The Urano System: I ntegrating Academic Data from
Heter ogeneous Sour cesto Generate Reports
for Institutional Administration

Bruno Tomazela', Caetano Traina Junior®, Cristina Dutrade Aguiar Ciferri’

'Departamento de Ciéncias de Computacdo — Univelsida Sdo Paulo (USP)
Caixa Postal 668 — 13.560-970 — S&o Carlos — SRsilB

{tomazel a, caetano, cdac}@cnt. usp. br

Abstract. Most academic data generated by the staff of rebeeenters are
available in digital media, but are usually scaddramong a variety of
sources. Therefore, the production of administativeports for the
management of such centers and to foster reseaecjudntly requires staff
members to prepare reports containing essentidgy game information but
organized in different formats. This leads to irgistency, incomplete data
reporting and frustration on the part of researamdamanagement staff. In this
paper we describe the Urano System, which was ales@lto gather academic
data from different sources and integrate them iatacentral database,
enabling reports to be generated automatically. méracollects data from the
University of Sao Paulo corporate systems and ftbhm Lattes Database,
which is managed by the National Council for Sdaienand Technological
Development. This paper identifies the main regquéesets of the system and
describes the techniques applied to meet them. dJimcurrently being used
in the Institute of Mathematics and Computer S@erto generate reports for
institutional administration. It has been providiaghuge improvement on the
productivity of the Institute, as previous repowere generated manually.
Furthermore, Urano has been incorporated to thehby&ystem, and is also
being deployed to integrate academic data from 3Belnstitutes of USP.
Urano can be accessed through the URi$p://urano.icmc.usp.brand
http://www.sistemas.usp.br/tycho/RelatorioDepto@ddie?codmnu=00

1. Introduction

Generating administrative reports is a boring tesklecturers and research institute
managers. On the one hand, lecturers become tedtos the need to prepare a variety
of reports containing basically the same informatiait organized in different formats.
On the other hand, managers of research institneedisappointed with the reports thus
produced, which are usually incomplete and inceesisbecause they are prepared
manually and by different people.

In view of the need to adopt modern and transparesiitutional measures,
decision-making based on administrative reportspsactice that has been adopted with
increasing frequency. For instance, based on nsi@rdepartmental reports, a research
institute manager can analyze the number of puimica of each department and set
down new goals and guidelines. In fact, decisiofkingabased on consolidated reports
ensures greater credibility, flexibility and respmeness to organizations, enabling them
to react rapidly and positively to changing bussnguations.



Aiming to generate reports for the managementdauision-making processes,
we are developing the Urano System at the ICMCitifine of Mathematics and
Computer Sciences) of USP (University of Sao Padlbg purpose of the system is to
gather academic data from distinct sources and tentipem in a central database,
enabling integrated and consistent reports to bergéed automatically. Urano extracts
data from pre-existing sources available in digit@dia. Thus, when institutional
reports must be produced, the research staff isempiired to report data, except when
the required data is not available in any source.

Urano works with two different types of data s@a&.cThe first is the university’'s
corporate systems that are responsible for progidiansactional data relating to
undergraduate (the Jupiter System) and postgradttegeFénix System) educational
activities fittp://www.sistemas.usp.or The second source is the curricula vitae of
Brazilian researchers that are available in thaeksaDatabaseh(tp://lattes.cnpg.hr
This database is managed by the National CouncilSfentific and Technological
Development (CNPq) and is widely used in Braziptovide support to national and
state agencies in granting financing. It must beéedo however, that Urano was
developed to allow integrating a variety of datarses, so other systems are likely to be
integrated in the future. Urano can also be adatether environments as well.

The development of an academic data integrati@tesy aimed at generating
reports for institutional administration involveseveral challenges. The main
requirements for such system can be summarizeollaw$:

* The system should automatically integrate data feaweral sources, whose
architecture, data modeling and objective are golyldaeterogeneous.

» The system should not require users to reportitiliay are already available
in an existing source.

» The system should continue generating reports @vethe absence of an
available source.

* Reports contain data about specific periods. Theeethe system should not
generate reports with conflicting data even thotlggh sources are updated
asynchronously.

* The system is not warned about which data from vgbatces are updated,
but should generate consistent and updated reports.

» The system should identify inconsistencies in diaten different sources and
integrate the data correctly, without, howeveryecting those sources.

* It is important that the sources be warned whennaistencies are detected,
but the update of their data is optional and trstesy should not depend on it.

This paper describes the techniques employederdévelopment of Urano to
meet the aforementioned requirements. We spect®tpil how the state-of-the-art
research in data integration, referred to as emagolution (e.g., Kalashnikov and
Mehrotra, 2006; Bhattacharya and Getoor, 2007; Gheal, 2007; Benjellounet al.,
2009), was adapted to meet the specific requiresriemgosed by Urano.



This paper is organized as follows. Section 2engsirelated work, while Section 3
describes the proposed Urano System. Sectionss4atail the techniques employed to
solve the core problem faced by Urano: integratiagrogeneous data. Section 7 shows
experimental results, and Section 8 concludesdbermp

2. Related Work

Two surveys about heterogeneous data integratiae yweblished in (Halevet al,
2006) and (Halevyet al, 2005). They focus on the academic and indusaiahs,
respectively. An important problem in data integmatis to identify occurrences of
different references to the same real-world enktyity resolution algorithms are aimed
at automatically detecting references to the samig/eand grouping them into clusters
(e.g., Kalashnikov and Mehrotra, 2006; Bhattachamd Getoor, 2007; Chest al,
2007; Benjellounet al, 2009). Urano’s integration uses the main idethefG-Swoosh
algorithm (Benjelloungt al, 2009) as the basis to identify clusters of e#titit does
pairwise comparisons. Benjelloun et al. (2009) arthat pairwise comparison is used
frequently in practice, at least in the commeruaiatld, and guarantees practical values,
such as easier coding and efficiency.

Several integration systems are based on the fuseediators (McCanret al.,
2005; Sattleet al, 2005; Kiani and Shiri, 2007). Integration iscabn important topic
in data warehousing environments (Inmon, 2005; orm] 2008). However, most
existing works are aimed at developing generictswis to the problems identified in
(Halevy et al,, 2006). Conversely, our paper describes the expes of developing a
system that integrates academic data from prelegisiources, such as the corporate
systems of research institutes and the lecturersictila. An example of specialization
is the fact that Urano is not warned about what dedm the sources are updated.
Another example is the fact that Urano also gemserattegrated entities from the
clusters of entities. Furthermore, Urano managet gaovenance, focusing on
incremental integration. Data provenance allowsr#seilts of previous integrations to
be used in the aid of new integrations.

In (DellAquila et al, 2007), it is described a data warehouse of aeusity
composed of a set of data marts. However, the igéiscr covers only the system’s
architecture, without detailing any integration @sg. Conversely, our paper identifies
the main requirements to be met in the developnoéna system that integrates
academic data, examines how these requiremensaaséed by Urano, and reports the
results obtained in terms of system’s performamzecality.

3. The Urano System

Urano integrates the academic data of an instguegiturers. Using the integrated data
as its basis, it offers functionalities relatingth® generation of administrative reports.
Figure 1 shows examples of reports that can bergete number of undergraduate and
postgraduate supervisions in 2007 (Figure la); mund§ publications by year by
academic department from 2005 to 2007 (Figure & list of journal publications in
2007 (Figure 1c). Urano’s architecture is showrrigure 2, and described in Sections
3.1 to 3.4. The core subsystem, Uranolntegratéetiasiled in Sections 4 to 6.



Type of Number in -
Supervising 2007 |
PhD 32 160
Undergraduate 64 wo
Studies 120
MSc 55 100
Others ? 80 SCC SMA SME SSC
W 2005 2006 W 2007

Ali Tahzibi; Federico Rodriguez Hertz; Maria Alejandra Rodriguez Hertz; Raul Ures - A
criterion for ergodicity of non uniformly hyperbolic diffeomorphismes - Electronic Research
Announcements of the American Mathematical Society - 14 - 74 - 81 - 2007

Alneu de Andrade Lopes; Roberto Pinho; Fernando Vieira Paulovich; Rosane Minghim -
Visual Text Mining Using Association Rules - Computers & Graphics - 31 - 316 - 326 - 2007.

Ana Carolina Lorena; Andre Carlos Ponce de Leon Ferreira de Carvalho - Design of
Directed Acyclic Graph Multiclass Structures - Neural Netwark World - 17 - 657 - 674 - 2007

()

Figure 1. Examples of reports

| E Administrator
! — Jupiter- : Urano
: Japiter Urano | Admin
! 1
| — Fénix- ! A
L Urano I prewen I ——
1 N s
 |USP Systems / ! Integrate UranoDB
1
! 1
| . ¢
| Lattes I[Jattes- !
i | Curricula rano : Urano
| extractors/ ! Web
! Lecturers translators UranoExtract Writers of Reports

Figure 2. Architecture of the Urano System

3.1. TheUranoDB Database

UranoDB is the database used by Urano to storgyraied academic data. The
integration is done in two levels: among lecturansl among heterogeneous sources.
With regard to the first level, redundant data apjmg in more than one curriculum are
stored only once in UranoDB. On the second lemégrated data are stored in a single
relational database, regardless of the formateobtiginal sources.

The database is structured to store data fronerdift categories. A data
category is a high level concept that has a well-definedammey in the reports.
UranoDB stores data related to the following catiego (i) lecturers and their
departments and personal information; (pgapers such as papers in journals,
proceedings, books and book chapters; (pnojects and their sponsors; (iv)
supervisions as of undergraduate and postgraduate studenfspdguticipation on
examination boardg(vi) participation inconferencesandworkshopsand (vii) courses
such as undergraduate and postgraduate studies.



Each instance of a category is calledeanty. With regard tgpaper in journa)
the (attribute, value) pairs of Figure 3 exempéfy entity of this category. Note that an
entity may be composed of other entities, suchutlkoas (e.g.Jecturerg. UranoDB
stores entities at their lowest level of granulefiite., detail).

paper-in-journal entity = {(author, {(name, Bueno, R.), (order-of-citation, 1)},
(author, {(name, Traina, A.J.M.), (order-of-citation, 2)},
(author, {(name, Traina Jr, C.), (order-of-citation, 3)},

(title, Genetic Algorithms for Approximate Similarity Queries),
(journal, Data and Knowledge Engineering),

(volume, 62),

(number, 3),

(initial-page, 459),

(final-page, 482),

(year, 2007)}

Figure 3. Example of an entity of the category paper in journal

UranoDB also contains data relating to two othercfionalities provided by
Urano, which are also treated as categorggsort compositiorandlog managemenio
support the first functionality, UranoDB stores alahat allow for the immediate
generation of reports or the storage of report nitefns, enabling reports to be
generated at some other time. For instance, Urbmwsafor the definition of reports to
be generated quarterly or to be available for omated generation on personal web
pages. As for the log management functionality,Nd2B stores data on inconsistencies
found in the integration process (e.g., slightlyedent titles in similar papers).

3.2. The Administrative Subsystem

The administrative subsystem — UranoAdmin — enswesxurity, allowing for the
submission of individual curricula and the genematof administrative reports. There
are three classes of users with different permssi®ddministratorsare responsible for
inserting, removing and updating the personal mgtion of any Urano user. Writers of
reports, hereinafter referred toasters, are responsible for generating the reports used
in institutional management. Lastly, only academiata fromlecturersare stored in
UranoDB and therefore listed in the reports.

3.3. The Extractor Subsystem

The extractor subsystem — UranoExtract — extraata ftom the sources and translates
them into the XML (eXtensible Markup Language), @hiis the internal format
manipulated by Urano.

A source is a database of an autonomous, heterogeneousdiatributed
application containing academic data. As souraa® stata in different formats, there is
a specific extractor/translator module for eachrseuSources may be classified as
internal or external. Internal sources are databa$dhe university corporate systems
responsible for providing transactional data. ARJ8e Jupiter and Fénix systems store
data on the undergraduate and postgraduate ecduelaBativities, respectively. The
external sources are the lecturers’ Lattes cuaiddach Lattes curriculum contains data
about all the academic activities of a specifictiegr. In the extraction process,
UranoExtract considers each Lattes curriculum ssuace.



The distinction between internal and external sesiis based on the reliability
of the data from these sources. Internal sourcedairo consolidated data that is
assumed to be highly reliable. In contrast, Lattesricula contain data prepared
manually by different people, thus presenting tgpimistakes, incomplete data,
ambiguity and lack of standardization. Therefor@tadfrom internal sources are
assumed to be more reliable than data from exteymaices. This statement is used
when the same entity is extracted from both anrmaleand an external source.
However, internal sources usually do not providedata required by administrative
reports; so external sources provide complemenl@iy to compose these reports.

For each category of academic data, each extfaatmglator module processes
the sources to extract entities of this categorg &m transform these entities into
p-entities. Ap-entity is an entity enriched with its provenance datahsas the source
that provides the entity and its data of extractMhile an entity represents an instance
obtained from a source, a p-entity represents stamge stored in UranoDB. A p-entity
is defined by the triplp-entity = <entity, source, date of extraction>.

Before being stored in UranoDB, extracted entitiegt are transformed into
p-entities by the UranoExtract subsystem are stased set of XML documents. There
is an XML document for each category.

Note that Urano does not receive warning aboutt whta are updated from the
sources. To deal with this requirement, the sysgapports two extraction policies: by
schedule and on demand. The first policy allowstlier definition of specific dates and
times to execute the extraction. For example, fitata the Lattes curricula are extracted
once a day. The on demand policy alloadministratorsto determine when an
extraction should be carried out. For instaragiministratorsusually ask for data to be
extracted from the Jupiter and Fénix systems dysergpds of course registration.

3.4. The Report Subsystem

The report subsystem — UranoWeb — generates reftooffers a web interface through
which integrated data stored in UranoDB can besfamed into useful information
permanently available, independent of the sources.

Reports can differ from each other, in order topsut the variety of formats and
different data required for administrative repofitekey may contain atomic or aggregate
data. Atomic data involves the attributes of a gatg, such as the attributéile and
year of the categorypaper in journal Aggregate data correspond to the statistical
functions applied to the fields of reports, suclt@asnting and average.

There are different types of report, accordinghte category of academic data.
For instance, the attributes in a report of paperare different from the attributes in a
report of the categorproject The attributes exhibited are determined dynanyical
according to the data stored in UranoDB for eactegmy. More specifically, the
definition of the report is based on a web page toatains specific options for the
required type of report. These options allawiters and lecturersto specify filters,
select the attributes of the category to be inaudethe report, determine the ordering,
and specify aggregation functions. Furthermorersusan add special fields to the
report, such as the link to the DBLP page of tlntuleers. Reports can be generated and
saved in different formats such as PDF, HTML andrsoft Excel format.



4. Detailing the Uranol ntegrate Subsystem

The integration subsystem — Uranolntegrate — iategrp-entities, taking into account
that different sources may provide complementagiundant and/or inconsistent data,
and stores them in UranoDB. Figure 4 shows theitaathre of Uranolntegrate, while
Figure 5 shows integration examples that will beedudereafter to illustrate the
functionalities of Uranolntegrate. Figures 5a artl show p-entities of the category
paper in journal obtained from two different curricula on dates 203/25 and
2009/03/26, respectively.

Entity Integrated Entity Data Storage
Resolution Generation Manager

< N 7

XML 5 Integrated D ——
EnE B

| I_, Academic Data
Reconciler Tool

i Uranoltegrate

Figure 4. Architecture of the Uranolntegrate Subsystem

Execution on date 2009/03/25
p-entity: = <{(title, Integration Tests), (journal, SIGMOD Record), (year, 2000),
(volume, v1), ...}, Lecturery, 2009/03/25>
p-entity, = <{(title, Example of Integration), (journal, VLDB Journal), (year, 2004),
(volume, v3), ... }, Lecturer;, 2009/03/25> @
p-entitys = <{(title, Integration Test), (journal, SIGMOD), (year, 2000),
(volume, v1), ... }, Lecturerz, 2009/03/25>

cluster; = {p-entity;, p-entitys}
cluster; = {p-entity2} (b)

integrated-p-entity; = p-entitys — integrated-p-entity; is associated to cluster;
integrated-p-entity, = p-entity, — integrated-p-entity; is associated to cluster;

v

Execution on date 2009/03/26
p-entitys = <{(title, Integration Tests), (journal, SIGMOD Record), (year, 2000),
(volume, v1), ...}, Lecturery, 2009/03/26>
p-entitys = <{(title, Integration Test), (journal, SIGMOD Record), (year, 2000),
(volume, v1), ... }, Lecturerz, 2009/03/26> (d)
p-entitys = <{(title, A New Paper), (journal, TKDE), (year, 2003), (volume, v7), ... },
Lecturer,, 2009/03/26>

cluster; = {p-entity;, p-entitys}
clustera= {p-entity} (e)

clusters = {p-entitys}

integrated-p-entity; = p-entity; — integrated-p-entity; remains associated to clustery ¢
integrated-p-entitys = p-entitys — integrated-p-entitys is associated to clusters )

Figure 5. Example of two consecutive executions

For each category of academic data (i.e., for eéddh document), the Entity
Resolution module processes the p-entities andpgrdbem in clusters of similar
p-entities. Acluster is a subset of p-entities of a same categorgfaliem evaluated as
similar. In Figure 5b, p-entifyand p-entity are associated to clusemas they are



classified as similar. Conversely, p-ertitgpresents a different paper and is associated
to clustes. The Entity Resolution module is detailed in Satth.

The clusters are then analyzed by the IntegrateiityEGeneration module,
which generates automatically an integrated p3iemiiat best represents each cluster.
Therefore, each integrated p-entity is associatedtd cluster. In Figure 5c, the
integrated p-entities of clustesnd clusterare p-entity and p-entity, respectively. The
Integrated Entity Generation module is detaile@&ction 6.

The integrated p-entities are then stored in Ubdhdoy the Data Storage
Manager module.

Before the execution of Urano on date 2009/03[2&noDB is empty. With
regard to the next execution, Urano does not receigrnings about what data are
updated from the sources. Therefore, it automdgiddentifies these updates and
populates UranoDB as expected.

Using the clusters generated in the previews di®tijFigure 5c), the Entity
Resolution module analyzes the p-entities of th& rexecution (Figure 5d) and
identifies that the following actions were carrmat: (i) p-entity, is the same of the first
execution; (ii) p-entity was updated to p-entiy (iii) p-entity, was removed; and
(iv) p-entity; was filled in the Lectureis curricula. The Entity Resolution module then
processes the p-entities of Figure 5d, associatitegn to existing clusters (e.g.,
clustegk), removing clusters (e.g., clusteand creating new clusters (e.g., clugteas
shown in Figure 5e. The Integrated Entity Genematinodule then automatically
generates the new integrated p-entities (FigurePhally, the Data Storage Manager
module stores integrated-p-entitgnd integrated-p-entigyin UranoDB and removes
integrated-p-entityfrom UranoDB.

The integration process may be optionally assidigdthe Academic Data
Reconciler tool, which aims at generating an irdaegg p-entity that is validated by the
user. The tool: (i) compares p-entities from thmeaaluster; (ii) exhibits side-by-side
p-entities and integrated p-entities so that usarssee the differences between similar
p-entities; and (iii) reconciles p-entities, allogiusers to copy data from the p-entities
to the integrated p-entity. The tool also allowsrgso move p-entities from one cluster
to another, aiming at improving the precision & generated clusters.

5. The Entity Resolution Module

5.1 Entity Similarity Detection

The Entity Resolution module generates groupsroflai p-entities, using a similarity

function based on an adaptation of the edit digtatven two p-entities, the module
compares each attribute value of the first p-entitth each corresponding attribute
value of the second p-entity by dividing the twangs in words and comparing them
word by word. Different weights are assigned toheaord in a string according to its

grammatical class. The comparison result of eactdws then combined to give the
strings similarity degree. If the combined simifardegree is above a pre-defined
threshold, the strings are considered similar. Tpaentities are grouped in the same
cluster when all the similarity degrees of theimpared attributes are above the
threshold. Otherwise, they are assigned to difteckusters.



Since similarity functions are expensive, thditigrResolution module uses the
following approach to improve performance. It comgsaonly a subset of the p-entities’
attributes, instead of all their attributes. Thisbset is composed of one or more
attributes that tend to identify each p-entity ubgguously. Therefore, the Entity
Resolution module can improve performance witharhjgromising the quality of the
integration process. As for Urano, this subset tbfibaites was defined during the
project of UranoDB, through an analysis of the abtaristics of the instances of each
academic data category. For example, for the categaper in journa) only the
attributestitle, journal andyear are analyzed, instead of all the attributes otifgécB. In
Figure 5b, p-entityand p-entity are evaluated as similar, despite the slight wffees
in their attributegitle andjournal.

A method applied by the Entity Resolution modulstring comparison based on
similarity is a pre-processing that normalizes strengs by removing consecutive blank
spaces, eliminating accents and cedillas, andftiansg all the letters of the string to
lowercase. String normalization aims at improving integration quality, as it increases
the probability of two strings to be classifiedsawilar.

5.2 Automatic Detection of what Data are Updated from the Sour ces

The Entity Resolution module tackles the problemideitifying automatically what
data are updated from the sources by using proeendaita of p-entities. Letand k&

be two executions carried out on datesddd D, respectively. Let Gbe a cluster
generated by £ which contains the p-entities e ..., pen and is used as input t@.E
Also, consider that the following p-entities wesdracted from source S and are currently
being processed: gk ..., pem. The automatic detection is performed as foltows

* p&j (1 <j<m)is thesame p-entity pei (1 <i < n) if they are from the same
source, have the same values for all its attripued 0 < D». In Figure 5,
p-entity, is the same as p-entity

* pgj (1<j<m)is anew p-entity if it is different from all the p-entities pie
(1 <i < n) obtained from S, and;B< D,. In Figure 5, p-entityis a new
p-entity; and

* pei (1 <i<n)isaremoved p-entity if it was obtained from S, is different
from all the p-entities pg(1 <j < m), and O < D,. In Figure 5, p-entityis a
removed p-entity.

An updated p-entity is treated as a removed pyefailowed by a new p-entity.
In Figure 5, the Entity Resolution module detetiat fp-entity is a removed p-entity,
while p-entity is a new p-entity.

Note that, in Section 5.1, a p-entity is assodidte a cluster using similarity.
Conversely, two p-entities pg1<i < n) and pg (1 <j < m) are considered the same
during the automatic detection of updates if adlitftorresponding attributes have the
same values. Otherwise, the p-entities are coresidgifferent.

5.3 The EntityResolution Algorithm

Figure 6 shows the EntityResolution algorithm, vimiis executed once for each
academic data category. The inputs of the algordhera set of sources, a set of clusters



and a set of p-entities of an academic data catedde first input contains only the
sources that are being investigated in the cuaretution of the algorithm. The second
input contains the clusters of the current catedbag have already been analyzed in
previous executions. In the first execution of BfitesolutionclusterSeis empty. The
last input contains the p-entities to be analyzed.

For each source isourceSetthe first step of the algorithm consists of sefta
flag removedfor all the p-entities of this source that are adhe present irclusterSet
(lines 01 to 03). This flag is used to identify @miatically what data are updated from
the sources, as described in Section 5.2.

The EntityResolution Algorithm (sourceSefclusterSetp-entitySéet set of clusters
01 for all sourcein sourceSetlo

02 set all p-entities frormourcein clusterSetas removed

03 end for

04 for all p-entityin p-entitySetlo

05 p-entity'« look for p-entityin clusterSet

06 if p-entity'foundthen

07 unsetentity' as removed

08 dse

09 found« false

10 targetCluster< null

11 while notfoundand there is alusterin clusterSeto analyzedo

12 while notfoundand there is g-entity” in clusterto analyzedo
13 if (p-entityis similar top-entity”) then

14 targetCluster« cluster

15 found« true

16 end if

17 end while

18 end while

19 if notfoundthen

20 targetCluster« create new cluster iclusterSet
21 end if

22 inserp-entityinto targetCluster

23 endif

24 end for

25 for all clusterin clusterSetlo

26 remove p-entities marked as removed fotunster

27 if clusteris emptythen

28 integratedP-entity- get integrated p-entity @luster
29 removeluster

30 markintegratedP-entityo be removed from UranoDB
31 endif

32 end for

33 return clusterSet

Figure 6. The EntityResolution Algorithm

The algorithm then analyzes each p-entityemitySet as follows (lines 04 to
24). In line 05, it determines whether the p-entgypresent inclusterSet If this
condition is satisfied, the p-entity is the samenpity analyzed earlier. In this case, the
flag removedof the p-entity is unset (line 07). Otherwise, #igorithm tries to find a
cluster into which to include the p-entity (line8 t 24). To find a suitable cluster for
the p-entity, EntityResolution analyzes each clugliees 11 to 18), determining by
similarity which cluster will contain the p-entitgs described in Section 5.1. When the
p-entity does not belong to any cluster, the atboricreates a new clusterctusterSet



to hold the p-entity (lines 19 to 21). The stepsirtés 08 to 24 indicate that the p-entity
under analysis was updated or is a new p-entity.

After analyzing all the p-entities, EntityResotutiinvestigates the clusters (lines
25 to 32). For each cluster, the algorithm remawesp-entities whose flaggmoved
remains set (line 26), and if the cluster is nowpsmit also removes the cluster (line
29). Furthermore, the algorithm marks as removedritegrated p-entity that represents
the removed cluster (line 30), specifying that thiegrated p-entity should be removed
from UranoDB.

6. Thelntegrated Entity Generation M odule

The IntegratedEntityGeneration Algorithm (Figure gnerates an integrated p-entity
that best represents each cluster that has beenfiedothy the EntityResolution
algorithm. A modified cluster is a cluster that tzons new p-entities or had some
p-entities removed.

The IntegratedEntityGeneration Algorithm (clusterSet set of integrated p-entities
01 integratedP-entities- &

02 for all modifiedclusterin sourceSetlo

03 if integratedP-Entityof clusteris marked as user-validatéaken

04 markintegratedP-Entityas automatic-validated

05 dse

06 if there is exactly onp-entityin clusterthen

07 integratedP-entity- p-entity

08 markintegratedP-entityas automatic-validated

09 end if

10 if there are exactly two p-entitiesétusterthen

11 integratedP-entity- select one p-entitfrom cluster
12 if bothp-entities inclusterhave the same valudsen
13 markintegratedP-entityas automatic-validated
14 else markintegratedP-entityas non-validated

15 end if

16 end if

17 if there are three or more p-entitiesinsterthen

18 integratedP-entity- more frequent p-entity ioluster
19 if all p-entities inclusterhave the same valudigen
20 markintegratedP-entityas automatic-validated
21 else markintegratedP-entityas non-validated

22 end if

23 end if

24 integratedP-entities- integratedP-entitiesu integratedP-entity
25 endif

26 end for

27 return integratedP-entities

Figure 7. The IntegratedEntityGeneration Algorithm

There are three different situations related te teneration of integrated
p-entities. The first refers to clusters that contanly one p-entity. In this case, this
p-entity is considered to be the integrated p-griihes 06 to 09). In situations where
the cluster contains exactly two p-entities, thgoathm selects one of them to be the
integrated p-entity (lines 10 to 16). The last ailon considers clusters that contain
more than three p-entities. In this case, all thenfities of the cluster are compared to
each other to determine the number of times thattgies with the same values for all



its attributes appear. The integrated p-entityris of the p-entities that appear most. If
two or more groups of p-entities appear most, tlyprihm selects one of these
p-entities to be the integrated p-entity (linesd 23).

The integrated p-entities generated automatitsllthe algorithm arautomatic-
validatedwhen the cluster contains only one p-entity (D&, or when all the p-entities
of the cluster have the same values for all thigitbaites (lines 13 and 20). Otherwise,
the integrated p-entity ison-validated(lines 14 and 21). An integrated p-entityuser-
validated when it is validated using the Academic Data Retten tool (Figure 4).
When a cluster with aiser-validatedintegrated p-entity is modified, the integrated
p-entity becomeautomatic-validatedHowever, no new integrated p-entity is generated
for this cluster, respecting the earlier user'sslen (lines 3 to 5).

7. Experiments

7.1. Implementation Aspects

The Lattes curricula of the lecturers are XML doemts. The Jupiter and Fénix systems
use the Sybase® Adaptive Server Enterprise 15 ds¢aimanagement system (DBMS),
while Urano uses the PostgreSQL® 8.2.3 DBMS. Urami@iEt is implemented in Java,
while Uranolntegrate and UranoAdmin are implemerie@++.

UranoWeb is a web application based on the refyapst mechanism of the
client-server architecture. The infrastructure loé¢ tserver side includes the Apache
HTTP server, the PostgreSQL® DBMS and the PHP pnég¢er. On the client side, the
development of UranoWeb is based on the recommiendadf the W3C organization.
The main technologies used here are CSS (CascatitegSheets), XHTML (eXtensible
Hypertext Markup Language), JavaScript and the eqascof AJAX. UranoWeb can be
accessed through the URILtp://www.urano.icmc.usp.br

7.2. Performance Results

Experiments were conducted in the Ubuntu 8.04 deraystem running on an Intel
Core2Duo 2.66 GHz with 4GB DDR2 800MHz of main meynand 500 GB of disk
space (SATA 7200RPM). Table 1 indicates the souresponsible for providing the
main categories of academic data stored in Uransp8wning data from 1982 to
present. The categopersonrefers to any given Urano user.

Table 1. Sources of the main data categories

Category Sources
Person Lattes, Fénix
Paper Lattes
Project Lattes

Supervision Lattes, Fénix
Examination Board Lattes, Fénix
Conference Lattes

Course Jupiter, Fénix

In this section, we focus our performance testshencategorypaper Lecturers
usually work on a collaborative environment, pufilig their scientific papers jointly.
Therefore, the integration results of the categoaper are a good example of the
Urano’s integration process, as the same papetbmaptained from different curricula.



Before the first execution of Urano, UranoDB ispéyn Table 2 shows the
elapsed time (seconds) to process different catsgof paperin the first execution of
Urano. Data of these categories were obtained ftd® Lattes curricula. The term
processing includes the following functionalitiesoyided by Urano: extraction and
integration (generation of clusters plus generatibmtegrated p-entities). There is no
data translation because data from Lattes aredstoreXML, and the XML internal
format manipulated by Urano is based on the Ldttemat. Table 2 also shows the
number of p-entities obtained from the curricula @he number of clusters (i.e., the
number of integrated p-entities) generated by tivegration process. The total elapsed
time to process all the categories is about 6 mgulhe time spent to procgsers in
proceedingsvas approximately 81.5% of that spent to prodessemaining categories.
There is a larger volume of papers in proceeditiggefore there are more p-entities of
this category to extract and integrate.

Table 2. Results for the category paper (first execution)

Total Elapsed

Category Extract (s)  Integration (S) Time (s) # p-entities # clusters
paper in journal 8.38 33.13 41.51 1642 1357
paper in proceedings 14.27 275.54 289.81 4561 3588
paper in journal 5.56 1.01 6.57 108 102
(accepted for publication) ) ) )
book chapter 4.58 0.63 5.21 215 184
book 4.33 0.14 4.47 97 90

After populating UranoDB, Urano processes daily fied out only those
curricula that have been updated in the Latteslida® Table 3 shows the extraction
and integration results for the different categooépaperwith regard to 55 executions
of Urano (test set). The average results inclugs @ath and without curricula updates.
The total elapsed time to process all the categaseabout 54 seconds per day. The
column average# p-entitieslists the average number of updated p-entitiesnduhe
test set. These p-entities do not necessarily gemarew clusters or new integrated
p-entities, as they may be associated to existungjers.

Table 3. Average results for the category paper (55 days of execution)

. Total Elapsed average average

Category Extract (s)  Integration (s) Time (s) # p-entities # clusters
paper in journal 1.43 5.74 7.17 0.47 0.15
paper in proceedings 2.30 41.39 43.69 0.65 0.16

paper in journal
(accepted for publication) 0.83 0.14 0.97 0.15 0.13
book chapter 0.91 0.24 1.15 0.04 0.04
book 0.95 0.12 1.06 0.02 0

For each category, Table 4 shows the number steasi with one, two and three
or more p-entities. These results reflect the nundfentegrated p-entities stored in
UranoDB after executing the test set. The totatgmtage of clusters with one p-entity
is 80% of the total number of clusters of all tla¢egories. For these clusters, there is no
need to further compare their p-entities during gleeeration of integrated p-entities.
Therefore, 20% of the total numbers of clustersiiregadditional processing to generate
integrated p-entities. As for determining if twaeptities of a cluster are the same or not,
we have used a hash function defined over all thiges’ attributes values to improve
comparison performance. Note that clusters with@wmore p-entities are also used by
Urano’s log management functionality (Section 3d)store data on inconsistencies



found in the integration process. Urano allows sisergenerate reports containing such
data to correct their curricula.

Table 4. Number of p-entities per cluster for the category paper

# p-entities per cluster

Category One Two  Three or more Total
paper in journal 1144 169 51 1364
paper in proceedings 2804 639 152 3595
paper in journal
(accepted for publication) 93 6 0 99
book chapter 160 22 4 186
book 83 7 0 90

To illustrate the precision of the integrated pHers, we have compared
manually some reports generated by Urano with ébtuies’ Lattes curricula. Table 5
shows the precision and recall for the reports lisafpaper publications in 2007. For
instance, 93% of theapers in journaldisted in Urano’s report are correct. This number
represents 88% of the total number of papers thatld have been reported. Table 5
does not show the precision and recall of the nategl p-entities of the categqgraper
in journal accepted for publicatiobecause the report refers to the year of 2007ttend
p-entities of this category are now p-entitieshaf tategoryaper in journal

Table 5. Precision and recall of some reports

Category Precision Recall
paper in journal 93% 88%
paper in proceedings 90% 91%
book chapter 94% 100%
book 100% 100%

8. Conclusions

In this paper we described the Urano System, wiviat developed to gather academic
data from different sources and consolidate thewn @entral database. Urano integrates
academic data from pre-existing heterogeneous esunt order to generate reports for
purposes of institutional administration.

The main characteristics of Urano are as folldtveitegrates data according to
the main categories of academic information. b &ligpports two extraction policies (by
schedule and on demand), allowing data from eaalcedo be extracted according to
the policy that best fits their characteristics.offrer characteristic of Urano is that it
extracts data from internal and external sourcathowt requiring data from these
sources to be updated when it finds inconsistenoidbe integration process. Urano
stores data relating to errors inconsistencies he integration process and, if
appropriate, the sources can be updated based partgecontaining those
inconsistencies. Thus, the continuous use of Urallmwns for the identification of
inconsistencies among data and facilitates thetepafanconsistent data, improving the
quality and reliability of data. Finally, Urano elaps concepts of the state-of-the-art
research in data integration, providing an entaggofution technique that meets its
requirements.

Urano is currently under use at the ICMC to geteeraports for institutional
administration. It has been providing a huge improent on the productivity of the
institute, since previously reports were generatehually. Furthermore, since Urano



stores integrated data in a central database ametajes reports from these pre-stored
data, reports can be generated quicker than befdareover, Urano has been
incorporated to the Tycho System and is also beéepoyed to integrate academic data
from the 39 Institutes of USP htfp://www.sistemas.usp.br/tycho/RelatorioDepto
Unidade?codmnu=00

We are currently improving Urano with data wareting and data mining
functionalities. Another project is the developmehtextractor/integrator modules for
the corporate systems of other institutes. Thecitra of these modules is simple and
depends only on the source and the XML formats. muelularity of the specific
modules enables Urano to be expanded to integcaideanic data from heterogeneous
sources and to generate reports for institutiodaliaistration anywhere.

References

Benjelloun, O., et al. (2009) “Swoosh: a GenerigAgach to Entity Resolution”. The
VLDB Journal, 18(1): 255-276.

Bhattacharya, . and Getoor, L. (2007) “Collectizatity Resolution in Relational
Data”. ACM TKDD, 1:1-36.

Chen, Z., et al. (2007) “Adaptive Graphical Appredo Entity Resolution”. In Proc.
ACM IEEE JCDL, p. 204-213.

DellAquila, C., et al. (2007) “An Academic Data \WWhouse”. In Proc. 7th WSEAS
AIC Conference, p. 24-26.

Halevy, A. Y., et al. (2005) “Enterprise Informatidntegration: Successes, Challenges
and Controversies”. In Proc. ACM SIGMQOD, p. 778-787

Halevy, A. Y., et al. (2006) “Data Integration: TAeenage Years”. In Proc. 32nd
VLDB, p.9-16.

Inmon, W.H. (2005) "Building the Data Warehouse'ilaly] 4th edition.

Kalashnikov, D. and Mehrotra, S. (2006) “Domaindpdndent Data Cleaning via
Analysis of Entity-Relationship Graph”, In ACM TODS1: 716-767.

Kiani, A. and Shiri, N. (2007) “A Generalized Modelr Mediator Based Information
Integration”. In Proc. IDEAS, p.1-5.

McCann, R., et al. (2005) “Mapping Maintenance Bata Integration Systems”. In
Proc. 31st VLDB Conference, p. 1018-1029.

Sattler, K.-U., et al. (2005) “Concept-based Quegyn Mediator Systems”. The VLDB
Journal, 14: 97-111.

Torlone, R. (2008) “Two Approaches to the Integmatiof Heterogeneous Data
Warehouses”. In Distributed and Parallel Databas@8, p. 69-97.



