

The Urano System: Integrating Academic Data from
Heterogeneous Sources to Generate Reports

for Institutional Administration

Bruno Tomazela1, Caetano Traina Junior1, Cristina Dutra de Aguiar Ciferri1

1Departamento de Ciências de Computação – Universidade de São Paulo (USP)
Caixa Postal 668 – 13.560-970 – São Carlos – SP – Brasil

{tomazela, caetano, cdac}@icmc.usp.br

Abstract. Most academic data generated by the staff of research centers are
available in digital media, but are usually scattered among a variety of
sources. Therefore, the production of administrative reports for the
management of such centers and to foster research frequently requires staff
members to prepare reports containing essentially the same information but
organized in different formats. This leads to inconsistency, incomplete data
reporting and frustration on the part of research and management staff. In this
paper we describe the Urano System, which was developed to gather academic
data from different sources and integrate them into a central database,
enabling reports to be generated automatically. Urano collects data from the
University of Sao Paulo corporate systems and from the Lattes Database,
which is managed by the National Council for Scientific and Technological
Development. This paper identifies the main requirements of the system and
describes the techniques applied to meet them. Urano is currently being used
in the Institute of Mathematics and Computer Sciences to generate reports for
institutional administration. It has been providing a huge improvement on the
productivity of the Institute, as previous reports were generated manually.
Furthermore, Urano has been incorporated to the Tycho System, and is also
being deployed to integrate academic data from the 39 Institutes of USP.
Urano can be accessed through the URLs http://urano.icmc.usp.br and
http://www.sistemas.usp.br/tycho/RelatorioDeptoUnidade?codmnu=00.

1. Introduction

Generating administrative reports is a boring task for lecturers and research institute
managers. On the one hand, lecturers become frustrated by the need to prepare a variety
of reports containing basically the same information but organized in different formats.
On the other hand, managers of research institutes are disappointed with the reports thus
produced, which are usually incomplete and inconsistent because they are prepared
manually and by different people.

 In view of the need to adopt modern and transparent institutional measures,
decision-making based on administrative reports is a practice that has been adopted with
increasing frequency. For instance, based on its annual departmental reports, a research
institute manager can analyze the number of publications of each department and set
down new goals and guidelines. In fact, decision-making based on consolidated reports
ensures greater credibility, flexibility and responsiveness to organizations, enabling them
to react rapidly and positively to changing business situations.

 Aiming to generate reports for the management and decision-making processes,
we are developing the Urano System at the ICMC (Institute of Mathematics and
Computer Sciences) of USP (University of Sao Paulo). The purpose of the system is to
gather academic data from distinct sources and compile them in a central database,
enabling integrated and consistent reports to be generated automatically. Urano extracts
data from pre-existing sources available in digital media. Thus, when institutional
reports must be produced, the research staff is not required to report data, except when
the required data is not available in any source.

 Urano works with two different types of data sources. The first is the university’s
corporate systems that are responsible for providing transactional data relating to
undergraduate (the Júpiter System) and postgraduate (the Fênix System) educational
activities (http://www.sistemas.usp.br). The second source is the curricula vitae of
Brazilian researchers that are available in the Lattes Database (http://lattes.cnpq.br).
This database is managed by the National Council for Scientific and Technological
Development (CNPq) and is widely used in Brazil to provide support to national and
state agencies in granting financing. It must be noted, however, that Urano was
developed to allow integrating a variety of data sources, so other systems are likely to be
integrated in the future. Urano can also be adapted to other environments as well.

 The development of an academic data integration system aimed at generating
reports for institutional administration involves several challenges. The main
requirements for such system can be summarized as follows:

• The system should automatically integrate data from several sources, whose
architecture, data modeling and objective are probably heterogeneous.

• The system should not require users to report data if they are already available
in an existing source.

• The system should continue generating reports even in the absence of an
available source.

• Reports contain data about specific periods. Therefore, the system should not
generate reports with conflicting data even though the sources are updated
asynchronously.

• The system is not warned about which data from what sources are updated,
but should generate consistent and updated reports.

• The system should identify inconsistencies in data from different sources and
integrate the data correctly, without, however, correcting those sources.

• It is important that the sources be warned when inconsistencies are detected,
but the update of their data is optional and the system should not depend on it.

 This paper describes the techniques employed in the development of Urano to
meet the aforementioned requirements. We specially detail how the state-of-the-art
research in data integration, referred to as entity resolution (e.g., Kalashnikov and
Mehrotra, 2006; Bhattacharya and Getoor, 2007; Chen et al., 2007; Benjelloun, et al.,
2009), was adapted to meet the specific requirements imposed by Urano.

 This paper is organized as follows. Section 2 reviews related work, while Section 3
describes the proposed Urano System. Sections 4 to 6 detail the techniques employed to
solve the core problem faced by Urano: integrating heterogeneous data. Section 7 shows
experimental results, and Section 8 concludes the paper.

2. Related Work

Two surveys about heterogeneous data integration were published in (Halevy et al.,
2006) and (Halevy et al., 2005). They focus on the academic and industrial areas,
respectively. An important problem in data integration is to identify occurrences of
different references to the same real-world entity. Entity resolution algorithms are aimed
at automatically detecting references to the same entity and grouping them into clusters
(e.g., Kalashnikov and Mehrotra, 2006; Bhattacharya and Getoor, 2007; Chen et al.,
2007; Benjelloun, et al., 2009). Urano’s integration uses the main idea of the G-Swoosh
algorithm (Benjelloun, et al., 2009) as the basis to identify clusters of entities: it does
pairwise comparisons. Benjelloun et al. (2009) argue that pairwise comparison is used
frequently in practice, at least in the commercial world, and guarantees practical values,
such as easier coding and efficiency.

 Several integration systems are based on the use of mediators (McCann et al.,
2005; Sattler et al., 2005; Kiani and Shiri, 2007). Integration is also an important topic
in data warehousing environments (Inmon, 2005; Torlone, 2008). However, most
existing works are aimed at developing generic solutions to the problems identified in
(Halevy et al., 2006). Conversely, our paper describes the experience of developing a
system that integrates academic data from pre-existing sources, such as the corporate
systems of research institutes and the lecturers’ curricula. An example of specialization
is the fact that Urano is not warned about what data from the sources are updated.
Another example is the fact that Urano also generates integrated entities from the
clusters of entities. Furthermore, Urano manages data provenance, focusing on
incremental integration. Data provenance allows the results of previous integrations to
be used in the aid of new integrations.

 In (Dell’Aquila et al., 2007), it is described a data warehouse of a university
composed of a set of data marts. However, the description covers only the system’s
architecture, without detailing any integration aspects. Conversely, our paper identifies
the main requirements to be met in the development of a system that integrates
academic data, examines how these requirements are satisfied by Urano, and reports the
results obtained in terms of system’s performance and quality.

3. The Urano System

Urano integrates the academic data of an institute’s lecturers. Using the integrated data
as its basis, it offers functionalities relating to the generation of administrative reports.
Figure 1 shows examples of reports that can be generated: number of undergraduate and
postgraduate supervisions in 2007 (Figure 1a); number of publications by year by
academic department from 2005 to 2007 (Figure 1b); and list of journal publications in
2007 (Figure 1c). Urano’s architecture is shown in Figure 2, and described in Sections
3.1 to 3.4. The core subsystem, UranoIntegrate, is detailed in Sections 4 to 6.

(a)

(b)

(c)

Figure 1. Examples of reports

Figure 2. Architecture of the Urano System

3.1. The UranoDB Database

UranoDB is the database used by Urano to store integrated academic data. The
integration is done in two levels: among lecturers and among heterogeneous sources.
With regard to the first level, redundant data appearing in more than one curriculum are
stored only once in UranoDB. On the second level, integrated data are stored in a single
relational database, regardless of the format of the original sources.

 The database is structured to store data from different categories. A data
category is a high level concept that has a well-defined meaning in the reports.
UranoDB stores data related to the following categories: (i) lecturers, and their
departments and personal information; (ii) papers, such as papers in journals,
proceedings, books and book chapters; (iii) projects, and their sponsors; (iv)
supervisions, as of undergraduate and postgraduate students; (v) participation on
examination boards; (vi) participation in conferences and workshops; and (vii) courses,
such as undergraduate and postgraduate studies.

SCC SMA SME SSC

180

160

140

120

100

80

2005 2006 2007

USP Systems

Júpiter

Fênix

Lattes
Curricula

Lecturers

Júpiter-
Urano

Fênix-
Urano

Lattes-
Urano

XML
Documents

UranoDB

Urano
Admin

Administrator

Writers of Reports UranoExtract

Urano
Web

Urano
Integrate

extractors/
translators

 Each instance of a category is called an entity. With regard to paper in journal,
the (attribute, value) pairs of Figure 3 exemplify an entity of this category. Note that an
entity may be composed of other entities, such as authors (e.g., lecturers). UranoDB
stores entities at their lowest level of granularity (i.e., detail).

paper-in-journal entity = {(author, {(name, Bueno, R.), (order-of-citation, 1)},
 (author, {(name, Traina, A.J.M.), (order-of-citation, 2)},
 (author, {(name, Traina Jr, C.), (order-of-citation, 3)},
 (title, Genetic Algorithms for Approximate Similarity Queries),
 (journal, Data and Knowledge Engineering),
 (volume, 62),
 (number, 3),
 (initial-page, 459),
 (final-page, 482),
 (year, 2007)}

Figure 3. Example of an entity of the category paper in journal

 UranoDB also contains data relating to two other functionalities provided by
Urano, which are also treated as categories: report composition and log management. To
support the first functionality, UranoDB stores data that allow for the immediate
generation of reports or the storage of report definitions, enabling reports to be
generated at some other time. For instance, Urano allows for the definition of reports to
be generated quarterly or to be available for on demand generation on personal web
pages. As for the log management functionality, UranoDB stores data on inconsistencies
found in the integration process (e.g., slightly different titles in similar papers).

3.2. The Administrative Subsystem

The administrative subsystem – UranoAdmin – ensures security, allowing for the
submission of individual curricula and the generation of administrative reports. There
are three classes of users with different permissions. Administrators are responsible for
inserting, removing and updating the personal information of any Urano user. Writers of
reports, hereinafter referred to as writers, are responsible for generating the reports used
in institutional management. Lastly, only academic data from lecturers are stored in
UranoDB and therefore listed in the reports.

3.3. The Extractor Subsystem

The extractor subsystem – UranoExtract – extracts data from the sources and translates
them into the XML (eXtensible Markup Language), which is the internal format
manipulated by Urano.

 A source is a database of an autonomous, heterogeneous and distributed
application containing academic data. As sources store data in different formats, there is
a specific extractor/translator module for each source. Sources may be classified as
internal or external. Internal sources are databases of the university corporate systems
responsible for providing transactional data. At USP, the Júpiter and Fênix systems store
data on the undergraduate and postgraduate educational activities, respectively. The
external sources are the lecturers’ Lattes curricula. Each Lattes curriculum contains data
about all the academic activities of a specific lecturer. In the extraction process,
UranoExtract considers each Lattes curriculum as a source.

 The distinction between internal and external sources is based on the reliability
of the data from these sources. Internal sources contain consolidated data that is
assumed to be highly reliable. In contrast, Lattes curricula contain data prepared
manually by different people, thus presenting typing mistakes, incomplete data,
ambiguity and lack of standardization. Therefore, data from internal sources are
assumed to be more reliable than data from external sources. This statement is used
when the same entity is extracted from both an internal and an external source.
However, internal sources usually do not provide all data required by administrative
reports; so external sources provide complementary data to compose these reports.

 For each category of academic data, each extractor/translator module processes
the sources to extract entities of this category and to transform these entities into
p-entities. A p-entity is an entity enriched with its provenance data, such as the source
that provides the entity and its data of extraction. While an entity represents an instance
obtained from a source, a p-entity represents an instance stored in UranoDB. A p-entity
is defined by the triple p-entity = <entity, source, date of extraction>.

 Before being stored in UranoDB, extracted entities that are transformed into
p-entities by the UranoExtract subsystem are stored as a set of XML documents. There
is an XML document for each category.

 Note that Urano does not receive warning about what data are updated from the
sources. To deal with this requirement, the system supports two extraction policies: by
schedule and on demand. The first policy allows for the definition of specific dates and
times to execute the extraction. For example, data from the Lattes curricula are extracted
once a day. The on demand policy allows administrators to determine when an
extraction should be carried out. For instance, administrators usually ask for data to be
extracted from the Júpiter and Fênix systems during periods of course registration.

3.4. The Report Subsystem

The report subsystem – UranoWeb – generates reports. It offers a web interface through
which integrated data stored in UranoDB can be transformed into useful information
permanently available, independent of the sources.

 Reports can differ from each other, in order to support the variety of formats and
different data required for administrative reports. They may contain atomic or aggregate
data. Atomic data involves the attributes of a category, such as the attributes title and
year of the category paper in journal. Aggregate data correspond to the statistical
functions applied to the fields of reports, such as counting and average.

 There are different types of report, according to the category of academic data.
For instance, the attributes in a report of the paper are different from the attributes in a
report of the category project. The attributes exhibited are determined dynamically
according to the data stored in UranoDB for each category. More specifically, the
definition of the report is based on a web page that contains specific options for the
required type of report. These options allow writers and lecturers to specify filters,
select the attributes of the category to be included in the report, determine the ordering,
and specify aggregation functions. Furthermore, users can add special fields to the
report, such as the link to the DBLP page of the lecturers. Reports can be generated and
saved in different formats such as PDF, HTML and Microsoft Excel format.

4. Detailing the UranoIntegrate Subsystem

The integration subsystem – UranoIntegrate – integrates p-entities, taking into account
that different sources may provide complementary, redundant and/or inconsistent data,
and stores them in UranoDB. Figure 4 shows the architecture of UranoIntegrate, while
Figure 5 shows integration examples that will be used hereafter to illustrate the
functionalities of UranoIntegrate. Figures 5a and 5d show p-entities of the category
paper in journal obtained from two different curricula on dates 2009/03/25 and
2009/03/26, respectively.

Figure 4. Architecture of the UranoIntegrate Subsystem

Execution on date 2009/03/25

p-entity1 = <{(title, Integration Tests), (journal, SIGMOD Record), (year, 2000),
(volume, v1), …}, Lecturer1, 2009/03/25>

(a)
p-entity2 = <{(title, Example of Integration), (journal, VLDB Journal), (year, 2004),

(volume, v3), … }, Lecturer1, 2009/03/25>
p-entity3 = <{(title, Integration Test), (journal, SIGMOD), (year, 2000),

(volume, v1), … }, Lecturer2, 2009/03/25>

cluster1 = {p-entity1, p-entity3}
(b) cluster2 = {p-entity2}

integrated-p-entity1 = p-entity1 � integrated-p-entity1 is associated to cluster1
(c)

integrated-p-entity2 = p-entity2 � integrated-p-entity2 is associated to cluster2

Execution on date 2009/03/26
p-entity4 = <{(title, Integration Tests), (journal, SIGMOD Record), (year, 2000),

(volume, v1), …}, Lecturer1, 2009/03/26>

(d)
p-entity5 = <{(title, Integration Test), (journal, SIGMOD Record), (year, 2000),

(volume, v1), … }, Lecturer2, 2009/03/26>
p-entity6 = <{(title, A New Paper), (journal, TKDE), (year, 2003), (volume, v7), … },

Lecturer2, 2009/03/26>

cluster1 = {p-entity1, p-entity5}
(e) cluster2 = {p-entity2}

cluster3 = {p-entity6}

integrated-p-entity1 = p-entity1 � integrated-p-entity1 remains associated to cluster1
(f)

integrated-p-entity3 = p-entity6 � integrated-p-entity3 is associated to cluster3

Figure 5. Example of two consecutive executions

 For each category of academic data (i.e., for each XML document), the Entity
Resolution module processes the p-entities and groups them in clusters of similar
p-entities. A cluster is a subset of p-entities of a same category, all of them evaluated as
similar. In Figure 5b, p-entity1 and p-entity3 are associated to cluster1, as they are

UranoItegrate

Entity
Resolution

Integrated Entity
Generation

Data Storage
Manager

XML
Document

Clusters Integrated
Entities UranoDB

Academic Data
Reconciler Tool

classified as similar. Conversely, p-entity2 represents a different paper and is associated
to cluster2. The Entity Resolution module is detailed in Section 5.

 The clusters are then analyzed by the Integrated Entity Generation module,
which generates automatically an integrated p-entity that best represents each cluster.
Therefore, each integrated p-entity is associated to its cluster. In Figure 5c, the
integrated p-entities of cluster1 and cluster2 are p-entity1 and p-entity2, respectively. The
Integrated Entity Generation module is detailed in Section 6.

 The integrated p-entities are then stored in UranoDB by the Data Storage
Manager module.

 Before the execution of Urano on date 2009/03/25, UranoDB is empty. With
regard to the next execution, Urano does not receive warnings about what data are
updated from the sources. Therefore, it automatically identifies these updates and
populates UranoDB as expected.

 Using the clusters generated in the previews execution (Figure 5c), the Entity
Resolution module analyzes the p-entities of the new execution (Figure 5d) and
identifies that the following actions were carried out: (i) p-entity4 is the same of the first
execution; (ii) p-entity3 was updated to p-entity5; (iii) p-entity2 was removed; and
(iv) p-entity6 was filled in the Lecturer2’s curricula. The Entity Resolution module then
processes the p-entities of Figure 5d, associating them to existing clusters (e.g.,
cluster1), removing clusters (e.g., cluster2) and creating new clusters (e.g., cluster3), as
shown in Figure 5e. The Integrated Entity Generation module then automatically
generates the new integrated p-entities (Figure 5f). Finally, the Data Storage Manager
module stores integrated-p-entity1 and integrated-p-entity3 in UranoDB and removes
integrated-p-entity2 from UranoDB.

 The integration process may be optionally assisted by the Academic Data
Reconciler tool, which aims at generating an integrated p-entity that is validated by the
user. The tool: (i) compares p-entities from the same cluster; (ii) exhibits side-by-side
p-entities and integrated p-entities so that users can see the differences between similar
p-entities; and (iii) reconciles p-entities, allowing users to copy data from the p-entities
to the integrated p-entity. The tool also allows users to move p-entities from one cluster
to another, aiming at improving the precision of the generated clusters.

5. The Entity Resolution Module

5.1 Entity Similarity Detection

The Entity Resolution module generates groups of similar p-entities, using a similarity
function based on an adaptation of the edit distance. Given two p-entities, the module
compares each attribute value of the first p-entity with each corresponding attribute
value of the second p-entity by dividing the two strings in words and comparing them
word by word. Different weights are assigned to each word in a string according to its
grammatical class. The comparison result of each word is then combined to give the
strings similarity degree. If the combined similarity degree is above a pre-defined
threshold, the strings are considered similar. Two p-entities are grouped in the same
cluster when all the similarity degrees of their compared attributes are above the
threshold. Otherwise, they are assigned to different clusters.

 Since similarity functions are expensive, the Entity Resolution module uses the
following approach to improve performance. It compares only a subset of the p-entities’
attributes, instead of all their attributes. This subset is composed of one or more
attributes that tend to identify each p-entity unambiguously. Therefore, the Entity
Resolution module can improve performance without compromising the quality of the
integration process. As for Urano, this subset of attributes was defined during the
project of UranoDB, through an analysis of the characteristics of the instances of each
academic data category. For example, for the category paper in journal, only the
attributes title, journal and year are analyzed, instead of all the attributes of Figure 3. In
Figure 5b, p-entity1 and p-entity3 are evaluated as similar, despite the slight differences
in their attributes title and journal.

 A method applied by the Entity Resolution module to string comparison based on
similarity is a pre-processing that normalizes the strings by removing consecutive blank
spaces, eliminating accents and cedillas, and transforming all the letters of the string to
lowercase. String normalization aims at improving the integration quality, as it increases
the probability of two strings to be classified as similar.

5.2 Automatic Detection of what Data are Updated from the Sources

The Entity Resolution module tackles the problem of identifying automatically what
data are updated from the sources by using provenance data of p-entities. Let E1 and E2
be two executions carried out on dates D1 and D2, respectively. Let G1 be a cluster
generated by E1, which contains the p-entities pe11, …, pe1n and is used as input to E2.
Also, consider that the following p-entities were extracted from source S and are currently
being processed: pe21, ..., pe2m. The automatic detection is performed as follows:

• pe2j (1 ≤ j ≤ m) is the same p-entity pe1i (1 ≤ i ≤ n) if they are from the same
source, have the same values for all its attributes, and D1 < D2. In Figure 5,
p-entity4 is the same as p-entity1;

• pe2j (1 ≤ j ≤ m) is a new p-entity if it is different from all the p-entities pe1i
(1 ≤ i ≤ n) obtained from S, and D1 < D2. In Figure 5, p-entity6 is a new
p-entity; and

• pe1i (1 ≤ i ≤ n) is a removed p-entity if it was obtained from S, is different
from all the p-entities pe2j (1 ≤ j ≤ m), and D1 < D2. In Figure 5, p-entity2 is a
removed p-entity.

 An updated p-entity is treated as a removed p-entity followed by a new p-entity.
In Figure 5, the Entity Resolution module detects that p-entity3 is a removed p-entity,
while p-entity5 is a new p-entity.

 Note that, in Section 5.1, a p-entity is associated to a cluster using similarity.
Conversely, two p-entities pe1i (1≤ i ≤ n) and pe2j (1 ≤ j ≤ m) are considered the same
during the automatic detection of updates if all their corresponding attributes have the
same values. Otherwise, the p-entities are considered different.

5.3 The EntityResolution Algorithm

Figure 6 shows the EntityResolution algorithm, which is executed once for each
academic data category. The inputs of the algorithm are a set of sources, a set of clusters

and a set of p-entities of an academic data category. The first input contains only the
sources that are being investigated in the current execution of the algorithm. The second
input contains the clusters of the current category that have already been analyzed in
previous executions. In the first execution of EntityResolution, clusterSet is empty. The
last input contains the p-entities to be analyzed.

 For each source in sourceSet, the first step of the algorithm consists of setting a
flag removed for all the p-entities of this source that are already present in clusterSet
(lines 01 to 03). This flag is used to identify automatically what data are updated from
the sources, as described in Section 5.2.

The EntityResolution Algorithm (sourceSet, clusterSet, p-entitySet): set of clusters
01 for all source in sourceSet do
02 set all p-entities from source in clusterSet as removed
03 end for
04 for all p-entity in p-entitySet do
05 p-entity' � look for p-entity in clusterSet
06 if p-entity' found then
07 unset entity' as removed
08 else
09 found � false
10 targetCluster � null
11 while not found and there is a cluster in clusterSet to analyze do
12 while not found and there is a p-entity’’ in cluster to analyze do
13 if (p-entity is similar to p-entity’’) then
14 targetCluster � cluster
15 found � true
16 end if
17 end while
18 end while
19 if not found then
20 targetCluster � create new cluster in clusterSet
21 end if
22 insert p-entity into targetCluster
23 end if
24 end for
25 for all cluster in clusterSet do
26 remove p-entities marked as removed from cluster
27 if cluster is empty then
28 integratedP-entity � get integrated p-entity of cluster
29 remove cluster
30 mark integratedP-entity to be removed from UranoDB
31 end if
32 end for
33 return clusterSet

Figure 6. The EntityResolution Algorithm

 The algorithm then analyzes each p-entity in entitySet, as follows (lines 04 to
24). In line 05, it determines whether the p-entity is present in clusterSet. If this
condition is satisfied, the p-entity is the same p-entity analyzed earlier. In this case, the
flag removed of the p-entity is unset (line 07). Otherwise, the algorithm tries to find a
cluster into which to include the p-entity (lines 08 to 24). To find a suitable cluster for
the p-entity, EntityResolution analyzes each cluster (lines 11 to 18), determining by
similarity which cluster will contain the p-entity, as described in Section 5.1. When the
p-entity does not belong to any cluster, the algorithm creates a new cluster in clusterSet

to hold the p-entity (lines 19 to 21). The steps of lines 08 to 24 indicate that the p-entity
under analysis was updated or is a new p-entity.

 After analyzing all the p-entities, EntityResolution investigates the clusters (lines
25 to 32). For each cluster, the algorithm removes the p-entities whose flag removed
remains set (line 26), and if the cluster is now empty, it also removes the cluster (line
29). Furthermore, the algorithm marks as removed the integrated p-entity that represents
the removed cluster (line 30), specifying that this integrated p-entity should be removed
from UranoDB.

6. The Integrated Entity Generation Module

The IntegratedEntityGeneration Algorithm (Figure 7) generates an integrated p-entity
that best represents each cluster that has been modified by the EntityResolution
algorithm. A modified cluster is a cluster that contains new p-entities or had some
p-entities removed.

The IntegratedEntityGeneration Algorithm (clusterSet): set of integrated p-entities
01 integratedP-entities � �
02 for all modified cluster in sourceSet do
03 if integratedP-Entity of cluster is marked as user-validated then
04 mark integratedP-Entity as automatic-validated
05 else
06 if there is exactly one p-entity in cluster then
07 integratedP-entity � p-entity
08 mark integratedP-entity as automatic-validated
09 end if
10 if there are exactly two p-entities in cluster then
11 integratedP-entity � select one p-entity from cluster
12 if both p-entities in cluster have the same values then
13 mark integratedP-entity as automatic-validated
14 else mark integratedP-entity as non-validated
15 end if
16 end if
17 if there are three or more p-entities in cluster then
18 integratedP-entity � more frequent p-entity in cluster
19 if all p-entities in cluster have the same values then
20 mark integratedP-entity as automatic-validated
21 else mark integratedP-entity as non-validated
22 end if
23 end if
24 integratedP-entities � integratedP-entities � integratedP-entity
25 end if
26 end for
27 return integratedP-entities

Figure 7. The IntegratedEntityGeneration Algorithm

 There are three different situations related to the generation of integrated
p-entities. The first refers to clusters that contain only one p-entity. In this case, this
p-entity is considered to be the integrated p-entity (lines 06 to 09). In situations where
the cluster contains exactly two p-entities, the algorithm selects one of them to be the
integrated p-entity (lines 10 to 16). The last situation considers clusters that contain
more than three p-entities. In this case, all the p-entities of the cluster are compared to
each other to determine the number of times that p-entities with the same values for all

its attributes appear. The integrated p-entity is one of the p-entities that appear most. If
two or more groups of p-entities appear most, the algorithm selects one of these
p-entities to be the integrated p-entity (lines 17 to 23).

 The integrated p-entities generated automatically by the algorithm are automatic-
validated when the cluster contains only one p-entity (line 08), or when all the p-entities
of the cluster have the same values for all their attributes (lines 13 and 20). Otherwise,
the integrated p-entity is non-validated (lines 14 and 21). An integrated p-entity is user-
validated when it is validated using the Academic Data Reconciler tool (Figure 4).
When a cluster with a user-validated integrated p-entity is modified, the integrated
p-entity becomes automatic-validated. However, no new integrated p-entity is generated
for this cluster, respecting the earlier user’s decision (lines 3 to 5).

7. Experiments

7.1. Implementation Aspects

The Lattes curricula of the lecturers are XML documents. The Júpiter and Fênix systems
use the Sybase® Adaptive Server Enterprise 15 database management system (DBMS),
while Urano uses the PostgreSQL® 8.2.3 DBMS. UranoExtract is implemented in Java,
while UranoIntegrate and UranoAdmin are implemented in C++.

 UranoWeb is a web application based on the request/reply mechanism of the
client-server architecture. The infrastructure of the server side includes the Apache
HTTP server, the PostgreSQL® DBMS and the PHP interpreter. On the client side, the
development of UranoWeb is based on the recommendations of the W3C organization.
The main technologies used here are CSS (Cascading Style Sheets), XHTML (eXtensible
Hypertext Markup Language), JavaScript and the concepts of AJAX. UranoWeb can be
accessed through the URL http://www.urano.icmc.usp.br.

7.2. Performance Results

Experiments were conducted in the Ubuntu 8.04 operating system running on an Intel
Core2Duo 2.66 GHz with 4GB DDR2 800MHz of main memory and 500 GB of disk
space (SATA 7200RPM). Table 1 indicates the sources responsible for providing the
main categories of academic data stored in UranoDB spawning data from 1982 to
present. The category person refers to any given Urano user.

Table 1. Sources of the main data categories

Category Sources
Person Lattes, Fênix
Paper Lattes
Project Lattes

Supervision Lattes, Fênix
Examination Board Lattes, Fênix

Conference Lattes
Course Júpiter, Fênix

 In this section, we focus our performance tests on the category paper. Lecturers
usually work on a collaborative environment, publishing their scientific papers jointly.
Therefore, the integration results of the category paper are a good example of the
Urano’s integration process, as the same paper may be obtained from different curricula.

 Before the first execution of Urano, UranoDB is empty. Table 2 shows the
elapsed time (seconds) to process different categories of paper in the first execution of
Urano. Data of these categories were obtained from 118 Lattes curricula. The term
processing includes the following functionalities provided by Urano: extraction and
integration (generation of clusters plus generation of integrated p-entities). There is no
data translation because data from Lattes are stored in XML, and the XML internal
format manipulated by Urano is based on the Lattes format. Table 2 also shows the
number of p-entities obtained from the curricula and the number of clusters (i.e., the
number of integrated p-entities) generated by the integration process. The total elapsed
time to process all the categories is about 6 minutes. The time spent to process papers in
proceedings was approximately 81.5% of that spent to process the remaining categories.
There is a larger volume of papers in proceedings; therefore there are more p-entities of
this category to extract and integrate.

Table 2. Results for the category paper (first execution)

Category Extract (s) Integration (s) Total Elapsed
Time (s) # p-entities # clusters

paper in journal 8.38 33.13 41.51 1642 1357
paper in proceedings 14.27 275.54 289.81 4561 3588

paper in journal
 (accepted for publication) 5.56 1.01 6.57 108 102

book chapter 4.58 0.63 5.21 215 184
book 4.33 0.14 4.47 97 90

 After populating UranoDB, Urano processes daily to find out only those
curricula that have been updated in the Lattes Database. Table 3 shows the extraction
and integration results for the different categories of paper with regard to 55 executions
of Urano (test set). The average results include days with and without curricula updates.
The total elapsed time to process all the categories is about 54 seconds per day. The
column average # p-entities lists the average number of updated p-entities during the
test set. These p-entities do not necessarily generate new clusters or new integrated
p-entities, as they may be associated to existing clusters.

Table 3. Average results for the category paper (55 days of execution)

Category Extract (s) Integration (s) Total Elapsed
Time (s)

average
p-entities

average
clusters

paper in journal 1.43 5.74 7.17 0.47 0.15
paper in proceedings 2.30 41.39 43.69 0.65 0.16

paper in journal
(accepted for publication) 0.83 0.14 0.97 0.15 0.13

book chapter 0.91 0.24 1.15 0.04 0.04
book 0.95 0.12 1.06 0.02 0

 For each category, Table 4 shows the number of clusters with one, two and three
or more p-entities. These results reflect the number of integrated p-entities stored in
UranoDB after executing the test set. The total percentage of clusters with one p-entity
is 80% of the total number of clusters of all the categories. For these clusters, there is no
need to further compare their p-entities during the generation of integrated p-entities.
Therefore, 20% of the total numbers of clusters require additional processing to generate
integrated p-entities. As for determining if two p-entities of a cluster are the same or not,
we have used a hash function defined over all the entities’ attributes values to improve
comparison performance. Note that clusters with two or more p-entities are also used by
Urano’s log management functionality (Section 3.1) to store data on inconsistencies

found in the integration process. Urano allows users to generate reports containing such
data to correct their curricula.

Table 4. Number of p-entities per cluster for the category paper

 # p-entities per cluster
Category One Two Three or more Total

paper in journal 1144 169 51 1364
paper in proceedings 2804 639 152 3595

paper in journal
(accepted for publication) 93 6 0 99

book chapter 160 22 4 186
book 83 7 0 90

 To illustrate the precision of the integrated p-entities, we have compared
manually some reports generated by Urano with the lectures’ Lattes curricula. Table 5
shows the precision and recall for the reports that list paper publications in 2007. For
instance, 93% of the papers in journals listed in Urano’s report are correct. This number
represents 88% of the total number of papers that should have been reported. Table 5
does not show the precision and recall of the integrated p-entities of the category paper
in journal accepted for publication because the report refers to the year of 2007, and the
p-entities of this category are now p-entities of the category paper in journal.

Table 5. Precision and recall of some reports

Category Precision Recall
paper in journal 93% 88%

paper in proceedings 90% 91%
book chapter 94% 100%

book 100% 100%

8. Conclusions

In this paper we described the Urano System, which was developed to gather academic
data from different sources and consolidate them in a central database. Urano integrates
academic data from pre-existing heterogeneous sources, in order to generate reports for
purposes of institutional administration.

 The main characteristics of Urano are as follows. It integrates data according to
the main categories of academic information. It also supports two extraction policies (by
schedule and on demand), allowing data from each source to be extracted according to
the policy that best fits their characteristics. Another characteristic of Urano is that it
extracts data from internal and external sources, without requiring data from these
sources to be updated when it finds inconsistencies in the integration process. Urano
stores data relating to errors inconsistencies in the integration process and, if
appropriate, the sources can be updated based on reports containing those
inconsistencies. Thus, the continuous use of Urano allows for the identification of
inconsistencies among data and facilitates the update of inconsistent data, improving the
quality and reliability of data. Finally, Urano employs concepts of the state-of-the-art
research in data integration, providing an entity resolution technique that meets its
requirements.

 Urano is currently under use at the ICMC to generate reports for institutional
administration. It has been providing a huge improvement on the productivity of the
institute, since previously reports were generated manually. Furthermore, since Urano

stores integrated data in a central database and generates reports from these pre-stored
data, reports can be generated quicker than before. Moreover, Urano has been
incorporated to the Tycho System and is also being deployed to integrate academic data
from the 39 Institutes of USP (http://www.sistemas.usp.br/tycho/RelatorioDepto
Unidade?codmnu=00).

 We are currently improving Urano with data warehousing and data mining
functionalities. Another project is the development of extractor/integrator modules for
the corporate systems of other institutes. The structure of these modules is simple and
depends only on the source and the XML formats. The modularity of the specific
modules enables Urano to be expanded to integrate academic data from heterogeneous
sources and to generate reports for institutional administration anywhere.

References

Benjelloun, O., et al. (2009) “Swoosh: a Generic Approach to Entity Resolution”. The
VLDB Journal, 18(1): 255-276.

Bhattacharya, I. and Getoor, L. (2007) “Collective Entity Resolution in Relational
Data”. ACM TKDD, 1: 1-36.

Chen, Z., et al. (2007) “Adaptive Graphical Approach to Entity Resolution”. In Proc.
ACM IEEE JCDL, p. 204-213.

Dell’Aquila, C., et al. (2007) “An Academic Data Warehouse”. In Proc. 7th WSEAS
AIC Conference, p. 24-26.

Halevy, A. Y., et al. (2005) “Enterprise Information Integration: Successes, Challenges
and Controversies”. In Proc. ACM SIGMOD, p. 778-787.

Halevy, A. Y., et al. (2006) “Data Integration: The Teenage Years”. In Proc. 32nd
VLDB, p.9-16.

Inmon, W.H. (2005) "Building the Data Warehouse", Wiley, 4th edition.

Kalashnikov, D. and Mehrotra, S. (2006) “Domain-Independent Data Cleaning via
Analysis of Entity-Relationship Graph”, In ACM TODS, 31: 716-767.

Kiani, A. and Shiri, N. (2007) “A Generalized Model for Mediator Based Information
Integration”. In Proc. IDEAS, p.1-5.

McCann, R., et al. (2005) “Mapping Maintenance for Data Integration Systems”. In
Proc. 31st VLDB Conference, p. 1018-1029.

Sattler, K.-U., et al. (2005) “Concept-based Querying in Mediator Systems”. The VLDB
Journal, 14: 97-111.

Torlone, R. (2008) “Two Approaches to the Integration of Heterogeneous Data
Warehouses”. In Distributed and Parallel Databases, v.23, p. 69-97.

