de "redução Lambda"
 - Instancia/especifica a fórmula com constantes
- Exemplo (2 etapas)
 - λx.λy.PertoDe(x,y) (CasaDaMaria) →
 λy.PertoDe(CasaDaMaria,y)
 - λy.PertoDe(CasaDaMaria,y) (Centro) →
 PertoDe(CasaDaMaria,Centro)

- Habilidade de
 - <u>Adicionar novas proposições</u> à base de conhecimento
 - Determinar a <u>veracidade de proposições</u>
 <u>não explícitas</u> na base de conhecimento
- Modus ponens
 - Um dos métodos mais usuais de inferência

33

Inferência

- Modus ponens
 - $\circ \alpha, \alpha \Rightarrow \beta \rightarrow \beta$
 - Ou seja, se α é observado e se sabe que α implica em β , então se pode deduzir β

- Modus ponens
 - Exemplo
 - Base de conhecimento
 - RestauranteVegetariano(Natureba)
 - ∀ x RestauranteVegetariano(x) ⇒ Serve(x,Comida_Vegetariana)
 - · Pode-se deduzir e adicionar na base
 - Serve(Natureba, Comida_Vegetariana)

35

Inferência

- Modus ponens
 - Forma de raciocínio
 - Encadeamento progressivo (forward chaining)
 - Dos antecedentes para os conseqüentes das implicações
 - · RestauranteVegetariano(Natureba)

- Modus ponens
 - Forma de raciocínio
 - Encadeamento progressivo (forward chaining)
 - Dos antecedentes para os conseqüentes das implicações
 - Restaurante Vegetariano (Natureba) ⇒ Serve (Natureba, Comida_Vegetariana)

37

Inferência

- Modus ponens
 - Forma de raciocínio
 - Encadeamento progressivo (forward chaining)
 - Vantagem: muitas inferências podem ser feitas de antemão e aumentar a base de conhecimento, economizando tempo durante a consulta
 - Desvantagem: pode gerar muitas proposições que nunca são necessárias

- Modus ponens
 - Forma de raciocínio
 - · Encadeamento regressivo (backward chaining)
 - · Dos conseqüentes para os antecedentes das implicações
 - · Primeiro se verifica se a consulta existe na base
 - Se não, buscam-se por implicações cujo lado direito case com a consulta
 - Tenta-se provar o lado esquerdo das implicações encontradas

30

Inferência

- Modus ponens
 - Forma de raciocínio
 - Encadeamento regressivo (backward chaining)
 - · Base de conhecimento
 - RestauranteVegetariano(Natureba)
 - ∀ x RestauranteVegetariano(x) ⇒ Serve(x,Comida_Vegetariana)
 - Consulta
 - Serve(Natureba, Comida_Vegetariana)
 - → não está na base

- Modus ponens
 - Forma de raciocínio
 - · Encadeamento regressivo (backward chaining)
 - · Base de conhecimento
 - RestauranteVegetariano(Natureba)
 - $\label{eq:continuous} \begin{array}{l} \bullet \ \, \forall \ \, x \ \, \text{RestauranteVegetariano}(x) \Rightarrow \\ \text{Serve}(x,\text{Comida_Vegetariana}) \end{array}$
 - Consulta
 - ∀ x RestauranteVegetariano(x) ⇒ Serve(x,Comida_Vegetariana)
 - → Restaurante Vegetariano (Natureba) ⇒ Serve (Natureba, Comida_Vegetariana)

41

Inferência

- Modus ponens
 - Forma de raciocínio
 - · Encadeamento regressivo (backward chaining)
 - · Base de conhecimento
 - · RestauranteVegetariano(Natureba)
 - ∀ x RestauranteVegetariano(x) ⇒ Serve(x,Comida_Vegetariana)
 - Consulta
 - RestauranteVegetariano(Natureba) ⇒ Serve(Natureba,Comida_Vegetariana)
 - → antecedente está na base, então VERDADE

- Cuidado
 - Raciocínio com encadeamento regressivo vs. raciocínio regressivo
 - · Raciocínio com encadeamento regressivo
 - · Método confiável
 - Raciocínio regressivo (abdução)
 - Raciocínio plausível e útil muitas vezes, mas pode estar errado
 - Assume que, se conseqüente é verdade, antecedente é automaticamente verdade também

43

Inferência

- Cuidado
 - Raciocínio regressivo (abdução)
 - Exemplo
 - · Base de conhecimento
 - RestauranteVegetariano(Natureba)
 - ∀ x RestauranteVegetariano(x) ⇒ Serve(x,Comida_Vegetariana)
 - Consulta
 - Serve(Churrascada, Comida_Vegetariana)

- Cuidado
 - Raciocínio regressivo (abdução)
 - Exemplo
 - · Base de conhecimento
 - RestauranteVegetariano(Natureba)
 - ∀ x RestauranteVegetariano(x) ⇒ Serve(x,Comida_Vegetariana)
 - Consulta
 - Serve(Churrascada, Comida_Vegetariana)
 Pela implicação na base de conhecimento, o antecedente Restaurante Vegetariano (Churrascada) erroneamente assumido como verdadeiro

15

Inferência

- Cuidado
 - Raciocínios com encadeamento progressivo e com encadeamento regressivo não são completos
 - Há inferências válidas que podem não ser encontradas por esses métodos de raciocínio
 - · Há alternativas, mas mais caras computacionalmente
 - Evitadas, muitas vezes
 - · Assumem-se os riscos das raciocínios anteriores