

SCC0173 – Mineração de Dados Biológicos

Mineração de Regras de Associação

Prof. Ricardo J. G. B. Campello

SCC / ICMC / USP

1

Créditos

- Parte deste material consiste de adaptações e extensões dos originais:
 - gentilmente cedidos pelos professores Eduardo R. Hruschka (baseados no curso de Gregory Piatetsky-Shapiro, disponível no sítio http://www.kdnuggets.com) e André C. P. L. F. de Carvalho
 - do livro de (Tan et al., 2006)

Aula de Hoje

- Introdução à mineração de regras de associação
 - Medidas de suporte e confiança
 - Princípio "apriori"
 - Regras de associação
 - Aplicação em descoberta de padrões de risco

Análise de Associação

 Descoberta e interpretação de padrões de inter-relacionamento interessantes que podem estar escondidos em grandes bases de dados de "transações"

Exemplos de Transações:

ID	Produto
1	leite, pão, ovos
2	pão, açúcar
3	pão, cereal
4	leite, pão, açúcar
5	leite, cereal
6	pão, cereal
7	leite, cereal
8	leite, pão, cereal, ovos
9	leite, pão, cereal

Análise de Associação

- Variados Campos de Aplicação
- Por exemplo:
 - Mercados: relações entre produtos, perfis de consumo, etc.
 - Meteorologia: relações entre fenômenos atmosféricos, terrestres, marítimos, etc.
 - Medicina: relações entre exames, sintomas, doenças, etc.
 - Bioinformática...

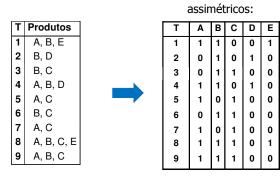
Exemplo de Base de Dados de Transações:

T	Produtos					
1	A, B, E					
2	B, D					
3	B, C					
4	A, B, D					
5	A, C					
6	B, C					
7	A, C					
8	A, B, C, E					
9	A, B, C					

Exemplos = Transações

Exemplo de Base de Dados de Transações:

Produtos convertidos em atributos binários



Itens:

A = leite

B= pão

C= cereal D= açúcar

E= ovos

NOTA

- Todas as discussões a seguir presumem que as bases de dados de transações em questão são binárias assimétricas
- Métodos para análise de associação sobre bases não binárias, tais como, por exemplo, aquelas contendo transações de consumo com a quantidade e/ou preço dos itens envolvidos, estão além do escopo deste curso.

9

Propriedade do Subconjunto:

- Todo subconjunto de um conjunto frequente é também frequente
- Por quê?
- Exemplo: suponhamos que {A,B} seja freqüente.
 Dado que cada ocorrência de {A,B} inclui A e B, então A e B tem de ser eles próprios freqüentes
- Quase todos os algoritmos para extrair regras de associação são baseados nesta propriedade

Definições:

- Conjunto de Itens (itemset) I: um subconjunto de itens possíveis
 - Exemplo: I = {A, B, E} (ordem n\u00e3o \u00e9 importante)
 - Pode ser parte de (ou toda) uma transação (t)
- Suporte(I) = nº de transações t que contêm I
 - Na base de dados anterior temos que: sup({A, B, E}) = 2, sup({B, C}) = 4
- Conjunto de Itens Freqüentes: sup(I) ≥ sup_mín, onde sup mín é o suporte mínimo, definido pelo usuário

10

Regras de Associação:

- Regra de Associação R :
 - Conjunto de itens 1 ⇒ Conjunto de itens 2
 - Conjuntos de itens 1 e 2 disjuntos
 - Interpretação: se determinada transação inclui o conjunto de itens 1, então esta também inclui (ou provavelmente inclui) o conjunto de itens 2
 - Cuidado! N\u00e3o deve ser interpretada como causa efeito!
- Exemplos:
 - A,B \Rightarrow E,C
 - \blacksquare A \Rightarrow B,C

11

Como Obter Regras de Associação?

- Dado um conjunto de itens freqüentes {A, B, E}, quais são as possíveis regras de associação?
 - $A \Rightarrow \{B, E\}$
 - {A, B} ⇒ E
 - $\{A, E\} \Rightarrow B$
 - $B \Rightarrow \{A, E\}$
 - {B, E} ⇒ A
 - $E \Rightarrow \{A, B\}$

Suporte e Confiança:

- Seja R: I ⇒ J uma regra de associação
 - $sup(R) = sup(I \cup J) / N$
 - N = No de transações (fixo)
 - Logo, a união dos conjuntos I ∪ J define o suporte
 - $conf(R) = sup(I \cup J) / sup(I) \acute{e} a confiança de R$
 - Número de transações que possuem I e J dividido pelo número de transações que possuem I
- Regras de associação com mínimo suporte são às vezes chamadas de "regras fortes"

14

Exemplo de Regras de Associação Formadas por 3 Itens:

 Dado um conjunto de itens {A,B,E} com suporte = 2, quais regras de associação possuem conf_mín = 50% ?

$A, B \Rightarrow E$:	conf=2/4	=	50%
----------------------	---	----------	---	-----

A, E
$$\Rightarrow$$
 B : conf=2/2 = 100%

B, E
$$\Rightarrow$$
 A : conf=2/2 = 100%

$$E \Rightarrow A, B : conf=2/2 = 100\%$$

Т	Lista de itens
1	A, B, E
2	B, D
3	B, C
4	A, B, D
5	A, C
6	B, C
7	A, C
8	A, B, C, E
9	A, B, C

Confiança é menor do que a mínima requerida:

A
$$\Rightarrow$$
 B, E : conf=2/6=33% < 50%
B \Rightarrow A, E : conf=2/7=28% < 50%

Exemplo (Freitas & Lavington):

Se "café" então "pão"; Suporte=0,3 / Confiança=1

Se "café" então "manteiga"; Suporte=0,3 / Confiança=1

Se "pão" então "manteiga"; Suporte=0,4 / Confiança=0,8

Se "café E pão" então "manteiga"; Suporte=0,3 / Confiança=1

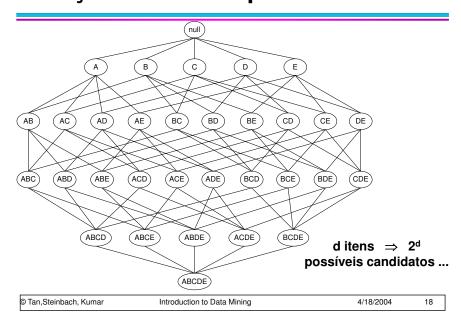
R	Leite	Café	Cerveja	Pão	Manteiga	Arroz	Feijão
1	N	S	N	S	S	N	N
2	S	N	S	S	S	N	N
3	N	S	N	S	S	N	N
4	S	S	N	S	S	N	N
5	N	N	S	N	N	N	N
6	N	N	N	N	S	N	N
7	N	N	N	S	N	N	N
8	N	N	N	N	N	N	S
9	N	N	N	N	N	S	S
10	N	N	N	N	N	S	N

Encontrando Regras de Associação:

- Uma regra possui dois parâmetros: sup_mín e conf_mín;
 - $sup(R) \ge sup_min \& conf(R) \ge conf_min$
- Problema:
 - Encontrar todas as regras que forneçam sup_mín e conf_mín pré-estabelecidos
- Inicialmente, encontrar todos os conjuntos de itens frequentes
- Em seguida, extrair regras com elevada confiança a partir desses conjuntos

17

Geração de Itens Frequentes



Principal Forma de Reduzir o No. de Candidatos

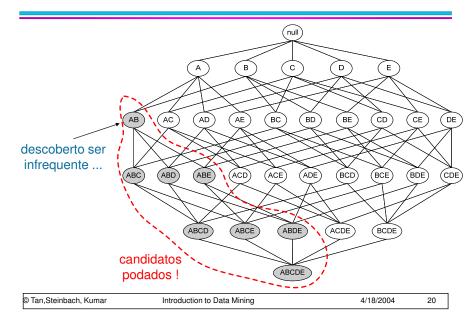
- Princípio Apriori:
 - Se um conjunto de itens é frequente, então todos os seus subconjuntos também devem ser
- Válido devido à seguinte propriedade do suporte:

$$\forall X, Y : (X \subseteq Y) \Rightarrow \sup(X) \ge \sup(Y)$$

- Propriedade anti-monotônica
 - suporte de um conjunto de itens nunca excede os suportes dos seus subconjuntos !

© Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004 19

Ilustrando o Princípio



Ilustrando o Princípio

Item Suporte Bread 4 Coke 2 Milk 4 Beer 3 Diaper 4

Eggs

Conjuntos de Tamanho 1

 $sup_min = 3$

Conj. de Itens	Suporte
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Conjuntos de Tamanho 2

(não é necessário gerar candidatos envolvendo Coke ou Eggs!)

Conj. de Tamanho 3

© Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004 21

4

Geração de Candidatos

Método F_{k-1} x F₁ :

- Gera conjuntos de itens de tamanho k unindo conjuntos de itens frequentes de tamanho k-1 e de tamanho 1
 - Nota: não é o método mais eficiente de geração de candidatos, mas é simples e basta para as necessidades do nosso curso!
- Exemplo (k = 3):
 - {Bread, Diapers} ∪ {Milk} → {Bread, Diapers, Milk}
- Mas como evitar redundâncias...?
 - Ex.: {Milk, Diapers} ∪ {Bread} → {Milk, Diapers, Bread}

22

4

Geração de Candidatos

Método F_{k-1} x F₁ :

 Para evitar redundâncias, basta manter os itens ordenados internamente a cada conjunto e gerar os candidatos de forma organizada, unindo cada conj. frequente de tamanho (k – 1) apenas com os itens freq. de ordem superior na lista ordenada

Exemplo:

Geração de Candidatos

 Item
 Suporte

 Bread
 4

 Coke
 2

 Milk
 4

 Beer
 3

 Diaper
 4

 Eggs
 1

Conjuntos de Tamanho 1

 $sup_min = 3$

Conj. de Itens	Suporte
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Conjuntos de Tamanho 2

Geração de candidatos deve seguir até que, para algum k, não haja conjuntos frequentes de k itens

Conj. de Tamanho k

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 24

Poda de Candidatos

- Note que todo o procedimento demanda computar o suporte de cada conjunto candidato gerado...
 - Varrer a BD e tentar casar cada candidato com cada transação...
 - Pode ser bem mais eficiente:
 - mantendo ordenadas as transações e os candidatos
 - utilizando estruturas de dados apropriadas
 - Mesmo assim é computacionalmente caro!
 - Custo computacional pode ser amenizado se for possível eliminar alguns candidatos sem computar diretamente seu suporte

Poda de Candidatos (Exemplo)

Dados 5 conjuntos freqüentes de 3 itens:

Conjunto candidato formado por 4 itens:

- → Pode ser freqüente, pois todos os seus subconjuntos de 3 itens o são
- E o que dizer sobre o conjunto {A C D E} ?
 - → Como {C D E} não é frequente, o conjunto {A C D E} também não é!
 - → Pode ser descartado

26

Rotina Básica

- Algoritmo:
 - Seja k=1
 - Gere conjuntos de itens frequentes de tamanho 1
 - Repita até que não haja mais conjuntos frequentes
 - ◆ Gere conjuntos candidatos de tamanho (k+1)
 - Pode os candidatos que possuem subconjuntos de tamanho k que não são frequentes
 - Conte o suporte dos candidatos remanescentes varrendo a base de dados e elimine os candidatos infrequentes, ou seja, aqueles com contagem menor que sup_mín

Exercício:

25

• Gere os conjuntos de itens frequentes com sup_mín = 5 na BD abaixo:

(Witten and Frank	c, 2005)	Nota: cada pa	r atributo = va	lor é um item
Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 27

Voltando ao Exemplo Anterior (Freitas & Lavington)...

R	Leite	Café	Cerveja	Pão	Manteiga	Arroz	Feijão
1	N	S	N	S	S	N	N
2	S	N	S	S	S	N	N
3	N	S	N	S	S	N	N
4	S	S	N	S	S	N	N
5	N	N	S	N	N	N	N
6	N	N	N	N	S	N	N
7	N	N	N	S	N	N	N
8	N	N	N	N	N	N	S
9	N	N	N	N	N	S	S
10	N	N	N	N	N	S	N

29

Passo 2 ...

{Café, Manteiga}: Suporte = 3;

{Café, Pão}: Suporte = 3;

{Manteiga, Pão}: Suporte = 4;

Conjuntos de itens frequentes para sup_mín = 3: {Café, Manteiga}, {Café, Pão}, {Manteiga, Pão}

- Passo 1 Suporte p/ Conjuntos com 1 Item:
 - Arroz: 2; Café: 3; Cerveja: 2; Feijão: 2; Leite: 2; Manteiga: 5; Pão: 5.
 - Considerando sup_mín = 3:
 - Café, Manteiga e Pão seriam os itens frequentes!
- Passo 2 Suporte p/ Conjuntos com 2 Itens:
 - ⇒ Procurar considerando somente os itens freqüentes
 - ⇒ Café, Manteiga, Pão

30

- Passo 3 Suporte p/ Conjuntos com 3 Itens:
 - A partir dos conjuntos anteriores obtém-se:
 - {Café, Manteiga, Pão}: Suporte = 3;
 - Nota:
 - Antes de calcular o suporte deste conjunto, ele foi submetido (e sobreviveu) ao procedimento de poda que verificou que todos os seus subconjuntos de tamanho 2 são fregüentes:
 - {Manteiga, Pão}, {Café, Pão}, {Café, Manteiga}

R	Leite	Café	Cerveja	Pão	Manteiga	Arroz	Feijão
1	N	S	N	S	S	N	N
2	S	N	S	S	S	N	N
3	N	S	N	S	S	N	N
4	S	S	N	S	S	N	N
5	N	N	S	N	N	N	N
6	N	N	N	N	S	N	N
7	N	N	N	S	N	N	N
8	N	N	N	N	N	N	S
9	N	N	N	N	N	S	S
10	N	N	N	N	N	S	N

(Freitas & Lavington)

Em Resumo:

- Sup({Café}) = 3 e Sup({Manteiga}) = Sup({Pão}) = 5
- Sup({Café, Manteiga}) = 3
- Sup({Café, Pão}) = 3
- Sup({Manteiga, Pão}) = 4
- Sup({Café, Manteiga, Pão}) = 3

Gerando Regras de Associação:

- Dados os conjuntos de itens frequentes:
 - Para cada conjunto I:
 - Para cada subconjunto J de I:
 - Determinar todas as regras de associação da forma:

$$(I-J) \Rightarrow J$$

 Eliminar aquelas com medida de confiança menor que o limiar mínimo pré-estabelecido (conf_mín)

3

Voltando ao Exemplo Anterior (Freitas & Lavington)...

$$Sup(\{Café\}) = 3; \quad Sup(\{Manteiga\}) = Sup(\{Pão\}) = 5$$

$$Sup(\{Café, Manteiga\}) = 3; \quad Sup(\{Café, Pão\}) = 3; \quad Sup(\{Manteiga, Pão\}) = 4$$

$$Sup(\{Café, Manteiga, Pão\}) = 3$$

Calcula-se, então, a Confiança das regras candidatas:

a) {Café, Manteiga} :

Se "café" então "manteiga" – conf.=1,0 Se "manteiga" então "café" – conf.=0,6

b) {Café, Pão}:

Se "café" então "pão" – conf.=1,0 Se "pão" então "café" – conf.=0,6

c) {Manteiga, Pão} :

Se "manteiga" então "pão" – conf.=0,8 Se "pão" então "manteiga" – conf.=0,8

d) {Café, Manteiga, Pão}:

Se "café, păo" então "manteiga" – conf.=1,0 Se "café, manteiga" então "pão" – conf.=1,0 Se "manteiga, pão" então "café" – conf.=0,75 Se "café" então "pão,manteiga" – conf.=1,0

e assim por diante, escolhendo-se depois as regras que respeitam conf_mín.

Exercícios

- Complete o exemplo anterior selecionando todas as regras de associação que se pode extrair da BD que tenham conf_mín = 0.8
- Explique porque não é preciso calcular o suporte das regras candidatas (apenas a confiança) para saber que essas regras necessariamente possuem suporte maior ou igual ao mínimo (0,3 neste exemplo)

Nota Sobre a Geração de Regras

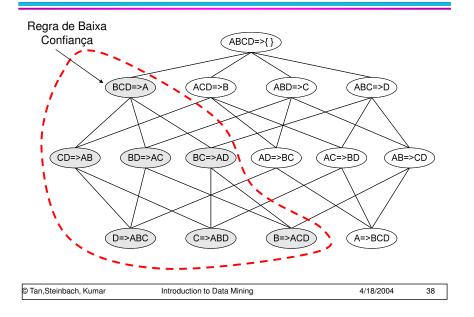
- A geração do conjunto de regras também pode se beneficiar do princípio apriori
- É simples observar que o princípio implica a seguinte propriedade da confiança:
 - Confiança de regra de um dado conj. de itens não cresce se passamos itens da esquerda para a direita da regra
 - Por exemplo, dado um conj. de itens {A B C D}:
 - $conf(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$

37

"Filtrando" Regras de Associação:

- Problema: grandes BDs (e.g. supermercados) podem produzir um número elevado de regras de associação, mesmo com valores razoáveis para suporte e confiança...
 - Esse problema é ainda mais crítico em BDs com distribuições de suporte desbalanceadas...
- Possíveis soluções:
 - Pré-processar a base e/ou filtrar regras...
- Medidas de interesse (objetivas e subjetivas) para filtragem:
 - Tópico fundamental em análise de associação, mas está além do escopo deste curso...

Geração de Regras no Algoritmo Apriori



"Filtrando" Regras de Associação:

- Medidas de Interesse Subjetivas:
 - Geralmente s\u00e3o dependentes do problema
 - Tipicamente são especificadas por um especialista de domínio e utilizadas para filtrar regras que não satisfazem as especificações
 - podem ser formalizadas em termos lógicos ou matemáticos e inseridas no processo automático de filtragem; ou
 - podem ser aplicadas de forma iterativa pelo próprio especialista em um ambiente iterativo amigável (visual data mining)
- Medidas de Interesse Objetivas:
 - Alternativas a Suporte Confiança

"Filtrando" Regras

- Exemplo de Medida de Interesse Objetiva
 - Fator de Interesse (FI)
 - $FI(I \rightarrow Z) = Conf(I \rightarrow Z) / (Sup(Z) / N)$
 - Exemplo:

■ FI(q
$$\rightarrow$$
 p) = Conf(q \rightarrow p) / (Sup(p) / N) =
= 1 / (25/30) = **1,2**

• FI(q
$$\rightarrow$$
 r) = Conf(q \rightarrow r) / (Sup(r) / N) =
= 1 / (5/30) = **6**

41

р	q	r	
1	1	1	
1	1	1	
1	1	1	
1	1	1	
1	1	1	
1	0	0	
1	0	0	
1	0	0	
1	0	0	
1	0	0	
1	0	0	
1	0	0	
1	0	0	
1	0	0	
1	0	0	
1	0	0	
1	0	0	
1	0	0	
1	0	0	
1	0	0	
1	0	0	
1	0	0	
1	0	0	
1	0	0	
1	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	
0	0	0	

Descoberta de Padrões de Risco

- Aplicação típica em dados de registros clínicos (epidemiologia)
 - mas também em outras aplicações (p. ex. monitoramento de falhas)
- Registros compostos de atributos descritores e um atributo meta que assume os valores: "normal" e "anormal". P. ex.:

Sexo	Idade	Fumante	Pressão	•••	Classe
F	20-30	Não	Baixa		Normal
М	40-50	Sim	Alta		Anormal
				•••	

- Padrão: (sub)conjunto de pares atributo-valor
 - Por exemplo, P_d = {Pressão = Alta, Fumante = Sim}

42

Descoberta de Padrões de Risco

- Padrão de Risco: padrão P_d associado a uma regra (P_d → anormal) que apresenta elevados valores de suporte local e risco relativo
- Suporte Local: suporte do conjunto de itens {P_d, anormal} relativo apenas aos registros ("transações") cujo valor de classe é anormal

$$Lsup(P_d \rightarrow anormal) = Sup(\{P_d, anormal\}) / Sup(\{anormal\})$$

Risco Relativo:

$$RR(P_d \to \text{anormal}) = \frac{\text{Prob(anormal} \mid P_d)}{\text{Prob(anormal} \mid \neg P_d)} \approx \frac{\text{Conf}(P_d \to \text{anormal})}{\text{Conf}(\neg P_d \to \text{anormal})}$$

Observação:

$$\frac{\operatorname{Prob}(\operatorname{anormal} \mid P_d)}{\operatorname{Prob}(\operatorname{anormal} \mid \neg P_d)} = \frac{\operatorname{Prob}(\{P_d, \operatorname{anormal} \})}{\operatorname{Prob}(P_d)} / \frac{\operatorname{Prob}(\{\neg P_d, \operatorname{anormal} \})}{\operatorname{Prob}(\neg P_d)}$$

$$\approx \frac{\operatorname{Sup}(\{P_d, \operatorname{anormal} \}) / N}{\operatorname{Sup}(\{P_d\}) / N} / \frac{\operatorname{Sup}(\{\neg P_d, \operatorname{anormal} \}) / N}{\operatorname{Sup}(\neg P_d) / N}$$

Descoberta de Padrões de Risco

Observações:

- P_d > 1 significa que o grupo que possui este padrão apresenta maior risco de ser anormal
 - grupo que não apresenta P_d possui menor risco
 - p. exemplo, RR = 2 significa 2 vezes mais risco para o grupo com P_d
- P_d < 1 significa que o grupo que possui este padrão apresenta menor risco de ser anormal
 - grupo que não apresenta P_d possui maior risco
- Lsup e RR possuem a propriedade anti-monotônica
 - podem substituir Sup e Conf nos algoritmos de regras de associação
 - no entanto, existem especializações dos algoritmos que utilizam outras propriedades dessas medidas e permitem a extração de regras do tipo padrão de risco de forma mais eficiente que os algoritmos convencionais

Exercícios Adicionais

Tome alguns conjuntos de itens de diferentes tamanhos que você gerou no exercício envolvendo a base de (Witten & Frank, 2005), gere regras de associação a partir desses conjuntos e calcule a confiança de cada uma dessas regras.

Exercícios Adicionais

A propriedade que a confiança de uma regra de um dado conj. de itens não cresce se passamos itens da esquerda para a direita da regra é denominada anti-monotônica. Com base na definição da medida de confiança, explique porque essa propriedade é válida.

Referências

- P.-N. Tan, Steinbach, M., and Kumar, V.,
 Introduction to Data Mining, Addison-Wesley, 2006
- I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd Edition, Morgan Kaufmann, 2005